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Abstract: Herein, we prepared Pt2CeO2 heterojunction nanocluster (HJNS) on multiwalled carbon
nanotubes (MWCNTs) in deep eutectic solvents (DESs) which is a special class of ionic liquids. The cat-
alyst was then heat-treated at 400 ◦C in N2 (refer to Pt2CeO2/CNTs-400). The Pt2CeO2/CNTs-400 cat-
alyst showed remarkably improved electrocatalytic performance towards methanol oxidation reaction
(MOR) (839.1 mA mgPt

−1) compared to Pt2CeO2/CNTs-500 (620.3 mA mgPt
−1), Pt2CeO2/CNTs-300

(459.2 mA mgPt
−1), Pt2CeO2/CNTs (641.6 mAmg−1) (the catalyst which has not been heat-treated)

and commercial Pt/C (229.9 mAmg−1). Additionally, the Pt2CeO2/CNTs-400 catalyst also showed
better CO poisoning resistance (onset potential: 0.47 V) compared to Pt2CeO2/CNTs (0.56 V) and
commercial Pt/C (0.58 V). The improved performance of Pt2CeO2/CNTs-400 catalyst is attributed to
the addition of appropriate CeO2, which changed the electronic state around the Pt atoms, lowered
the d-band of Pt atoms, formed more Ce-O-Pt bonds acting as new active sites, affected the adsorption
of toxic intermediates and weakened the dissolution of Pt; on the other hand, with the assistance
of thermal treatment at 400 ◦C, the obtained Pt2CeO2 HJNS expose more new active sites at the
interface between Pt and CeO2 to enhance the electrochemical active surface area (ECSA) and the
dehydrogenation process of MOR. Thirdly, DES is beneficial to the increase of the effective component
Pt(0) in the carbonization process. The study shows a new way to construct high-performance
Pt-CeO2 catalyst for the direct methanol fuel cell (DMFC).

Keywords: Pt2CeO2 heterojunction nanocluster; Ce-O-Pt bonds; methanol oxidation reaction; deep
eutectic solvents; direct methanol fuel cell

1. Introduction

The development of fuel cells is one of the important ways to achieve carbon neu-
trality [1–4]. Fuel cells have been the focus of attention in the field of energy, such as
direct methanol fuel cells (DMFCs) [5,6], direct ethanol fuel cells (DEFCs) [7], direct formic
acid fuel cells (DFAFCs) [8] and so on. Among them, with the advantages of easy opera-
tion, safe liquid methanol, high energy density and low operating temperature, DMFCs
have received extensive attention as a hopeful power technology for vehicles and portable
electronic devices [9,10].

As we know, the precious metal platinum (Pt) has excellent catalytic performance
for the DMFC. However, the high price and scarcity of Pt hinder the commercialization
of these technologies. Additionally, Pt-based catalysts are susceptible to poisoning by
carbonaceous intermediates (mainly COads) that are adsorbed on the Pt active sites and
reduce the catalytic performance towards MOR. According to the bifunctional mechanism,
in order to effectively alleviate the toxicity of COads to the Pt active site, introducing a
second cheap metal is an effective method. Due to the effect of the added metal on the
electronic structure, the Pt electronic state is changed to reduce the adsorption of poisonous
intermediates (e.g., COads, COOHads). Among these alloy catalysts, the Pt-CeO2 binary
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system has attracted much interest [11–13]. Herein, ceria nanorods with rich oxygen
vacancies and rough surface have been induced by plasma surface engineering and used
as Pt support. The prepared Pt/CeO2-P catalyst shows enhanced mass activity towards
MOR [14]. In addition, Pt-CeO2/C-S catalyst with CeO2 nanospheres as initiator has
the highest catalytic performance for MOR, which is due to the physical interaction and
electronic effect between CeO2 and Pt [15]. In addition, carbon-free PtCu/CeO2 catalyst
was prepared by Cu precoating CeO2. The mass activity of PtCu/CeO2 catalysts for MOR
and oxygen reduction (ORR) was 1.84 and 1.57 times that of Pt/C, respectively [16]. At
present, Pt-CeO2 system catalysts have been studied extensively. How to further improve
the catalytic activity of the catalyst and apply it to actual direct methanol fuel cells is the
direction of the researchers’ efforts.

