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Abstract: A two-dimensional (2D) polar monolayer with a polarization electric field can be used
as a potential photocatalyst. In this work, first principle calculations were used to investigate the
stability and photocatalytic properties of 2D polar monolayer SiTe as a potential promising catalyst in
water-splitting. Our results show that the 2D polar monolayer SiTe possesses an indirect band gap of
2.41 eV, a polarization electric field from the (001) surface to the

(
001
)

surface, a wide absorption
region, and a suitable band alignment for photocatalytic water-splitting. We also discovered that
the photocatalytic activity of 2D polar monolayer SiTe could be effectively tuned through strain
engineering. Additionally, strain engineering, particularly compressive strain in the range from −1%
to −3%, can enhance the photocatalytic activity of 2D polar monolayer SiTe. Overall, our findings
suggest that 2D polar monolayer SiTe has the potential to be a promising catalyst for photocatalytic
water-splitting using visible light.

Keywords: polar monolayer SiTe; photocatalytic water-splitting; strain engineering; first principle
calculations

1. Introduction

Growing global energy consumption and diminishing fossil fuel reserves have in-
creased concerns about environmental pollution and energy shortages [1]. Renewable
and clean energy sources, such as hydrogen [2,3], have become a strategic priority for
sustainable development. Since Fujishima’s discovery in 1972 that hydrogen can be pro-
duced through photocatalysis using titanium dioxide (TiO2), scientists have assumed that
this technology would aid the energy crisis [4]. It is an attractive method for producing
hydrogen because it is clean, renewable, and abundant. The technological process of
photocatalytic water-splitting requires only water, sunlight, and a catalyst and produces
clean and renewable oxygen and hydrogen. The process involves the absorption of light
by the photocatalyst, which generates electrons and holes. Therefore, it is considered
a prospective technique for solving the pollution problem associated with the energy crisis.
However, the efficiency of photocatalytic water-splitting is currently too low for utilization
in industries [5,6].

To improve the efficiency of photocatalysis, researchers have focused on addressing
the issue of carrier annihilation [7–10]. As we know, carrier annihilation results in the
loss of charge carriers, which reduces the efficiency of the reaction. One way to address
this problem is to use 2D materials. By reducing the distance that charge carriers need to
migrate, the likelihood of carrier annihilation is decreased, and the efficiency of the reaction
is improved. These 2D materials, such as g-C3N4 [11], group-III monochalcogenide [12],
WS2 Nanosheet [13], MXene [14], and g-ZnO [15], were reported to have had high surface
areas and short carrier diffusion lengths, which could effectively reduce the distance that
charge carriers need to migrate and improve their efficiency [16–20].
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In the recent literature, much research has suggested that 2D polar photocatalysts,
which possess a polarization electric field, may be more effective at quickly separating
photogenerated carriers [21–24]. There has been growing interest in 2D polar materials,
such as group IV materials (GeS [25–27], GeSe [28], SiS [29,30], SiSe [31]), III2-VI3 group
monolayer In2Se3 [32–35], monolayer Al2OS [36], and monolayer AgBiP2Se6, [37] as well
as Janus monolayer materials (MoSSe [38–40], PtSSe [41,42], PtSO [43], and WSeTe [44]) for
use as photocatalysts, thanks to the electric field that can aid in the separation of excited
electron-hole pairs [45–49]. Two-dimensional polar monolayer SiM (M=S, Se and Te)
possess high carrier mobility; therefore, they have been reported as potentially promising
candidates for photocatalytic water-splitting [30,31,50], especially 2D polar monolayer SiTe,
as it has a suitable band gap and absorbs visible light efficiently [50]. However, the effect of
the polarization electric field on this material is not yet fully understood. Designing highly
efficient catalysts based on 2D polar monolayer materials for photocatalytic water-splitting
is critical in developing sustainable energy solutions.

