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Abstract: Three new triterpenoids—spergulagenin B (1), spergulagenin C (2), and spergulagenin
D (3)—were isolated from the aerial part of Glinus oppositifolius, along with 17 known compounds
(4–20). The structures of these new compounds were identified by spectroscopic and MS analyses.
Compounds 3, 5, 19, and 20 were evaluated for inhibition of nitric oxide production in LPS-stimulated
RAW 264.7 cells with IC50 values of 17.03, 18.21, 16.30, and 12.64 µM, respectively. Compounds 3, 5,
and 20 exhibited inhibitory effects on LPS-induced nitric oxide production in RAW 264.7 cells with
IC50 values of 18.35 ± 1.34, 17.56 ± 1.41, and 14.27 ± 1.29 µM, respectively.

Keywords: Molluginaceae; Glinus oppositifolius; triterpenoids; spergulagenin A; spergulagenin B;
spergulagenin C; anti-inflammatory activity

1. Introduction

Molluginaceae has about 13 genera and more than 120 kinds of plants in the world,
mainly distributed in tropical and subtropical regions. Glinus oppositifolius (L.) Aug. DC.
(Figure 1) is an annual herb mainly distributed at low altitudes in the southern part of
Taiwan [1]. G. oppositifolius is a folk herb used in the treatment of dermatitis and chronic
inflammatory diseases [2]. Flavonoids [3,4], triterpenoids [4], naphthalenes [4], and their
derivatives are widely distributed in plants of the family Molluginaceae. Many of these
compounds exhibit anti-inflammatory [3,5], antifungal, antiparasitic, and antibacterial
activities [6]. Macrophages are one of the immune cells that can secrete nitric oxide (NO), a
mediator of inflammatory responses that can participate in host defense [7]. Tumor necrosis
factor alpha (TNF-α) is a cytokine with pleiotropic effects on a variety of cell types. It has
been recognized as a master regulator of inflammatory responses and has a bearing on
the pathogenesis of certain inflammatory diseases [8]. Inhibition of abnormal activation
of macrophages by medicines has been proposed as a way to improve inflammatory dis-
eases. G. oppositifolius was one of many species that we screened for the anti-inflammatory
constituents of Formosan plants. Current phytochemical studies of G. oppositifoliu have
led to the isolation of three new triterpenoids—spergulagenin B (1), spergulagenin C (2),
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and spergulagenin D (3)—together with 17 known compounds. This article describes the
structural elucidation of 1–3 and the anti-inflammatory activity of the isolated compounds.
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Figure 1. Plant material: Glinus oppositifolius (L.) Aug. DC.

2. Materials and Methods
2.1. General

Infrared (IR) spectra (KBr or neat) were measured using a Shimadzu IR prestige-21
Fourier transform infrared spectrophotometer (Shimadzu, Kyoto, Japan). Optical rotations
were recorded on a Jasco P-1020 polarimeter (Jasco, Kyoto, Japan) in MeOH and CHCl3.
Electronic circular dichroism (ECD) spectra were recorded on a Chirascan CD spectrom-
eter (Applied Photophysics Ltd., Leatherhead, UK). High resolution electron ionization
mass spectrometry (HR-EI-MS) was measured at Chung Hsing University (Taichung,
Taiwan). Ultraviolet (UV) spectra were measured using a Shimadzu Pharmaspec-1700
UV-Visible spectrophotometer (Shimadzu, Kyoto, Japan). Nuclear magnetic resonance
(NMR) spectra—including heteronuclear single-quantum coherence (HSQC), correlation
spectroscopy (COSY), heteronuclear multiple-bond correlation (HMBC), and nuclear Over-
hauser effect spectrometry (NOESY) experiments—were measured using a Bruker DRX-500
FT-NMR (Bruker, Bremen, Germany) operating at 125 MHz (13C) and 500 MHz (1H), re-
spectively. Chemical shifts are given in ppm (δ) using tetramethylsilane (TMS) as internal
standard. HPLC separations were carried out utilizing a P230 HPLC system (NATIONAL
ANALYTICAL CORPORATION, Maharashtra, India) equipped with P230 HPLC Pump
and an IOTA 2 detector, utilizing ChromNav software (version 2.0, Jasco). TLC analysis
was performed utilizing aluminum pre-coated Si plates (Merck, Darmstadt, Germany).
Column chromatography was carried out utilizing LiChroCART Si gel (5 µM) (Merck,
Darmstadt, Germany).

2.2. Chemicals

ACS grade solvents (methanol, ethyl acetate, n-hexane, acetone, and chloroform),
HPLC grade solvents (ethyl acetate, acetone, and n-hexane) and deuterated solvents
(CDCl3, acetone-d6, or CD3OD) for NMR measurements were procured from Merck,
Taipei, Taiwan. LPS (endotoxin from Escherichia coli, serotype 0127:B8), Carr (type IV),
and quercetin were purchased from MedChemExpress (Monmouth Junction, NJ, USA).
MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) was acquired from
Sigma Chemical Co. (St. Louis, MO, USA).
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2.3. Plant Material

Glinus oppositifolius was collected from Neipu Township, Pingtung County, Taiwan, in
February 2010 and identified by J.-J. Chen. A voucher specimen (GO-100514) was deposited
in the Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, Taiwan.

2.4. Extraction and Isolation

The dried whole plant (10.58 kg) of Glinus oppositifolius was extracted 3 times with
methanol (80 L each) for 7 days. The extract was concentrated under reduced pressure at
38 ◦C, and the residue (1.48 kg) was partitioned between H2O and EtOAc (1:1) to provide
the EtOAc-soluble fraction (fraction A, 285 g). Fraction A (285 g) was separated by column
chromatography (CC) (10.0 kg of SiO2, 70–230 mesh; n-hexane/EtOAc/methanol gradient)
to afford 20 fractions: A1–A20.