Pt-based nanoparticles supported on carbon black (e.g., Vulcan XC-72) nanocatalysts
are commonly used in the DMFC [17]. However, the deep micropores or recesses of carbon
black nanocatalysts limits their use as a catalyst support because the catalytic nanoparticles
get trapped in the micropores and become electrochemically inaccessible [18]. Another
promising carbon material such as graphene-like carbon nitride can be used in many fields
(e.g., photo-degradation intermediates). Xia et al. prepared Fe-ZrO2 embedding g-C3N4
by solvothermal method for photo-degradation of anti-diabetic drug, acarbose (ACB) [19].
Graphene has made great progress as a catalyst carrier. However, the conductivity of
graphene-based carbon materials needs to be improved. Another carbon material could
solve the problem graphene could not solve in terms of electron transport. Multiwalled
carbon nanotubes (MWCNTs) have unique morphologies and properties, such as high
specific surface area and corrosion resistance, good electronic conductivity and high stabil-
ity [20–22]. In addition, MWCNTs heterojunction with graphene-like carbon nitride can
enhance the electrochemical and photocatalytic activity. For example, Tahir Muhmood et al.
reported electro-static junctions between carbon nanotubes (CNT) and graphitic carbon
nitride (CCN) with enhanced photocatalytic properties [23]. Although MWCNTs have
these advantages, pristine MWCNTs lack sufficient binding sites and are chemically inert
for anchoring metal nanoparticles which results in poor dispersion and aggregation. There-
fore, we introduced the above CeO2-modified MWCNTs to support nanoparticles more
stably [24].

Through interface engineering to construct a heterojunction catalyst, its unique advan-
tage can effectively improve the catalytic activity compared with one component catalyst.
Synergistic effects are common in heterojunction catalysts, both electronic interactions
and defect effects in heterojunction are conducive to improving catalytic activity [25]. For
example, Xia et al. reported a novel type-I heterojunction between red phosphorus and
graphitic carbon nitride under vacuum condition. The red phosphorus/graphitic carbon
nitride possess type-I heterojunction with enhanced catalytic behavior [26]. Tahir Muh-
mood et al. used the vacuum tube method to construct nondestructive and physically
stable graphitic carbon nitride/graphene nanoplatelet composites, which achieved the
complete degradation of tetracycline hydrochloride [27]. It can be seen that the construction
of heterojunction catalyst has the potential to improve the catalytic performance.

Deep eutectic solvents (DESs) are a new kind of ionic liquids consisting of quaternary
ammonium salts and hydrogen bond donors [28–34]. Abbott et al. reported these green
solvents firstly have received intensive attention in electrocatalysis applications due to
their remarkable physicochemical properties (high conductivity, thermostability, negligible
vapor pressure and wide electrochemical potential windows) [35]. Recently, Hsieh et al.
prepared sc-Pd NPs/GR/SPCE (screen-printed carbon electrode) which shows excellent
activity towards glycerol oxidation compared to composites not fabricated by sc CO2
processes [36]. Palomar-Pardavé et al. prepared Pd@Pd(OH)2 core-shell nanoparticles
in DES. It is shown that the GCE (glassy carbon electrode)/Pd@Pd(OH)2-modified elec-
trode displays a high catalytic activity towards the MOR in alkaline solution [37]. Fan
et al. have prepared high-performance Pt-based alloy catalysts by chemical reduction or
electrochemistry method in DES that plays an important role in controlling the shape of the
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nanoparticles [38,39]. In our previous work, a series of Pt/Pd-based catalysts have been
prepared using DES [21,24,40,41]. DES has been widely proved to be a green solvent for
the preparation of high-performance catalysts. Therefore, DES is expected to be further
widely used in more fields.