Here, we used the first principles to systematically calculate the stability and photocat-
alytic properties of 2D polar monolayer SiTe. Our goal was to attain a better comprehension
of the potential of this material for use in photocatalytic water-splitting and other applica-
tions. Our results show that 2D polar monolayer SiTe exhibits high dynamic, mechanical,
and thermal stability. The band gap, band edge positions, and surface potential difference
of 2D polar monolayer SiTe are suitable and helpful for water-splitting. Ultraviolet and vis-
ible light can be effectively absorbed by 2D polar monolayer SiTe. Furthermore, we found
that the properties of 2D polar monolayer SiTe, including its band gap, surface potential
difference, polarization electric field, absorption, and photocatalytic activity, can be tuned
and enhanced by strain engineering. These findings suggest that 2D polar monolayer SiTe
is a promising photocatalyst.

2. Results

Figure 1a shows the top view of the optimized hexagonal honeycomb structure of
2D polar monolayer SiTe, similar to graphene. Figure 1b shows the side view of 2D polar
monolayer SiTe, which has a structure with two different layers: the top layer consists of Te
atoms, and the bottom layer consists of Si atoms. Two-dimensional polar monolayer SiTe
has an unsymmetrical structure along the vertical direction. To determine the most suitable
lattice constant for 2D polar monolayer SiTe, we calculated the energy of different lattice
constants and plotted the results in Figure S1. The results clearly show that when the lattice
constant is 3.83 Å, the 2D polar monolayer SiTe has the lowest energy value, suggesting
that it is the most suitable lattice of the monolayer structure. After a full relaxation, the
values of the lattice constant, vertical layer distance, and bond distance were calculated, as
presented in Table 1. The vertical layer distance is 1.53 Å, and the Si-Te bond distance is
2.69 Å, which are in accordance with previous literature [50–53].

To verify the dynamic stability of the 2D polar monolayer SiTe, we used the density
functional perturbation theory method to calculate the phonon dispersion. This allowed us
to identify any potential phonon instabilities that could indicate a lack of structural stability
in the material. As shown clearly in Figure 1c, all the phonon dispersion modes of 2D polar
monolayer SiTe are positive without any imaginary frequency, confirming that the structure
of 2D polar monolayer SiTe is dynamically stable. In addition, a 5 × 5 × 1 supercell of
2D polar monolayer SiTe at a temperature of 300 K for a total time of 3000 fs with a time
interval of 1 fs was set in the AIMD simulations. As Figure 1d shows, the total energy
fluctuation during the dynamic simulations is comparatively small, further indicating the
dynamic stability of 2D polar monolayer SiTe.
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Figure 1. (a) Top view, (b) side view, (c) phonon dispersions, and (d) the total energy fluctuations 
during AIMD simulations of 2D polar monolayer SiTe. 
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Figure 1. (a) Top view, (b) side view, (c) phonon dispersions, and (d) the total energy fluctuations
during AIMD simulations of 2D polar monolayer SiTe.

Table 1. Comparison of the calculated values of lattice constant (a), vertical layer distance (d), bond
distance (l), and band gap (Eg).

a (Å) d (Å) l (Å)
Eg (eV)

References
PBE HSE06

SiTe

3.83 1.53 2.69 1.80 2.41 This work

3.83 1.53 2.69 1.83 2.43 [50]
3.83 1.53 2.69 1.83 2.36 [51]
3.83 - - 1.83 2.49 [52]

3.835 - 2.690 1.833 - [53]

The band structure is a significant factor that regulates the photocatalytic activity of
a material. The band gap of a photocatalyst should be noteworthy. As shown in Figure 2a,
our first principle calculations revealed that the valence band maximum (VBM) of 2D
polar monolayer SiTe is at the Γ point. The conduction band minimum (CBM), on the
other hand, is situated between the Γ and M points, indicating that 2D polar monolayer
SiTe is an indirect semiconductor. Moreover, the band gap of 2D polar monolayer SiTe is
2.41 eV, calculated using the HSE06 functional. This result suggests that ultraviolet light
and visible light can be efficiently absorbed by 2D polar monolayer SiTe. As shown in
Figure 2b, the VBM of the partial density of states (PDOS) is below the Fermi energy level
and is principally provided by the p orbitals of Te and Si atoms, whereas the CBM above
the Fermi energy level is primarily provided by the p orbitals of Si atoms. The band gap
shown in the PDOS is consistent with that shown in the band structure.