Fraction A13 (7.69 g) was purified by Sephadex LH 20 CC (chloroform:methanol = 3:7),
silica gel CC (n-hexane:acetone = 8:3), and then HPLC (chloroform:acetone = 6:1) to obtain
4 (12.8 mg), 5 (27.4 mg), 6 (12.2 mg), 7 (8.4 mg), and 5 (7.3 mg). Fraction A14 (16.7 g) was
purified by silica gel CC (ethyl acetate: n-hexane = 1:6) and HPLC (acetone:n-hexane = 1:8)
to obtain 6 (12.6 mg), 7 (6.4 mg), and 8 (13.4 mg). Fraction A16 (15.5 g) was purified by silica
gel CC (n-hexane:ethyl acetate = 4:1) and HPLC (n-hexane:acetone = 3:1) to obtain 9 (8.2 mg),
10 (27.5 mg), 11 (25.0 mg), 12 (8.4 mg), 13 (13.4 mg), 14 (24.5 mg), 15 (7.8 mg), 16 (6.2 mg),
17 (4.3 mg), 18 (32.4 mg), 19 (4.5 mg), and 20 (32.4 mg). Fraction A18 (13.3 g) was purified
by Sephadex LH 20 CC (chloroform:methanol = 3:7), silica gel CC (n-hexane:acetone = 5:1),
and then semi-preparative HPLC (chloroform: ethyl acetate = 3:2) to obtain 1 (6.6 mg),
2 (4.2 mg), and 3 (3.6 mg).

Spergulagenin B (1): colorless needle; mp 306.2–307.6 ◦C; IR (KBr) υmax: 3423 (OH),
2943, 1694 (C=O), 1458, 1385, 1155, 1113, 1061 cm−1 (Figure S1); 1H-NMR spectroscopic
data, see Table 1 (Figure S2); 13C-NMR spectroscopic data, see Table 2 (Figure S3); ECD
(c 0.25, MeOH) λma (∆ε) 284 (+0.88), 250 (–0.12), 217 (+0.98), 198 (–1.34) nm; HI-EI-MS:
472.3549 [M]+ (calcd. for C30H48O4, 472.3547).

Table 1. 1H-NMR data for Compounds 1–3 (δ in ppm, J in Hz).

Position 1 a 2 a 3 a

1 1.94 (m). 1.41 (m) 7.10 (d, J = 10.0 Hz) 1.82 (m), 1.39 (m)

2 2.48 (m), 2.42 (m) 5.83 (d, J = 10.0 Hz) 2.52 (m), 2.38 (ddd, J = 16.0,
5.6, 3.2 Hz)

5 1.30 (m) 1.54 (m) 1.33 (m)
6 1.51 (m), 1.37 (m) 1.56 (m), 1.43 (m) 1.60 (m), 1.35 (m)
7 1.50 (m), 1.31 (m) 1.50 (m), 1.44 (m) 1.54 (m), 1.47 (m)
9 1.69 (m) 1.59 (m) 1.70 (dd, J = 9.6, 4.4Hz)

11 1.87 (m), 1.04 (m) 1.57 (m), 1.46 (m) 2.25 (m), 2.22 (m)
12 3.96 3.99 (m)
13 1.38 (d, J = 4.0 Hz) 1.43 (m) 2.23 (m)

15 1.72 (dd, J = 12.8, 4.0 Hz),
1.35 (m) 1.72 (m), 1.32 (m) 1.79 (m), 1.44 (m)

16 3.70 (m) 3.71 (m) 3.76 (m)
17 1.76 (d, J = 11.2 Hz) 1.78 (m) 1.64 (m)
19 2.02 (m), 1.27 (m) 2.04 (m), 1.28 (m) 2.17 (m), 1.02 (m)
20 2.05 (m), 1.84 (m) 2.05 (m), 1.86 (m) 2.10 (m), 1.93 (m)
23 1.03 (s) 1.09 (s) 1.06 (s)
24 1.08 (s) 1.14 (s) 1.10 (s)
25 0.96 (s) 1.08 (s) 1.00 (s)
26 1.07 (s) 1.11 (s) 1.21 (s)
27 1.01 (s) 1.01 (s) 0.99 (s)
28 1.04 (s) 1.05 (s) 1.14 (2)
29 1.43 (s) 1.45 (s) 1.43 (s)
30 2.23 (s) 2.24 (s) 2.24 (s)

a measured in CDCl3 at 500 MHz.
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Table 2. 13C-NMR data for Compounds 1–3 (δ in ppm).

Position 1 a 2 a 3 a

1 39.4 158.5 38.9
2 34.0 125.6 34.1
3 217.3 205.3 216.9
4 48.1 39.2 47.6
5 54.9 53.3 55.1
6 19.7 19.1 19.9
7 32.5 32.6 32.0
8 45.5 45.5 47.2
9 47.3 42.7 49.6
10 36.7 44.6 37.0
11 32.9 32.5 39.6
12 69.5 69.3 210.9
13 55.1 55.2 63.4
14 41.4 42.3 41.6
15 45.1 45.0 43.8
16 65.8 65.7 65.8
17 59.2 59.2 58.7
18 46.3 46.3 44.9
19 44.1 44.0 41.7
20 35.9 35.8 35.8
21 54.4 54.4 55.6
22 217.2 217.0 217.3
23 21.1 21.4 21.4
24 26.6 27.8 26.6
25 15.6 17.1 15.2
26 16.6 17.2 16.7
27 18.7 18.9 20.9
28 17.2 18.8 17.7
29 21.2 21.1 21.4
30 25.9 25.9 26.1

a measured in CDCl3 at 125 MHz.