Herein, we fabricated Pt2CeO2 HJNS supported on MWCNTs catalyst successfully
with the help of DES and the pyrolysis process. The related results demonstrated that
we used the combination of (Pt + CeO2 + MWCNTs + DES + calcination) to get a mate-
rial with rich structure, so as to obtain good MOR catalytic performance. The prepared
Pt2CeO2/CNTs-400 exhibits enhanced catalytic activity and stability for the MOR compared
with Pt2CeO2/CNTs-500, Pt2CeO2/CNTs-300, Pt2CeO2/CNTs and Pt/C catalysts.

2. Results and Discussion

Figure 1 shows the XRD patterns of Pt2CeO2/CNTs and Pt2CeO2/CNTs-400 catalysts.
The peak at approximately 26.2◦ for both catalysts was due to the (002) crystal phase of the
MWCNTs [42]. The two catalysts show peaks characteristic of Pt, that is, 40.8◦, 47.8◦, 68.5◦,
82.9◦ and 87.3◦ of (111), (200), (220), (311) and (222), respectively [38]. Four diffraction peaks
(111), (200), (311) and (420) of CeO2 were observed in Pt2CeO2/CNTs-400 corresponding to
28.5◦, 33◦, 56.7◦ and 79◦, respectively [24]. Interestingly, the diffraction peaks of CeO2 (220)
are combined with Pt(200) approximately at 2θ = 47.8◦. It is worth noting that the peak of
CeO2 (311) appeared strongly in the non-pyrolytic Pt2CeO2/CNTs material, while after
400 ◦C heat treatment, the peaks of CeO2 (311) disappeared and CeO2 (111) and CeO2 (200)
appeared in the Pt2CeO2/CNT-400. This result indicates that proper pyrolysis is conducive
to the formation of different crystalline of CeO2, and these CeO2 distributed in different
places can promote the catalytic effect of Pt better.
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Figure 1. XRD patterns of Pt2CeO2/CNTs and Pt2CeO2/CNTs-400 catalysts.

Figure S1 from Supplementary Materials shows the XRD patterns of Pt2CeO2/CNTs-
300 and Pt2CeO2/CNTs-500 catalysts. The average crystallite size of the Pt nanoparti-
cles was determined to be 4.5 ± 1.14, 4.5 ± 1.06, 4.3 ± 1.07 and 4.4 ± 1.11 nm for the
Pt2CeO2/CNTs-400, Pt2CeO2/CNTs-300, Pt2CeO2/CNTs-500 and Pt2CeO2/CNTs, respec-
tively, calculated from the Pt(220) diffraction peak using Scherrer’s equation [43–45]. The
result shows that pyrolysis has no significant effect on particle size for all catalysts.

Figure 2 shows the TEM and HRTEM images, HAADF-STEM elements mapping and
the corresponding elements Pt, Ce and O of Pt2CeO2/CNTs-400. As shown in Figure 2a,b,
the Pt2CeO2 HJNS are evenly dispersed on MWCNTs with no aggregation. The average size
of Pt nanoparticles in the Pt2CeO2/CNTs-400 is approximately 4.5 ± 1.14 nm, which is very
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close to the XRD data above. The HRTEM image of Pt2CeO2/CNTs-400 (Figure 2c) shows
the crystal plane distances of 0.312 nm obtained for the CeO2 (111) plane and 0.225 nm
for the Pt(111) plane; both agree very well with the known crystal plane distances [24]. In
addition, as shown in Figure S2 from Supplementary Materials, the Pt nanoparticles are
also dispersed well with no aggregation and the average particle size is approximately
4.4 ± 1.11 nm of Pt2CeO2/CNTs. Figure S3 from Supplementary Materials shows the
TEM and HRTEM images of Pt2CeO2/CNTs-300 and Pt2CeO2/CNTs-500 catalysts. We
can see that these catalysts Pt2CeO2/CNTs-400, Pt2CeO2/CNTs-300, Pt2CeO2/CNTs-500
and Pt2CeO2/CNTs which were fabricated in DES probably act as a kind of surfactants,
additives, or stabilizers to induce a uniform distribution for Pt and CeO2 nanoparticles.
However, systematic studies aimed at understanding the role of DES in the prepared
process are still underway. EDX spectrum (Figure S4 from Supplementary Materials) of the
Pt2CeO2/CNTs-400 catalyst displays the signals of C, O, Pt and Ce elements, confirming
the pyrolysis does not affect the metal composition in the catalyst.
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Figure 2. (a) TEM and (b,c) HRTEM images; the corresponding particle size distribution of
Pt2CeO2/CNTs-400; (d–g) HAADF-STEM elements mapping; the corresponding elements Pt, Co and
O of Pt2CeO2/CNTs-400.