To tune the band structure properties of 2D polar monolayer SiTe effectively, the strain
engineering method [54–60] is adopted for the structure of 2D polar monolayer SiTe by
controlling the lattice constant of the primitive cell. As shown in Figure S2 and Figure 3,
we applied in-plane biaxial strain to 2D polar monolayer SiTe ranging from −5% to +5% in
steps of 1%. Here, a negative sign (−) is used to describe the compressive strain. In contrast,
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a positive sign (+) is used to describe the tensile strain. As we can see from Figure S2, the
band structure of 2D polar monolayer SiTe can be effectively tuned by strain engineering.
When a tensile strain from −1% to −5% is applied, the VBM is at the Γ point, and the
CBM is situated between the Γ and M points, similar to the band structure without strain
engineering. However, when the tensile strain is in the range from +1% to +5%, the VBM
is located between the K and Γ points. As shown in Figure 3, the band gap of 2D polar
monolayer SiTe, calculated by the HSE06 method, decreases from 2.41 eV to 1.56 eV as
the compressive strain increases from 0 to −5%. For tensile strain, when the strain is +1%,
the band gap is 2.44 eV, which is similar to the value without strain engineering. As the
strain increases from +1% to +5%, the band gap decreases from 2.44 eV to 2.23 eV. These
results demonstrate that strain engineering would be a feasible technique for controlling
and tuning the band structure of 2D polar monolayer SiTe and increasing its activity to
absorb solar energy in the ultraviolet and visible light range, which may well strengthen its
photocatalytic activity.
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As previously mentioned, 2D polar monolayer SiTe has an unsymmetrical structure
along the vertical direction, with a bottom layer of Si atoms and a top layer of Te atoms. As
shown in Figure 4a, the difference in electronegativity between Si and Te atoms results in
an unsymmetrical planar average potential along the vertical direction. More importantly,
the potential of the bottom surface

(
001
)

is not equal to that of the top surface (001).
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According to the theory developed by the Yang group [22], the following equation can be
employed to describe the relationship between both the surface potential difference (∆Φ)
and the polarization electric field (Ee f f ) [22].

∆Φ = eEe f f d (1)
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Here, e is the elementary charge constant, and d is the distance between the Si atomic
surface and Te atomic surface.

The larger ∆Φ, the larger Ee f f . As shown in Figure 4b, the ∆Φ, calculated by the
surface vacuum energy difference between the Si atomic surface and the Te atomic surface,
is 0.441 eV. This indicates that 2D polar monolayer SiTe possesses a polarization electric
field Ee f f , and the direction of the polarization electric field is from the (001) surface to the(
001
)

surface. As we know, the carriers can be separated quickly and irreversibly under
the polarization electric field. Therefore the Ee f f and the ∆Φ in 2D polar monolayer SiTe
are useful for improving the performance of photocatalytic water-splitting. Additionally,
the photocatalyst’s band gap EG, which is required for photocatalytic water-splitting,
can be reduced under the effect of the surface potential difference (∆Φ) according to the
following equation [22],

EG > 1.23− ∆Φ (2)

These photocatalysts, such as 2D polar monolayer SiTe, can absorb more solar energy
in the infrared and visible region for photocatalytic water-splitting. Therefore, tuning the
surface potential difference ∆Φ would be an effective and useful way to control photocat-
alytic activity.

As Figure S3 shows, the planar average potential of 2D polar monolayer SiTe can be
regularly controlled by strain engineering. The surface potential difference ∆Φ increases
under the effect of compressive strain and decreases under the effect of tensile strain.
The surface potential difference ∆Φ decreases from 0.615 eV to 0.197 eV as the strain
engineering increases monotonically from −5% to +5%. Figure 4c shows the changing
trends of the surface potential difference ∆Φ and the surface vacuum energy (Evac) at
different strains. The Evac of both the Si and Te atomic surfaces decreases monotonically
with increasing strain engineering from −5% to +5%. Moreover, the Evac decrease trend
of the Si atomic surface is obvious, but the Evac decrease trend of the Te atomic surface is
slight. The results indicate that the ∆Φ of 2D polar monolayer SiTe can be effectively tuned
via strain engineering.