Spergulagenin C (2): colorless needle; mp 305.4–306.8 ◦C; UV (MeOH) λmax nm (log λ):
229 (3.73); IR (KBr) υmax: 3493 (OH), 3416 (OH), 2972, 1690 (C=O), 1458, 1385, 1355, 1254,
1076 cm−1 (Figure S9); 1H-NMR spectroscopic data, see Table 1 (Figure S10); 13C-NMR
spectroscopic data, see Table 2 (Figure S11); ECD (c 0.18, MeOH) λmax (∆ε) 283 (+0.96),
249 (–0.14), 219 (+1.05), 198 (–1.09) nm; HI-EI-MS: 470.3409 [M]+ (calcd. for C30H46O4,
470.3406).

Spergulagenin D (3): colorless needle; mp 286.4–287.0 ◦C; IR (KBr) υmax: 3447 (OH),
2938, 1697 (C=O), 1558, 1420, 1387, 1354, 1327 cm−1 (Figure S17); 1H-NMR spectroscopic
data, see Table 1 (Figure S18); 13C-NMR spectroscopic data, see Table 2 (Figure S19); ECD
(c 0.21, MeOH) λmax (∆ε) 284 (+1.02), 249 (–0.20), 218 (+1.02), 197 (–0.91) nm; HI-EI-MS:
470.3407 [M]+ (calcd. for C30H46O4, 472.3403).

Kaempferol (4): yellow powder; mp 274~276 ◦C; IR (KBr) υmax: 3348, 3278~2509,
1661, 1616, 1570, 1089, 1010 cm−1; 1H -NMR (500 MHz, acetone-d6) δ (ppm): 6.26 (1H, d,
J = 1.9 Hz, H-6), 6.52 (1H, d, J = 1.9 Hz, H-8), 7.01 (2H, d, J = 8.9 Hz, H-3′ and H-5′), 8.14
(2H, d, J = 8.9 Hz, H-2′ and H-6′), 12.15 (1H, s, OH-5).

6,8-Dimethyl-5,7,4′-trihydroxyflavone (5): yellow powder; mp 220~225 ◦C; IR (KBr)
υmax: 3427, 3704~2509, 1654, 1611, 1576, 1555 cm−1; 1H-NMR (500 MHz, acetone-d6) δ
(ppm): 2.13 (3H, s, Me-6), 2.36 (3H, s, Me-8), 6.64 (1H, s, H-3), 7.05 (2H, d, J = 8.8 Hz, H-3′,
H-5′), 7.98 (2H, d, J = 8.8 Hz, H-2′ and H -6′), 13.24 (1H, s, OH-5).

5,7-Dihydroxy-6,8-dimethylflavone (6): yellow powder; mp 289~290 ◦C; IR (KBr) υmax:
3400, 3587~2403, 1650, 1602, 1486 cm−1; 1H-NMR (500 MHz, acetone-d6) δ (ppm): 2.19 (3H,
s, Me-6), 2.37 (3H, s, Me-8), 6.68 (1H, s, H-3), 7.54 (3H, m, H-3′, H-4′ and H-5′), 7.91 (2H, d,
J = 7.2 Hz, H-2′ and H-6′), 12.95 (1H, s, OH-5).
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5,4′-Dihydroxy-7-methoxy-6,8-dimethylflavone (7): yellow powder; mp 286~287 ◦C;
IR (KBr) υmax: 3502~2423, 3430, 3072, 2920, 1650, 1612, 1585, 1466 cm−1; 1H-NMR (500 MHz,
CDCl3) δ (ppm): 2.18 (3H, s, Me-6), 2.36 (3H, s, Me-8), 3.90 (3H, s, OMe-7), 5.40 (1H, s, OH
-4′), 6.89 (1 H, s, H-3), 7.03 (2H, d, J = 8.8 Hz, H-3′ and H-5′), 7.87 (2H, d, J = 8.8 Hz, H-2′

and H-6′), 13.03 (1H, s, OH-5).
4-Hydroxybenzoic acid (8): white solid; mp 210~212 ◦C; IR (KBr) υmax: 3300~2500,

1696 cm−1; 1H-NMR (500 MHz, CDCl3) δ (ppm): 6.33 (1H, br s, Ar-OH), 6.81 (2H, d,
J = 8.8 Hz, H-3 and H -5), 7.87 (2H, d, J = 8.8 Hz, H-2 and H-6).

4-Hydroxybenzaldehyde (9): white solid; mp 110~112 ◦C; IR (KBr) υmax: 3170, 1676,
1600, 1519, 1454 cm−1; 1H-NMR (500 MHz, CDCl3) δ (ppm): 5.81 (1H, s, Ar-OH), 6.95 (2H,
d, J = 8.4 Hz, H-3 and H-5), 7.81 (2H, d, J = 8.4 Hz, H-2 and H-6), 9.87 (1H, s, CHO).

4-Hydroxyacetophenone (10): white solid; mp 106~107 ◦C; IR (KBr) υmax: 3312, 1664,
1602, 1578 cm−1; 1H-NMR (500 MHz, CDCl3) δ (ppm): 2.56 (3H, s, COMe), 6.09 (1H, s,
Ar-OH), 6.89 (2H, d, J = 8.8 Hz, H-3 and H-5), 7.91 (2H, d, J = 8.8 Hz, H-2 and H-6).