The surface composition and chemical oxidation states of these catalysts were char-
acterized by XPS. Figure 3a shows the XPS survey spectra of Pt2CeO2/CNTs-400 and
Pt2CeO2/CNTs. The signals corresponding to C 1s (283.8 eV), O 1s (531.9 eV), Ce 3d
(~900.8 eV), Pt 4f (73.4 eV) and Pt 4d (315.1 eV) were observed for these two catalysts.
Figure 3b shows the Ce3d spectrum of Pt2-CeO2/CNTs-400; the deconvolution of the
asymmetric Ce3d photoemission of the Pt2CeO2/CNTs-400 produced four peaks at 881.8,
885.1, 900.5 and 903.8 eV. To further determine the presence of Ce3d peaks, we locally
enlarged the peak shape of Ce3d in Figure S5 from Supplementary Materials. From the
enlarged figure, it can be seen that the Ce3d peaks of the two catalysts do exist, but the
peaks are small, which may be attributed to the small content of Ce. Figure 3c,d show the
Pt 4f spectra for Pt2CeO2/CNTs and Pt2CeO2/CNTs-400 catalysts. The Pt 4f spectra of the
Pt2CeO2/CNTs, two pairs of peaks, indicate the existence of two different Pt oxidation
states on the surface, and two intense peaks located at binding energies of 70.7 eV (Pt 4f
7/2) and 74.1 eV (Pt 4f 5/2) originated from metallic Pt(0), and the weak peaks located
at 71.5 eV (Pt 4f 7/2) and 74.4 eV (Pt 4f 5/2 ) were assigned to the Pt(II) state in the form
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of PtO or Pt(OH)2 [46]. For the Pt2CeO2/CNTs-400 catalyst, the Pt 4f 7/2 peak located at
71.0 eV and Pt4f 5/2 peak located at 74.4 eV correspond to metallic Pt(0), and the Pt 4f
7/2 peak located at 71.8 eV and Pt 4f 5/2 peak located at 75.3 eV correspond to Pt(II) in
PtO or Pt(OH)2. The fractions of the Pt(0) and Pt(II) species in Pt2CeO2/CNTs-400 and
Pt2CeO2/CNTs were calculated as (40.3%, 59.7%) and (46.2%, 53.8%), respectively. The
content of Pt(0) in Pt2CeO2/CNTs-400 is higher than that in Pt2CeO2/CNTs, which is also
due to the carbonization of DES in the pyrolysis process [47]. In addition, the positive shift
(about 0.3 eV) in the Pt peaks was observed in the Pt2CeO2/CNTs-400, which indicates
the interaction of CeO2 and Pt, exposing the strong electronic interactions between CeO2
and Pt nanoparticles by the formation of Ce-O-Pt [24]. The electronic interaction between
CeO2 and Pt nanoparticles can alter the electronic environment of Pt atoms, thus affecting
the bonding between Pt and intermediates (such as COads). Thus, the electrocatalytic
performance of MOR was improved. Figure S6 from Supplementary Materials shows
the Pt 4f and Ce3d spectra for Pt2CeO2/CNTs-300 and Pt2CeO2/CNTs-500 catalysts. For
the Pt2CeO2/CNTs-300 catalyst, the Pt 4f 7/2 peak located at 71.5 eV and Pt4f 5/2 peak
located at 74.8 eV correspond to metallic Pt(0), and the Pt 4f 7/2 peak located at 71.4 eV
and Pt 4f 5/2 peak located at 74.9 eV correspond to Pt(II) in PtO or Pt(OH)2. In addition,
for the Pt2CeO2/CNTs-500 catalyst, the Pt 4f 7/2 peak located at 71.4 eV and Pt4f 5/2
peak located at 74.9 eV correspond to metallic Pt(0), and the Pt 4f 7/2 peak located at
71.7 eV and Pt 4f 5/2 peak located at 75.5 eV correspond to Pt(II) in PtO or Pt(OH)2. The
fractions of the Pt(0) and Pt(II) species in Pt2CeO2/CNTs-300 and Pt2CeO2/CNTs-500 were
calculated as (43.1%, 56.9%) and (41.8%, 58.2%), respectively. Obviously, the content of Pt(0)
in Pt2CeO2/CNTs-400 is higher than Pt2CeO2/CNTs-300 and Pt2CeO2/CNTs-500, which
shows 400 °C is the most favorable pyrolysis temperature for obtaining more Pt(0).
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Figure 3. (a) XPS survey spectra, (b) Ce (3d) spectrum; Pt (3d) spectra of Pt2CeO2/CNTs (c),
Pt2CeO2/CNTs-400 (d).

