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Abstract: Microbial infections have always been a thorny problem. Multi-drug resistant (MDR) bacte-
rial infections rendered the antibiotics commonly used in clinical treatment helpless. Nanomaterials
based on aggregation-induced emission luminogens (AIEgens) recently made great progress in the
fight against microbial infections. As a family of photosensitive antimicrobial materials, AIEgens
enable the fluorescent tracing of microorganisms and the production of reactive oxygen (ROS) and/or
heat upon light irradiation for photodynamic and photothermal treatments targeting microorganisms.
The novel nanomaterials constructed by combining polymers, antibiotics, metal complexes, peptides,
and other materials retain the excellent antimicrobial properties of AIEgens while giving other ma-
terials excellent properties, further enhancing the antimicrobial effect of the material. This paper
reviews the research progress of AIEgen-based nanomaterials in the field of antimicrobial activity,
focusing on the materials’ preparation and their related antimicrobial strategies. Finally, it concludes
with an outlook on some of the problems and challenges still facing the field.
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1. Introduction

Bacterial infections have long been a severe issue in clinical treatment [1] that can
lead to serious complications (sepsis, skin disease, endocarditis, meningitis, pneumonia,
etc.) and even threaten life [2–4]. Bacterial infections have been effectively controlled
since 1928, when penicillin (the first antibiotic, followed by many others) was invented [5].
However, due to the overuse and misuse of antibiotics, antimicrobial resistance (AMR)
is becoming more serious [6–8]. According to the World Health Organization (WHO),
around 700,000 people worldwide die from multi-drug resistant (MDR) bacterial infections
every year, and the number could reach 10 million by 2050 [9–11]. Because developing
antibiotics against MDR bacterial infections is time and energy consuming, the rate of
antibiotic development can hardly keep up with the rate of production of MDR bacterial
infections. Therefore, there is an urgent need to develop a new alternative antibacterial
strategy that not only has good broad-spectrum antibacterial activity, but also avoids the
development of resistance as much as possible.

Biomedical materials developed rapidly over the last decade. Antimicrobial therapy
based on nanomaterials is considered to be a promising antimicrobial strategy [12]. It
mainly includes antibacterial polymers [13–16], photothermal therapy (PTT) [17–19], pho-
todynamic therapy (PDT) [20–23], the specific delivery and stimulation-triggered release of
antibiotics based on nanomaterials [24–26], catalytic killing of bacteria and anti-virulence
therapy based on nanoenzymes [27], etc. In contrast to single materials, nanomaterials can
be integrated with a variety of different antibacterial materials to build nanoscale diagnostic
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and therapeutic platforms and realize multi-pronged antimicrobial strategies for efficient
and broad-spectrum antimicrobial therapy.

Antibacterial nanomaterials based on aggregation-induced emission luminogens
(AIEgens) have received a lot of attention recently [28–30]. As a fluorescent material,
AIEgens can be used for fluorescence imaging for microorganisms [31–35]. Existing detec-
tion methods, such as polymerase chain reaction (PCR), DNA microarrays [36], targeted
specific immunoassay [37], mass spectrometry [38], and surface-enhanced Raman spec-
troscopy [39], are time-consuming, less accurate, and difficult to operate [40]. The use of
AIEgens not only avoids the aggregation-caused quenching (ACQ) effect of traditional
photosensitizers [41–43], but it also provides a good imaging tracer for bacteria, allows
for real-time, dynamic observation of the interaction process between nanomaterials and
bacteria, and reveals the antibacterial mechanisms of materials [44,45], which all benefit
from AIEgens’ low background, high signal-to-noise ratio, and non-invasive real-time
imaging [46–48]. On the other hand, AIEgens, as photosensitizers, enable photodynamic
and photothermal treatment of pathogenic microorganisms. AIEgens can not only achieve
long-wavelength excitation and emission through the regulation of molecular structures,
but also achieve combined photodynamic and photothermal therapy for bacterial infec-
tions through the regulation of energy levels. Compared with traditional antibiotics, this
antibacterial method offers good broad-spectrum antibacterial activity, and it does not
easily produce drug resistance. In addition, compared with heavy metal ions, AIEgen, as
an organic material, has less cytotoxicity and better biocompatibility. Phototherapy, as a
non-invasive technique with high spatial and temporal accuracy, attracted wide attention in
the field of antibacterials [49]. AIE-active photosensitizers can not only kill pathogens but
also act as immune effector molecules to initiate and regulate the host’s immune defence
system [50–52]. Therefore, AIEgens can effectively recognize and inhibit bacterial growth
and reduce bacterial drug resistance under imaging guidance [53].