Methyl 4-Hydroxybenzoate (11): white solid; mp 124~125 ◦C; IR (KBr) υmax: 3358,
1689, 1608, 1585, 1514 cm−1; 1H-NMR (500 MHz, CDCl3) δ (ppm): 3.89 (3H, s, COOMe),
5.37 (1H, s, Ar-OH), 6.95 (2H, d, J = 8.0 Hz, H-3 and H -5), 7.95 (2H, d, J = 8.0 Hz, H-2
and H-6).

p-Anisic acid (12): white solid; mp 182~184◦C; IR (KBr) υmax: 3307~2503, 2926, 1686,
1605, 1578, 1516 cm−1; 1H-NMR (500 MHz, CDCl3) δ (ppm): 3.85 (3H, s, OMe-4), 6.97 (2H,
d, J = 8.8 Hz, H-3 and H-5), 7.96 (2H, d, J = 8.8 Hz, H-2 and H-6).

Vanillin (13): white solid; mp 210~212 ◦C; IR (KBr) υmax: 3213, 2724, 2858, 1667, 1589,
1510 cm−1; 1H-NMR (500 MHz, CDCl3) δ (ppm): 3.97 (3H, s, OMe-3), 6.21 (1H, s, Ar-OH),
7.04 (1H, d, J = 8.0 Hz, H-5), 7.42 (1H, d, J = 2.0 Hz, H-2), 7.43 (1H, dd, J = 8.0, 2.0 and H-6),
9.83 (1H, s, CHO).

4-Hydroxy-3-methoxyacetophenone (14): white solid; mp 182~184 ◦C; IR (KBr) υmax:
3323, 2912, 1658, 1575, 1518 cm−1; 1H-NMR (500 MHz, CDCl3) δ (ppm): 2.56 (3H, s, COMe),
3.96 (3H, s, OMe-3), 6.05 (1H, s, Ar-OH), 6.95 (1H, d, J = 8.0 Hz), 7.54 (2H, br s, H-2 and H-6).

Acetosyringone (15): white solid; mp 105~107 ◦C; IR (KBr) υmax: 3307, 1672, 1608
cm−1; 1H-NMR (500 MHz, CDCl3) δ (ppm): 2.57 (3H, s, COMe), 3.96 (6H, s, OMe-3, OMe-5),
6.05 (1H, s, Ar-OH), 7.25 (2H, s, H-2 and H-6).

4-Hydroxy-3, 5-dimethoxybenzaldehyde (16): white solid; mp 112~114 ◦C; IR (KBr)
υmax: 3410, 2727, 1685, 1605, 1514 cm−1; 1H -NMR (500 MHz, CDCl3) δ (ppm): 3.98 (6H, s,
OMe-3, OMe-5), 5.91 (1H, s, Ar-OH), 7.15 (2H, s, H-2 and H-6), 9.82 (1H, s, CHO).

4-Hydroxybenzyl alcohol (17): white solid; mp 116–117 ◦C; IR (KBr) υmax: 3370, 1585,
1512 cm−1; 1H-NMR (500 MHz, CDCl3) δ (ppm): 4.62 (2H, s, H-7), 4.79 (1H, s, Ar-OH), 6.82
(2H, d, J = 8.4 Hz, H-3 and H-5), 7.25 (2H, d, J = 8.4 Hz, H-2 and H-6).

2-(4-Hydroxyphenyl)ethanol (18): white solid; mp 92~93 ◦C; IR (KBr) υmax: 3392, 1599,
1514 cm−1; 1H-NMR (500 MHz, CDCl3) δ (ppm): 2.80 (2H, t, J = 8.0 Hz, H-7), 3.83 (2H, br.
t, J = 8.0 Hz, H-8), 4.75 (1H, s, Ar-OH), 6.79 (2H, d, J = 8.0 Hz, H-3 and H-5), 7.10 (2H, d,
J = 8.0 Hz, H-2 and H-6).

Cinnamic acid (19): white solid; mp 133~135 ◦C; IR (KBr) υmax: 3267~2582, 2962, 1684,
1629 cm−1; 1H-NMR (500 MHz, CDCl3) δ (ppm): 6.49 (1H, d, J = 16.0 Hz, H-8), 7.41 (3H, m,
H-3, H-4 and H-5), 7.60 (2H, dd, J = 7.6, 2.0 Hz, H-2 and H-6), 7.68 (1H, d, J = 16.0 Hz, H-7).

trans-Ferulic acid (20): white solid, mp 168~169 ◦C; IR (KBr) υmax: 3435, 3481~2750,
1690, 1662, 1515 cm−1; 1H-NMR (500 MHz, acetone-d6) δ (ppm): 3.89 (3H, s, OMe-3), 6.30
(1H, d, J = 15.0 Hz, H-8), 6.80 (1H, d, J = 8.0 Hz, H-5), 7.05 (1H, d, J = 8.0 Hz, H-6), 7.17 (1H,
s, H-2), 7.59 (1H, d, J = 15.0 Hz, H-7), 8.17 (1H, br s, Ar-OH).

2.5. Cell Culture

Murine RAW264.7 macrophages were cultured in DMEM medium containing 10%
fetal bovine serum (FBS) and 1% penicillin at 37 ◦C, 5% CO2 [9].
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2.6. MTT assay

The MTT assay was performed by the reference method with slight modifications [9].

2.7. Nitric Oxide Inhibitory Assay

The NO inhibition assay was followed with a slight modification of the reference
method [10].

2.8. Enzyme-Linked Immunosorbent Assay

RAW264.7 cells (4 × 105 cells in 96 well plates) were pre-treated with isolated com-
pounds or vehicle (0.05% DMSO) for 1 h and then stimulated with LPS (100 ng/mL) for 20
h. Supernatants were collected and analyzed for production of TNF-α by using appropriate
ELISA kits (R&D, Minneapolis, MN, USA) in accordance to the manufacturer’s instructions.