Figure 4a shows the CV of the Pt2CeO2/CNTs-400, Pt2CeO2/CNTs and Pt/C in
0.5 M H2SO4 solution at a scan rate of 50 mVs−1. The hydrogen adsorption/desorption
current peaks in the low potential region (−0.2~0.1 V) and the Pt oxidation/reduction
current peaks in the high potential region (0.3~1.0 V) [38,48]. The electrochemical active
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surface area (ECSA) was calculated by measuring the hydrogen adsorption/desorption
charges after a double-layer correction and assuming a value of 210 µC cm−2 for the ad-
sorption of a hydrogen monolayer [49]. Therefore, the ECSA of the Pt2CeO2/CNTs-400
was calculated to be 63.2 m2g−1, which is much higher than those of the Pt2CeO2/CNTs
(41.7 m2g−1) and Pt/C (21.3m2g−1). The larger ECSA of Pt2CeO2/CNTs-400 is most likely
due to the higher dispersion of Pt2CeO2 HJNS on the MWCNTs. In order to explore
the effect of pyrolysis temperature on catalyst performance, we tested the catalytic per-
formance of Pt2CeO2/CNTs-300, Pt2CeO2/CNTs-400 and Pt2CeO2/CNTs-500 for MOR
(Figure 4b). For Pt2CeO2/CNTs-400, the peak current density in the forward scan is
839.1 mA mgPt

−1, higher than Pt2CeO2/CNTs-500 (620.3 mA mgPt
−1) and Pt2CeO2/CNTs-

300 (459.2 mA mgPt
−1). The results show that the heat treatment of 400 °C is more beneficial

to the improvement of catalyst performance. Figure 4c shows the CV curves for MOR on the
Pt2CeO2/CNTs-400, Pt2CeO2/CNTs and Pt/C. For the Pt2CeO2/CNTs-400, the peak cur-
rent density of MOR in the forward scans is much higher than those on the Pt2CeO2/CNTs
(641.6 mAmg−1) and Pt/C (229.9 mAmg−1). These results indicate that the electrocatalytic
activity of Pt2CeO2/CNTs-400 for MOR is higher than Pt2CeO2/CNTs and Pt/C. In order
to further evaluate the long-term performance of Pt2CeO2/CNTs-400, Pt2CeO2/CNTs and
Pt/C, the CA were performed in 0.5 M CH3OH + 0.5 M H2SO4 solution at 0.5 V for 7200 s.
As shown in Figure 4d, in the initial period, all of the curves with fast current decay in-
dicate poisoning of the electrocatalysts due to the formation of intermediate species such
as COads [50]. After 7200 s, the Pt2CeO2/CNTs-400 catalyst maintained a higher current
density (23.2mAmg−1