Inspired by this, we focused on recent research advances in the antimicrobial domain
based on AIEgen-based nanomaterials and introduced some new antimicrobial nanomate-
rials and antimicrobial strategies. In this review, we focus on a number of nanotherapeutic
systems constructed by AIEgens with polymers, antibiotics, metal complexes, and peptides
as well as some of the novel antibacterial therapeutic strategies involved (Scheme 1). Finally,
it is hoped that the review of this paper will inspire more intensive research in the new
frontier field of antibacterial nanomaterials.
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Scheme 1. Schematic diagram of the representative AIEgen-based nanomaterials. Scheme 1. Schematic diagram of the representative AIEgen-based nanomaterials.

2. Nanomaterials with AIEgens—Polymers for Antimicrobial Application

AIEgens were proven to have good bactericidal effects against various microorganisms
in recent years [54–57]. Although small molecules alone are beneficial for photodynamic
therapy of bacteria, their photostability is relatively poor compared to polymers; thus,
the development of polymer-based AIEgens is highly necessary. Some commonly used
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methods mainly cover drugs or target molecules and the self-assembly of polymers to
build a nano-assembly system to achieve multifunctional requirements. Porous, hollow,
polymeric capsules and amphiphilic polymers are commonly used materials in these
assembly systems [58,59]. Recently, Huang et al. [60] designed a polymer-based NIR-II
AIEgen PDTPTBT, which was then encapsulated with liposomes into a nanomaterial (L-
PDTPTBT) to improve the dispersion and biocompatibility of the material, as shown in
Figure 1a. In vitro experiments demonstrated that L-PDTPTBT has excellent photothermal
conversion effects under 808 nm laser irradiation, with the highest temperature reaching
55 ◦C, which can easily destroy the structure of the bacterial membrane and kill bacteria
(Figure 1b,c). Subsequent in vivo experiments further revealed that L-PDTPTBT had an
excellent bactericidal effect on both diabetic wound infections and subcutaneous bacterial
infections, and the number of bacteria was significantly reduced (Figure 1d,e).
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Figure 1. (a) Schematic illustration of nanofabrication of L-PDTPTBT and its application in pho-
tothermal therapy of bacterial infection. (b) Live (SYTO 9)/dead (PI) staining of MRSA and E. coli
after different treatments. Scale bar: 20 µm. (c) Morphology changes and leakage of cytoplasm of
MRSA and E. coli bacteria after different treatments, characterized by SEM and TEM. (d) Images of
subcutaneous tissues seven days after different treatments. Scale bar: 2 mm. (e) Representative LB
agar of E. coli bacterial colonies harvested from subcutaneous abscesses seven days after different
treatments (n = 5). Adapted from [60], copyright 2022, Elsevier Ltd.

Polymer-based AIE molecules do have excellent photostability, but the degradation
performance of the polymer is also a concern [61]. As an antibacterial drug, it is necessary
not only to have good antibacterial properties, but also to minimize the biological toxicity
of the drug. This requires antibiotics to degrade metabolism well in the human body and
to reduce the amount of time retained in the body. Based on this, Chen et al. [62] designed
a novel antimicrobial polymer with ester bonds connecting the polymeric backbone and
functional segments and then cleverly introduced AIEgens into the polymer system to
successfully enable the imaging and killing of bacteria (Figure 2a). The cationic amino
segments of the polymer backbone can interact with the negatively charged bacterial
membrane and destroy the integrity of the membrane. The lipophilic alkane segments can
be inserted into the bacterial membrane, causing a distortion of the bacterial membrane
structure that promotes its destruction and accelerates the death of the bacteria. The
introduction of ester bonds can give antimicrobial drugs good antibacterial activity in the
short term. In the biological environment, they degrade well due to the hydrolysis of
lipases, thereby reducing the harm to the body. Subsequent experimental results also show
that the antibacterial rate of Q-PGEDA-OP/TPE system on AMOr S. aureus (Figure 2c) and
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AMOr E. coli (Figure 2d) was more than 99%, and the subsequent SEM results show that
the membrane structure of the bacteria was significantly damaged (Figure 2e).
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OP, and Q-PGEDA-COOH. Adapted from [62], copyright 2018, American Chemical Society.