To appraise the suitability of 2D polar monolayer SiTe for photocatalytic water-
splitting, we calculated its band alignment using the method described in previous stud-
ies [21,22]. The band alignment of a material is a critical factor in determining its suitability
for photocatalytic water-splitting. For a potential photocatalyst to be effective, the en-
ergy level of VBM and CBM must be suitable. As we can see clearly from Figure 5a, the
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band alignment of 2D polar monolayer SiTe was calculated by the method reported in the
previous literature [22,31]. Firstly, the VBM was calculated by,

EVBM = ϕ(∞)− EF (3)
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Here, EVBM is presumed to be the work function throughout this situation. ϕ(∞) and
EF, respectively, stand in for the Fermi energy level and the vacuum electrostatic potential.
Secondly, the CBM was obtained by,

ECBM = ECBM + Eg (4)

Here, Eg is the band gap shown in Figure 2a.
As shown in Figure 5a, with the vacuum energy level as the reference substance,

the reduction potential (H+/H2) and the oxidation potential (H2O/O2) are −4.44 eV and
−5.67 eV, respectively. Since the ∆Φ is 0.441 eV in 2D polar monolayer SiTe, the energy
level of the (001) surface is not equal to that of the

(
001
)

surface. The direction of the
polarization electric field Ee f f is from the (001) surface to the

(
001
)

surface. Therefore
electrons and holes are moved to the (001) surface and the

(
001
)

surface, respectively. On
the (001) surface, the H2O is reducesed by the electrons according to the following equation,

4e− + 4H2O→ 2H2 + 4OH− (5)

In contrast, on the
(
001
)

surface, the H2O is oxidized the holes according to the
following equation,

4h+ + 2H2O→ O2 + 4H+ (6)

The CBM of 2D polar monolayer SiTe is 1.208 eV higher than the energy level of
H+/H2 (−4.44 eV), and the VBM is 0.415 eV lower than the energy level of H2O/O2
(−5.67 eV). Moreover, under the effect of an electric field Ee f f , the electrons and holes could
be separated quickly; therefore, oxidation and reduction reactions would be carried out
efficiently. The results indicated that the band alignment of 2D polar monolayer SiTe is ideal
for photocatalytic water-splitting, which involves the production of hydrogen through the
use of sunlight and a photocatalyst.

As we can see from Figure S4 and Figure 5b, the CBM of 2D polar monolayer SiTe
with strain engineering ranging from −5% to +5% is higher than the reduction potential
level. Compared to the oxidation potential level, the VBM is lower, with strain engineering
ranging from −3% to +5%. However, at −5% and −4% compressive strain, the VBM
is higher than the magnitude of oxidation potential. This demonstrates that the band
alignment of 2D polar monolayer SiTe continues to be well tailored towards photocatalytic
water-splitting when strain engineering is applied within the range from −3% to +5%.
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The Gibbs free energy difference (∆G) in the hydrogen reduction was determined using
the following equation to investigate the dependence power of total water-splitting [61],

∆G = ∆E + ∆Ezpe − T∆S (7)

Here, ∆E is the adsorption energy, ∆Ezpe is the difference in zero-point energy, T is the
system temperature (298.15 K, in this work), and ∆S is the entropy difference.

As shown in Figure 6a, the value of ∆G is 1.28 eV. To control and decrease the value
of ∆G, strain engineering is adopted to tune the value. As shown in Figure 6b, the ∆G
decreases from 1.24 eV to 0.92 eV as the compressive strain decreases from 0 to −3%. For
tensile strain, when the strain is +2%, the ∆G is 1.33 eV. As the strain increases from +2% to
+5%, the band gap decreases from 1.33 eV to 1.27 eV regularly. Notably, the value of ∆G
can be effectively tuned via strain engineering.
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The following equation was used to determine the absorption coefficient α(ω) of 2D
polar monolayer SiTe:

α(ω) =
√

2ω

(√
(ε1(ω))2 + (ε2(ω))2 − ε1(ω)