2.9. Statistical Analysis

All the data are expressed as mean ± SEM. Statistical analysis was carried out using
the Student’s t-test. A probability of 0.05 or less was considered statistically significant. All
the experiments were performed at least 3 times.

3. Results and Discussion
3.1. Isolation and Structural Elucidation

Chromatographic isolation of the EtOAc-soluble fraction of MeOH extract of aerial
part of G. oppositifolius on column chromatography and high-performance liquid chro-
matography (HPLC) afforded three new triterpenoids—spergulagenin B (1), spergulagenin
C (2), and spergulagenin D (3)—and 17 known compounds 4–20 (Figure 2).

Spergulagenin B (1) was isolated as colorless needle with molecular formula C30H48O4
as confirmed by HR-EI-MS, showing an [M]+ ion at m/z 472.3549 (calcd. 472.3547) and
supported by the 1H- and 13C-NMR data. The IR absorption bands implied the presence of
OH (3423 cm−1) and acetyl group (1694 cm−1). The 1H- and 13C-NMR data of 1 showed the
acetyl group [δH 2.23 (3H, s, H-30); δC 25.9 (C-30) and 217.2 (C-22)] and seven methyl signals
[δH 0.96 (3H, s, H-25), 1.01 (3H, s, H-27), 1.03 (3H, s, H-23), 1.04 (3H, s, H-28), 1.07 (3H, s,
H-26), 1.08 (3H, s, H-24) and 1.43 (3H, s, H-29); δC 15.6 (C-25), 16.6 (C-26), 17.2 (C-28), 18.7
(C-27), 21.1 (C-23), 21.2 (C-29) and 26.6 (C-24)]. Comparison of the 1H- and 13C-NMR data of
1 with those of spergulagenin A (1a) [6] suggested that their structures were closely related,
except that the carbonyl group [δC 217.3 (C-3)] at C-3 of 1 replaced the 3β-hydoxyl group
of spergulagenin A (1a) [6]. This was supported by both HMBC correlations between H-1,
H-2, H-23 and C-3 (δC 217.3). The relative stereochemistry of 1 was elucidated on the basis
of NOESY experiments (Figure 2). The NOESY cross-peaks between H-5/H-9, H-9/H-12,
H-12/H-27, H-13/H-17, H-13/H-26, H-16/H-29, H-23/H-25, H-25/H-26, H-27/H-28, and,
H-28/H-29 suggested that H-13, H-17, Me (23), Me (25) and Me (26) on the β-side and H-5,
H-9, H-12, H-16, Me (27), Me (28) and Me (29) are on the α-side of 1. The full assignment
of 13C- and 1H-NMR resonances was determined by 13C-DEPT (Figure S4), 1H–1H COSY
(Figure S5), NOESY (Figures 3 and S6), HSQC (Figure S7), and HMBC (Figures 3 and S8)
techniques. The absolute configuration of 1 was evidenced by the ECD Cotton effects at
284 (∆ε +0.88), 250 (∆ε −0.12), 217 (∆ε +0.98), and 198 (∆ε −1.34) nm, in analogy with
those of glinusopposide D [11]. According to the evidence above, the structure of 1 was
elucidated as (3R,4S,5aR,5bR,11aR,13R,13bR)-3-acetyl-4,13-dihydroxy-3,5a,5b,8,8,11a,13b-
heptamethylicosahydro-9H-cyclopenta[a]chrysen-9-one, named spergulagenin B.
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Spergulagenin C (2) was obtained as colorless needle crystal. Its molecular formula,
C30H46O4, was confirmed by the positive HR-ESI-MS at m/z 470.3409 [M]+ (calculated for
C30H46O4, 470.3406) and supported by the 13C, 1H, and DEPT NMR data. IR absorptions
for OH (3493 and 3416 cm−1) functions were observed. The presence of the acetyl group
was supported by a band at 1690 cm−1 in the IR spectrum and was affirmed by signal at
δ 25.9, and δ 217.0 in the 13C-NMR spectrum. The 13C- and 1H-NMR data of 2 revealed
the acetyl group [δH 2.24 (3H, s, H-30); δC 25.9 (C-30) and 217.0 (C-22)] and seven methyl
signals [δH 1.01 (3H, s, H-27), 1.04 (3H, s, H-28), 1.08 (3H, s, H-25), 1.09 (3H, s, H-23), 1.11
(3H, s, H-26), 1.14 (3H, s, H-24), and 1.45 (3H, s, H-29); δC 17.1 (C-25), 17.2 (C-26), 18.8
(C-28), 18.9 (C-27), 21.4 (C-23), 21.1 (C-29) and 27.8 (C-24)]. The 1H- and 13C-NMR data of 2
were similar to those of 1, except that the double bond at C-1,2 [δH 5.83, 7.10 (each 1H, each
d, J = 10.0 Hz, H-2 and H-1); δC 125.6 (C-2), 158.5 (C-1)] of 2 replaced C-1,2 single bond [δH
1.41, 1.94 (each 1H, m, H-1), 2.42, 2.48 (each 1H, m, H-2); δC 34.0 (C-2), 39.4 (C-1)] of 1. This
was supported by the HMBC correlations between H-1 (δH 7.10) and C-3 (δC 205.3), C-4 (δC
39.2), C-5 (δC 53.3), and C-9 (δC 42.7); and between H-2 (δH 5.83) and C-4 (δC 39.2) and C-10
(δC 44.6). The NOESY cross-peaks between H-5/H-9, H-9/H-12, H-12/H-27, H-13/H-17,
H-13/H-26, H-16/H-29, H-23/H-25, H-25/H-26, H-27/H-28, and, H-28/H-29 suggested
that H-13, H-17, Me (23), Me (25) and Me (26) are on the β-side and H-5, H-9, H-12, H-16,
Me (27), Me (28) and Me (29) are on the α-side of 1. The full assignment of 13C- and
1H-NMR resonances was confirmed by 13C-DEPT (Figure S12), 1H–1H COSY (Figure S13),
NOESY (Figures 4 and S14), HSQC (Figure S15), and HMBC (Figures 4 and S16) tech-
niques. The absolute configuration of 2 was evidenced by the ECD Cotton effects at 283
(∆ε +0.96), 249 (∆ε −0.14), 219 (∆ε +1.05), and 198 (∆ε −1.09) nm, in analogy with those
of 1 and glinusopposide D [11]. On the basis of the evidence above, the structure of 2 was
elucidated as (3R,4S,5aR,5bR,11aR,13R,13bR)-3-acetyl-4,13-dihydroxy-3,5a,5b,8,8,11a,13b-
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Spergulagenin D (3) was obtained as colorless needle. Its molecular formula, C30H46O4,
was determined on the basis of the positive HR-EI-MS at m/z 470.3407 [M]+ (calcd. 470.3403)
and supported by the 1H, 13C, and DEPT NMR data. IR absorptions for OH (3447 cm−1)
and carbonyl (1697 cm−1) functions were observed. The 1H- and 13C-NMR data of 3
showed the acetyl group [δH 2.24 (3H, s, H-30); δC 26.1 (C-30); and 217.3 (C-22)] and
seven methyl signals [δH 0.99 (3H, s, H-27), 1.00 (3H, s, H-25), 1.06 (3H, s, H-23), 1.10
(3H, s, H-24), 1.14 (3H, s, H-28), 1.21 (3H, s, H-26), and 1.43 (3H, s, H-29); δC 15.2 (C-
25), 16.7 (C-26), 17.7 (C-28), 20.9 (C-27), 21.4 (C-23), 21.4 (C-29), and 26.6 (C-24)]. The
1H- and 13C-NMR data of 3 were similar to those of 1, except that the carbonyl group
at C-12 [δC 210.9 (C-12)] of 3 replaced the 12β-OH group [δH 3.95 (each 1H, m, H-12);
δC 69.5 (C-12)] of 1. This was supported by the HMBC correlations between H-11 (δH
2.22, 2.25) and C-9 (δC 49.6), C-12 (δC 210.9); and between H-9 (δH 1.70) and C-10 (δC
37.0) and C-12 (δC 210.9). The relative stereochemistry of 3 was elucidated on the basis of
NOESY experiments (Figure 4). The NOESY cross-peaks between H-5/H-9, H-13/H-17,
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H-13/H-26, H-16/H-29, H-23/H-25, H-25/H-26, H-27/H-28, and H-28/H-29 suggested
that H-13, H-17, Me (23), Me (25) and Me (26) were on the β-side and H-5, H-9, H-16,
Me (27), Me (28), and Me (29) were on the α-side of 3. The full assignment of 13C- and
1H-NMR resonances was determined by 13C-DEPT (Figure S20), 1H–1H COSY (Figure S21),
NOESY (Figures 5 and S22), HSQC (Figure S23), and HMBC (Figures 5 and S24) exper-
iments. The absolute configuration of 3 was evidenced by the ECD Cotton effects at
284 (∆ε +0.76), 249 (∆ε −0.09), 218 (∆ε +1.00), and 197 (∆ε −0.91) nm, in analogy with
those of 1 and glinusopposide D [11]. On the basis of the evidence above, the structure
of 3 was elucidated as (3R,4S,5aR,5bR,11aR,13bS)-3-acetyl-4-hydroxy-3,5a,5b,8,8,11a,13b-
heptamethyloctadecahydro-9H-cyclopenta[a]chrysene-9,13(8H)-dione, named spergulagenin D.
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10.0 Hz, H-2 and H-1); δC 125.6 (C-2), 158.5 (C-1)] of 2 replaced C-1,2 single bond [δH 1.41, 