Pt ), which is almost 2.0 and 4.3 times those of the Pt2CeO2/CNTs
(11.5 mA mg−1

Pt) and Pt/C (5.3 mAmg−1
Pt), respectively. In order to further explore the

multicycle CV stability of the catalysts, accelerated degradation tests (ADT) were conducted
to check the durability of catalysts in 0.5 M H2SO4 + 0.5 M CH3OH solution for 500 cycles
(Figure S7 from Supplementary Materials). Obviously, the activity of the Pt2CeO2/CNTs-
400 catalyst decreased rapidly (39.6%) during the first 200th cycle and decreased to 37.1%
at the 400th cycle. By the 500th cycle, the activity had dropped to 35.0%. We can see
that there is not much change in activity between the 400th and 500th cycles. However,
the activity of Pt2CeO2/CNTs and Pt/C catalysts still decreased significantly between
the 400th and 500th cycles. After 500 cycles, the Pt2CeO2/CNTs-400 maintained a higher
current density (294.2 mA mgPt

−1) that is almost 2.6 and 4.9 times of the Pt2CeO2/CNTs
(113.1 mA mgPt

−1) and Pt/C (59.9 mA mgPt
−1), respectively. These results further illustrate

that Pt2CeO2/CNTs-400 exhibits higher electrocatalytic stability for MOR. Besides, the
Pt2CeO2/CNTs-400 catalyst presents the better MOR mass activity in comparison with the
recent research works on Pt-based catalysts (Table S1 Supplementary Materials).

We used CO stripping experiments to investigate the CO tolerance of the as-prepared
catalysts. Figure 5 shows the CO stripping voltammograms for the Pt2CeO2/CNTs-400,
Pt2CeO2/CNTs and Pt/C. Apparently, the onset potential of the adsorbed CO oxidation of
the Pt2CeO2/CNTs-400 is negatively shifted to 0.47 V, and the corresponding potentials are
0.56 V and 0.58 V on the Pt2CeO2/CNTs and Pt/C, respectively, indicating that thermal
treatment effectively improves the CO oxidation ability of the catalyst [51,52].

The greatly enhanced electrocatalytic performance of the Pt2CeO2/CNTs-400 for the
MOR may be due to four reasons: (1) the surface of CeO2 coating contains more active
sites of Pt deposition, and the Pt was dispersed more evenly, which reduced the surface
energy; (2) the increased Lewis alkalinity of CeO2 led to the strong anchoring of Pt to
CeO2; (3) the increase of Pt(0) composition during the carbonization of DES [47]; (4) the
addition of appropriate CeO2, which changed the electronic state around the Pt atom,
affected the adsorption of toxic intermediates. The addition of CeO2 contributed to the
uniform distribution of Pt and inhibited the agglomeration of Pt nanoparticles, but too
much CeO2 hindered the structure between Pt and CNTs, thus inhibiting the interaction
between Pt, CeO2 and CNTs. On the other hand, appropriate calcination temperature
is conducive to the formation of fluorite structure of CeO2 and the interaction between
CeO2 and CNTs, while higher calcination temperature may lead to CeO2 agglomeration,
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which is not conducive to the uniform distribution of Pt nanoparticles. In addition, higher
calcination temperature may also lead to the collapse of CeO2-CNTs structure and the
reduction of surface area [53]. The mechanism of the advantages brought by the addition
of DES and the influence of appropriate heat treatment on the catalyst are also under study.
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Figure 4. (a,c) Cyclic voltammograms and (d) current-time curves of Pt2CeO2/CNTs-400,
Pt2CeO2/CNTs and Pt/C; (b) cyclic voltammogram curves of Pt2CeO2/CNTs-400, Pt2CeO2/CNTs
and Pt/C in 0.5 M H2SO4/0.5 M CH3OH+0.5 M H2SO4 solution.
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Figure 5. CO stripping voltammograms of Pt2CeO2/CNTs-400, Pt2CeO2/CNTs and Pt/C catalysts
in 0.5 M H2SO4 solution.