) 1
2

(8)

where ε1(ω) and ε2(ω), respectively, represent the real and imaginary components of the
dielectric function. As seen from Figure S5a, when the energy is less than 2.00 eV, the
absorbance is almost zero. In contrast, when the energy is about 2.50 eV, the absorbance
increases dramatically as the energy increases, indicating that some visible light is absorbed
efficiently by the 2D polar monolayer SiTe. Moreover, the absorption edge was obtained
using the Tauc plot method [62]. As shown in Figure S5b, the band gap Eg, obtained by
the optical properties is 2.38 eV, similar to the band gap calculated by the band structures
using the HSE06 method. This confirms that the solar light, which has energy larger than
the band gap, will be absorbed efficiently by the 2D polar monolayer SiTe. This indicates
that 2D polar monolayer SiTe has the potential to be an efficient photocatalyst with high
solar energy conversion efficiency. The band gap of 2D polar monolayer SiTe, which is
approximately 2.41 eV, plays a role in improving solar energy conversion efficiency. As
shown in Figure 7, strain engineering can shift the absorption edge to longer wavelengths,
increasing the absorption of visible light. This is due to the decrease in the band gap of 2D
polar monolayer SiTe with increasing strain. The results suggest that strain engineering is
a convenient and useful strategy for tuning the optical absorption properties of 2D polar
monolayer SiTe.
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3. Methods

We used the Vienna ab initio simulation package (VASP) [63] with the projector-
augmented-wave (PAW) method [64] to calculate the electronic and structural properties of
2D polar monolayer SiTe. To calculate the exchange-correlation energy, the Perdew Burke
Ernzerhof (PBE) functional of generalized gradient approximation (GGA) was adopted [65].
The DFT-D3 [66] was utilized to account for long-range van der Waals interactions [67,68].
The PBE method tends to underestimate the band gap, so we also used the HSE06 hybrid
functional method [69] to obtain a more accurate band gap value. The plane-wave expan-
sion of the wave function had an energy cutoff of 500 eV. We set the energy convergence
and maximum Hellmann–Feynman force convergence criteria to 10−6 eV and 10−3 eV/Å,
respectively. The first integration of the Brillouin zone was performed using the Gamma
center method in KPOINTS [70]. Structural optimization and static calculations were
performed using 12 × 12 × 1 and 15 × 15 × 1 grids, respectively. The vacuum region in
the z direction had a thickness of 20 Å to prevent interactions from the periodic structure.
Ab initio molecular dynamics (AIMD) simulations were calculated with the canonical
ensemble method [71] to investigate the stability of crystal structure. A 5 × 5 × 1 supercell
of 2D polar monolayer SiTe at a temperature of 300 K for a total time of 3000 fs with a time
interval of 1 fs was set in the simulations. VASPKIT [72] software was applied to generate
electronic data from the raw calculated data.

4. Conclusions

In conclusion, our study, which used first principle calculations, has shown that the
2D polar monolayer SiTe is a potential promising catalyst for water-splitting using visible
light. According to the results, the 2D polar monolayer SiTe possesses an indirect band gap
of 2.41 eV. The 2D polar monolayer SiTe can absorb ultraviolet and visible light in a wide
range. What is more, in the 2D polar monolayer SiTe, the polarization electric field helps
to reduce the likelihood of photoinduced electron–hole pair recombination and lower the
band gap necessary for water-splitting. The direction of the polarization electric field is
from the (001) surface to the

(
001
)

surface. The band alignments of 2D polar monolayer
SiTe are compatible with the redox potential, making it capable of producing hydrogen and
oxygen. Moreover, the electronic, optical, and photocatalytic properties of the 2D polar
monolayer SiTe can be controlled and tuned through strain engineering. Additionally,
strain engineering, particularly compressive strain in the range from −1% to −3%, can
enhance the photocatalytic activity of 2D polar monolayer SiTe. Overall, the suitable band
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gap, polarization electric field, and suitable band alignments strongly suggest that the 2D
polar monolayer SiTe is a potentially promising, high-efficiency catalyst for photocatalytic
water-splitting using visible light.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28072971/s1, Figure S1: The energy as a function of
lattice constant of monolayer SiTe; Figure S2: The band structures of monolayer SiTe under strain
engineering; Figure S3: The planar average potential of monolayer SiTe under strain engineer-
ing; Figure S4: The band alignment of monolayer SiTe under strain engineering; Figure S5: The
Absorbance and Absorption edge of 2D polar monolayer SiTe.
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