1.94 (each 1H, m, H-1), 2.42, 2.48 (each 1H, m, H-2); δC 34.0 (C-2), 39.4 (C-1)] of 1. This was 

supported by the HMBC correlations between H-1 (δH 7.10) and C-3 (δC 205.3), C-4 (δC 

39.2), C-5 (δC 53.3), and C-9 (δC 42.7); and between H-2 (δH 5.83) and C-4 (δC 39.2) and C-

10 (δC 44.6). The NOESY cross-peaks between H-5/H-9, H-9/H-12, H-12/H-27, H-13/H-17, 

H-13/H-26, H-16/H-29, H-23/H-25, H-25/H-26, H-27/H-28, and, H-28/H-29 suggested that 

H-13, H-17, Me (23), Me (25) and Me (26) are on the β-side and H-5, H-9, H-12, H-16, Me 

(27), Me (28) and Me (29) are on the α-side of 1. The full assignment of 13C- and 1H-NMR 

resonances was confirmed by 13C-DEPT (Figure S12), 1H–1H COSY (Figure S13), NOESY 

(Figures 4 and S14), HSQC (Figure S15), and HMBC (Figures 4 and S16) techniques. The 

absolute configuration of 2 was evidenced by the ECD Cotton effects at 283 (Δε +0.96), 249 

(Δε −0.14), 219 (Δε +1.05), and 198 (Δε −1.09) nm, in analogy with those of 1 and glinusop-

poside D [11]. On the basis of the evidence above, the structure of 2 was elucidated as 

(3R,4S,5aR,5bR,11aR,13R,13bR)-3-acetyl-4,13-dihydroxy-3,5a,5b,8,8,11a,13b-heptame-

thyl-1,2,3,3a,4,5,5a,5b,6,7,7a,8,11a,11b,12,13,13a,13b-octadecahydro-9H-cyclopenta[a] 

chrysen-9-one, named spergulagenin C. 