3. Experimental Section
3.1. Materials

The raw MWCNTs (OD: 10–20 nm, Length: ~50 mm, Purity > 95 wt%) with 50 nm
diameter, 10 mm length and 98% purity were bought from Shenzhen Nanotech Port Co. Ltd.
Nafion solution (5 wt%) was purchased from Sigma-Aldrich. Urea (CO(NH2)2), choline
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chloride [HOC2H4N(CH3)3Cl], chloroplatinic acid hexahydrate (H2PtCl6·6H2O), Cerium
(III) nitrate hexahydrate (Ce(NO3)3), NH4OH (ammonium hydroxide), Sodium borohy-
dride (NaBH4), Sulfuric acid (H2SO4), Nitric acid (HNO3) and Ethanol (C2H5OH) were
purchased from Shanghai Chemical Reagent Co. Ltd. All the chemicals were purchased
at an analytical grade and utilized without further purification. All of the solutions were
prepared with DESs.

3.2. Preparation of DES

DESs (choline chloride/urea) were prepared by a simple method according to the
procedure in the reported literature [54]. Choline chloride [HOC2H4N(CH3)3Cl] (Shanghai
Chemical Reagent Ltd., Shanghai, China 99%) was recrystallized from absolute ethanol,
filtered and dried under vacuum. Urea (Shanghai Chemical Reagent Ltd., Shanghai, China
>99%) was recrystallized from Millipore water (18.0 MΩ cm) provided by a Milli-Q Lab
apparatus (Nihon Millipore Ltd., Tokyo, Japan), filtered and dried under vacuum prior
to use. Briefly, urea and choline chloride with mole ratio of 2:1 were mixed and stirred at
80 ◦C until a homogeneous and colorless solution was formed. Then, the obtained DESs
were preserved in a vacuum drying oven before use.

3.3. Preparation of Catalysts

Firstly, raw MWCNTs were treated with H2SO4 and HNO3 to introduce surface oxygen
groups and the samples collected after centrifugation were labelled as MWCNTs-AO [55].
Typically, a mixture containing appropriate ratios of H2PtCl6·6H2O, Ce(NO3)3 (atomic
ratio: Pt/Ce = 1:0.5) and MWCNTs-AO was ultrasonicated until complete dispersion in
DES (10 mL). Then, NaBH4 (200 mg) and NH4OH (5 mL) were added to this suspension
and stirred continuously for 5 h at 80 ◦C. After stirring, the suspension was centrifuged
and washed repeatedly with C2H5OH and tri-distilled water. Later, it was dried at 60 ◦C
for 24 h and the obtained product was labelled as Pt2CeO2/CNTs. Finally, Pt2CeO2/CNTs
were thermal treated at 300 ◦C, 400 ◦C and 500 ◦C in N2 atmosphere for 2 h (refer to
Pt2CeO2/CNTs-300, Pt2CeO2/CNTs-400 and Pt2CeO2/CNTs-500). Scheme 1 shows the
preparation of Pt2CeO2/CNTs-400.
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3.4. Physical Characterization

The sizes, morphology and structure of all as-prepared nanocatalysts were charac-
terized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution
transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS) and
(ICP-OES, Thermo Electron IRIS Intrepid II XSP, Waltham, MA, USA). XRD patterns were
collected from a Rigaku D/max 2500Pc X-ray powder diffractometer(Rigaku D/MAX 2500
v/pc, Japan). SEM images were recorded using JSM-7500F electron microscopy. TEM
and high-resolution TEM images were obtained with Talos F200S field emission electron
microscope. The Pt contents in Pt/C, Pt2CeO2/CNTs and Pt2CeO2/CNTs-400 catalysts
measured by ICP-OES were found to be 20.0, 19.3 and 17.7%, respectively.