) correlations of 1.

3.2. Structure Identification of Known Isolated Compounds

The known isolated compounds were readily determined by a comparison of phys-
ical and spectroscopic data (1H-NMR, 13C-NMR, MS, UV, and IR) with the literature
values or corresponding authentic samples, and this included four flavonoids, kaempferol
(4) [12], 6, 8-dimethyl-5, 7, 4′-trihydroxyflavone (5) [13], 5,7-dihydroxy-6,8-dimethylflavone
(6) [14], and 5,4′-dihydroxy-7-methoxy-6,8-dimethylflavone (7) [15], and thirteen aromatics,
4-hydroxybenzoic acid (8) [16], 4-hydroxybenzaldehyde (9) [17], 4-hydroxyacetophenone
(10) [17], methyl 4-Hydroxybenzoate (11) [17], p-anisic acid (12) [18], vanillin (13) [19], 4-
hydroxy-3-methoxyacetophenone (14) [20], acetosyringone (15) [21], 4-hydroxy-3,5-
dimethoxybenzaldehyde (16) [22], 4-hydroxybenzyl alcohol (17) [23], 2-(4-hydroxyphenyl)
ethanol (18) [24], cinnamic acid (19) [25], and trans-ferulic acid (20) [26].

3.3. Biological Studies

Nitric oxide (NO) is derived from the oxidation of L-arginine by NO synthase (NOS)
and is a mediator in the inflammatory response involved in host defense [27]. In inflamma-
tion and carcinogenesis conditions, there is an increased production of NO by inducible
NO synthase (iNOS) [28]. The anti-inflammatory effects of the compounds isolated from
the aerial part of G. oppositifolius were also evaluated by suppressing lipopolysaccharide
(LPS)-induced NO generation in macrophage cell line RAW264.7. The inhibitory activity
data of the isolates 1–20 on NO generation by macrophages are shown in Tables 3 and S1.
Quercetin was used as the positive control. From the results of our anti-inflammatory
tests, the following conclusions can be drawn: (a) Compounds 3, 5, 19, and 20 exhibited
inhibitory effects on lipopolysaccharides (LPS)-induced nitric oxide production in RAW
264.7 cells with IC50 values of 17.03 ± 1.28, 18.21 ± 1.15, 16.30 ± 1.41, and 12.64 ± 1.14 µM,
respectively (Table 1); (b) Among new triterpenoids, spergulagenin D (3) (with 3,12-dioxo
groups) exhibited more effective inhibition than its analogues, spergulagenin B (1) (with
3-oxo-12β-hydroxy groups) and spergulagenin C (2) (with 1,2-dehydro-3-oxo-12β-hydroxy
groups) against LPS-induced NO generation. (c) Among the flavonoids, 6,8-dimethyl-
5,7,4′-trihydroxyflavone (5) (with 6,8-dimethyl-5,7,4′-trihydroxy groups) exhibited more
effective inhibition than its analogues, kaempferol (4) (with 5,7,4′-trihydroxy groups),
5,7-dihydroxy-6,8-dimethylflavone (6) (with 5,7-dihydroxy-6,8-dimethyl groups), and
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5,4′-dihydroxy-7-methoxy-6,8-dimethylflavone (7) (with 5,4′-dihydroxy-7-methoxy-6,8-
dimethyl groups) against LPS-induced NO generation. (d) trans-ferulic acid (20) is the most
effective among the isolated compounds against LPS-induced NO generation. In addition,
compounds 3, 5, and 20 exhibited inhibitory effects on LPS-induced TNF-α production
in RAW 264.7 cells with IC50 values of 18.35 ± 1.34, 17.56 ± 1.41, and 14.27 ± 1.29 µM,
respectively (Tables 4 and S2).

Table 3. Inhibitory effect of compounds 1–20 on production of nitric oxide in LPS-stimulated RAW
264.7 cells.

Compounds NO Inhibition
IC50 (µM) a

Spergulagenin B (1) 24.76 ± 1.41 ***
Spergulagenin C (2) 28.26 ± 2.78 **
Spergulagenin D (3) 17.03 ± 1.28

Kaempferol (4) 38.87 ± 1.68 ***
6,8-Dimethyl-5,7,4′-trihydroxyflavone (5) 18.21 ± 1.15

5,7-Dihydroxy-6,8-dimethylflavone (6) 43.61 ± 2.96 ***
5,4′-Dihydroxy-7-methoxy-6,8-dimethylflavone (7) 32.08 ± 2.75 **

4-Hydroxybenzoic acid (8) 75.83 ± 6.63 **
4-Hydroxybenzaldehyde (9) 88.20 ± 7.78 **
4-Hydroxyacetophenone (10) 76.24 ± 6.55 **

Methyl 4-Hydroxybenzoate (11) 78.50 ± 8.00 **
p-Anisic acid (12) 115.58 ± 10.35 **

Vanillin (13) 94.95 ± 10.99 **
4-Hydroxy-3-methoxyacetophenone (14) 111.29 ± 12.91 **

Acetosyringone (15) 75.43 ± 6.63 **
4-Hydroxy-3, 5-dimethoxybenzaldehyde (16) 86.62 ± 7.74 **

4-Hydroxybenzyl alcohol (17) 78.64 ± 7.23 **
2-(4-Hydroxyphenyl)ethanol (18) 28.47 ± 1.94 ***

Cinnamic acid (19) 16.30 ± 1.41
trans-Ferulic acid (20) 12.64 ± 1.14 **

Quercetin b 16.74 ± 1.26
a The IC50 value was defined as half-maximal inhibitory concentration and was expressed as mean ± SD (n = 3);
b Quercetin was used as positive control; ** p < 0.01, and *** p < 0.001 compared with the control.