3.5. Electrochemical Measurements

The catalyst-modified glassy carbon electrode (GC, diameter = 5 mm) was prepared
based on a previously reported procedure [56]. An electrochemical workstation (Chenhua,
Shanghai) was used to survey the electrochemical performances of prepared catalysts
in a three-electrode system, where Pt foil and saturated calomel electrode served as the
counter and reference electrodes, respectively. Earlier, GC electrode was polished with 5.0,
1.0 and 0.3 µm Al2O3 slurries and ultrasonically cleaned with ethanol and water. Then,
catalyst (1.5 mg) was ultrasonically dispersed in Nafion solution (400 µL, 0.5 wt%), and the
obtained mixture (10 µL) was slowly spun coated on the GC electrode at 25 ◦C. For Pt/C,
Pt2CeO2/CNTs and Pt2CeO2/CNTs-400 catalysts, the corresponding Pt loadings on the
GC electrode were 28.1, 26.4 and 25.2 µg cm−2, respectively. The ECSA experiments were
conducted in 0.5 M H2SO4 solution and the values were calculated by the integral area of
hydrogen (H) adsorption/desorption peaks which appeared within the potential range
of −0.2–0.35 V. The electrocatalytic activity of the prepared catalysts towards MOR was
evaluated through cyclic voltammograms (CV) and chronoamperometric measurements
(CA) in the electrolyte solution containing 0.5 M CH3OH and 0.5 M H2SO4 at room temper-
ature. For CO stripping voltammetry, CO was first passed through a 0.5 M H2SO4 solution
for 15 min to achieve saturated CO absorption, while maintaining a voltage sweep from
−0.2–0.0 V. Then, N2 was passed through the electrolyte for 25 min to completely remove
the dissolved CO while avoiding the interference of the O2 in the air. All current values
obtained in the electrochemical experiments were represented by normalized current per
mg of Pt loading on the GC. Prior to each measurement, the electrolyte was purified with
pure N2 for 15 min, keeping the N2 flow on the electrolyte to prevent the interference of the
O2. All the electrochemical results are presented as normalized current density (j mgPt

−1).

4. Conclusions

A simple and effective chemical reduction approach has been developed for the fab-
rication of Pt2CeO2/CNTs-400 with the help of DES and thermal treatment. The catalyst
exhibited an enhanced electrocatalytic performance (higher activity, long-term durabil-
ity and excellent CO tolerance) compared to the Pt2CeO2/CNTs and Pt/C. This study
demonstrates the DES medium and CeO2 coating in favor of a uniform distribution for Pt
nanoparticles on the carbon support. The improved performance of Pt2CeO2/CNTs-400 is
attributed to the addition of appropriate CeO2, which changed the electronic state around
the Pt atom, formed new Ce-O-Pt bond at the interface between Pt and CeO2 acting as new
active sites, affected the adsorption of toxic intermediates and weakened the dissolution
of Pt; on the other hand, with the assistance of thermal treatment, the DES is beneficial to
the increase of the effective component Pt(0) in the carbonization process to enhance the
dehydrogenation process of MOR.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28072995/s1. Figure S1. XRD patterns of Pt2CeO2/CNTs-
300 and Pt2CeO2/CNTs-500 catalysts; Figure S2. TEM and HRTEM images of Pt2CeO2/CNTs;
Figure S3. TEM and HRTEM images of Pt2CeO2/CNTs-300 (a,b) and Pt2CeO2/CNTs-500 (c,d)
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catalysts; Figure S4. EDS of Pt2CeO2/CNTs-400; Figure S5. Ce3d spectra (locally enlarged) of
Pt2CeO2/CNTs-400 and Pt2CeO2/CNTs; Figure S6. XPS survey spectra, Ce (3d) spectrum; Pt
(3d) spectrum of Pt2CeO2/CNTs-300, Pt2CeO2/CNTs-500; Figure S7. accelerated degradation tests
(ADT) CV curves of Pt2CeO2/CNTs-400 (a), Pt2CeO2/CNTs (b), Pt/C (c) catalysts in 0.5 M H2SO4
+ 0.5 M CH3OH solution (100th, 200th, 400th and 500th cycles); Table S1. A recent literatures sur-
vey of the activity (mA mg−1 Pt) of MOR electrocatalysts. References [57–68] are provided from
Supplementary Materials.
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