Table 4. Inhibitory effect of compounds 1–20 on the production of pro-inflammatory cytokine, TNF-α
in LPS-stimulated RAW 264.7 cells.

Compounds TNF-α Inhibition
IC50 (µM) a

Spergulagenin B (1) 30.49 ± 2.20 **
Spergulagenin C (2) 31.36 ± 2.59 **
Spergulagenin D (3) 18.35 ± 1.34 **

Kaempferol (4) 35.71 ± 4.74 *
6,8-Dimethyl-5,7,4′-trihydroxyflavone (5) 17.56 ± 1.41 **

5,7-Dihydroxy-6,8-dimethylflavone (6) 39.48 ± 3.06 **
5,4′-Dihydroxy-7-methoxy-6,8-dimethylflavone (7) 34.17 ± 2.49 **

4-Hydroxybenzoic acid (8) 80.02 ± 7.10 **
4-Hydroxybenzaldehyde (9) 86.38 ± 6.28 ***
4-Hydroxyacetophenone (10) 79.03 ± 5.26 ***

Methyl 4-Hydroxybenzoate (11) 82.33 ± 7.25 **
p-Anisic acid (12) 125.84 ± 11.47 **

Vanillin (13) 102.35 ± 9.36 **
4-Hydroxy-3-methoxyacetophenone (14) 123.07 ± 11.37 **

Acetosyringone (15) 68.38 ± 5.48 **
4-Hydroxy-3, 5-dimethoxybenzaldehyde (16) 77.39 ± 6.73 **

4-Hydroxybenzyl alcohol (17) 69.38 ± 6.24 **
2-(4-Hydroxyphenyl)ethanol (18) 26.44 ± 2.35 *

Cinnamic acid (19) 22.00 ± 1.51 **
trans-Ferulic acid (20) 14.27 ± 1.29 **

Quercetin b 5.08 ± 0.23
a The IC50 value was defined as half-maximal inhibitory concentration and was expressed as mean ± SD (n = 3);
b Quercetin was used as positive control; * p < 0.05, ** p < 0.01, and *** p < 0.001 compared with the control.
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The above findings indicated that the promising inhibitory activity against LPS-
induced NO and TNF-α generation of G. oppositifolius and its isolates could stimulate
future development of new anti-inflammatory agents.

4. Conclusions

Twenty compounds, including three new triterpenoids—spergulagenin B (1), spergu-
lagenin C (2), and spergulagenin D (3)—were isolated from aerial part of G. oppositifolius.
The structures of these new compounds were elucidated on the basis of spectral data. The
effects on macrophage pro-inflammatory responses of isolated compounds were evalu-
ated by suppressing LPS-induced NO generation by macrophage RAW264.7 cells. The
results of anti-inflammatory assays show that compounds 3, 5, 19, and 20 can obviously
inhibit LPS-induced NO generation. Trans-ferulic acid (20) is the most effective among the
isolated compounds, with IC50 value of 12.64 ± 1.14 µM, against LPS-induced NO gener-
ation. Furthermore, compounds 3, 5, and 20 exhibited inhibitory effects on LPS-induced
TNF-α production in RAW 264.7 cells with IC50 values of 18.35 ± 1.34, 17.56 ± 1.41, and
14.27 ± 1.29 µM, respectively. Our research indicates G. oppositifolius and its isolates (es-
pecially 3, 5, 19, and 20) are worth further research and may be expectantly developed
as candidates for the treatment or prevention of various inflammatory diseases (such as
dermatitis and arthritis). This study also provides anti-inflammatory scientific evidence for
the use of traditional herbal medicine (G. oppositifolius) in the treatment of dermatitis and
chronic inflammatory diseases [2].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28072903/s1, Figure S1: The IR spectrum of 1; Figure S2:
The 1H-NMR spectrum of 1 (CDCl3, 500 MHz); Figure S3: The 13C-NMR spectrum of 1 (CDCl3, 125
MHz); Figure S4: The 13C-DEPT spectrum of 1 (CDCl3, 125 MHz); Figure S5: The 1H–1H COSY
spectrum of 1; Figure S6: The NOESY spectrum of 1; Figure S7: The HSQC spectrum of 1; Figure S8:
The HMBC spectrum of 1; Figure S9: The IR spectrum of 2; Figure S10: The 1H-NMR spectrum of
2 (CDCl3, 500 MHz); Figure S11: The 13C-NMR spectrum of 2 (CDCl3, 125 MHz); Figure S12: The
13C-DEPT spectrum of 2 (CDCl3, 125 MHz); Figure S13: The 1H–1H COSY spectrum of 2; Figure S14:
The NOESY spectrum of 2; Figure S15: The HSQC spectrum of 2; Figure S16: The HMBC spectrum
of 2; Figure S17: The IR spectrum of 3; Figure S18: The 1H-NMR spectrum of 3 (CDCl3, 500 MHz);
Figure S19: The 13C-NMR spectrum of 3 (CDCl3, 125 MHz); Figure S20: The 13C-DEPT spectrum of 3
(CDCl3, 125 MHz); Figure S21: The 1H–1H COSY spectrum of 3; Figure S22: The NOESY spectrum of
3; Figure S23: The HSQC spectrum of 3; Figure S24: The HMBC spectrum of 3; Table S1: Inhibitory
effect of compounds 1–20 on production of nitric oxide in LPS-stimulated RAW 264.7 cells; Table S2:
Inhibitory effect of compounds 1–20 on the production of pro-inflammatory, TNF-α in LPS-stimulated
RAW 264.7 cells.
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