3. Nanomaterials with AIEgen—Antibiotics for Antimicrobial Application

There is no doubt that antibiotics have made remarkable progress in treating bacterial
infections since 1928 [63,64]. However, with the overuse of antibiotics and the abuse of
broad-spectrum antibiotics, the number of infections caused by MDR bacteria has increased
dramatically in recent years [65]. In addition, intracellular bacteria are one of the deadliest
causes of drug resistance. After being ingested by phagocytes, the bacteria can escape
from the endosomes and proliferate in the cytoplasm [66]. In addition, it is difficult for
most antibiotics to play a bactericidal role due to their poor cellular penetration and
short intracellular retention time [67]. Thus, how to deliver antibiotics exactly to the site
of bacterial infection is important. The emergence of biodegradable nanomaterials has
solved this problem well. Currently, commonly used nanomaterials such as liposomes,
nanoparticles, and micelles are widely used for the intracellular delivery of antibiotics [68].

Studies have shown that macrophages infected with intracellular bacteria produce a
number of different intracellular signals, such as the high expression of various enzymes
by intracellular bacteria such as lipase, phosphatase, and phospholipase [69,70]. In addi-
tion, cationic polypeptides, hydrophobic carbon chains, and ferric carrier chelates were
shown to enhance the ability to target bacteria [71,72]. Based on this, Chen et al. [73]
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designed a nanomaterial, mPET@DFeC, that enables macrophage targeting, intracellular
bacteria that trigger drug release, and real-time fluorescence monitoring. First, the AIE
fragment was introduced into the polymeric carrier Man-g-P(EPE-r-TPE) via copolymer-
ization, and then ciprofloxacin (CIP) and deferoxamine (DFO) were connected to obtain
the siderophore–antibiotic conjugate DFeC (improve the targeting of intracellular bacteria).
Then, Man-g-P(EPE-r-TPE) and DFeC were self-assembled to obtain the final nanoparticles
of mPET@DFeC. Because there is a fluorescence resonance energy transfer (FRET) effect be-
tween the polymer carrier containing the AIE fragment and the drug iron carrier conjugate,
the drug release process can be monitored in real time through changes in the fluorescence
emissions of the nanoparticles (Figure 3a). Second, mPET@DFeC can effectively enter
macrophages through mannose-mediated endocytosis and then achieve polymer degrada-
tion and DFeC release under the action of lipase and phospholipase secreted by intracellular
bacteria with strong specificity and no damage to normal macrophages (Figure 3b). Finally,
when DFeC is ingested by bacteria to realize sterilization, the FRET effect is stopped and the
AIE effect is restored, thereby realizing the fluorescence monitoring of intracellular bacteria
(Figure 3b).
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and mPET@DFeC nanoparticles. (b) mPET@DFeC nanoparticles are internalized into macrophages
via mannose-mediated endocytosis, followed by polymer degradation and DFeC release, which is
triggered by the intracellular lipase and phospholipase of infected macrophages. Adapted from [73],
copyright 2020, Elsevier Ltd.

In addition to loading drugs through the self-assembly of organic macromolecules,
antibiotics can also be loaded with the help of some existing carriers. Organic silica nanopar-
ticles can not only improve the drug loading rate, but also improve the biocompatibility of
materials by selecting suitable silica precursors, which are good drug carriers [13,74–76].
Inspired by the guiding role of surfactants in the preparation of nanoparticles, Yan et al. [77]
used the AIE molecule MeOTTVP as the framework and adopted the two-template assisted
one-pot method to prepare organic silica nanoparticles (AIE-ONs). This nanoparticle can
be added to doxorubicin (DOX) to realize the diagnosis and treatment of cancer. More-
over, the antibiotic rifampicin (RF) can be loaded to effectively treat bacterial infections
(Figure 4a). Subsequent antibacterial experiments further proved that AIE-ONs can use the
MeOTTVP fluorescence of the AIE molecule to achieve targeted imaging of S. aureus and
E. coli (Figure 4b). In addition, under the irradiation of white light, ROS produced by AIE
molecules and the loaded drug rifampicin can kill bacteria well, with a bactericidal rate of
up to 99.9% (Figure 4c).
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modifications for efficient theranostic in both tumours and bacteria. (b) CLSM images of S. aureus and
E. coli incubated with Ac-700-RF for 30 min. (c) Colony-forming unit (CFU) reduction of S. aureus and
E. coli treated with Ac-0-RF and Ac-700-RF with/without WL (24 mW cm−2, 10 min), respectively
(n = 3, mean ± SD), *: (p < 0.05). Adapted from [77], copyright 2022, Wiley-VCH.

In conclusion, nanomaterials constructed with AIE molecules and antibiotics can
greatly improve the therapeutic effects against bacterial infections. It not only avoids the
excessive use of antibiotics leading to bacterial resistance, but it also further improves the
antibacterial effect of AIE molecules alone, which is a promising therapeutic strategy.

4. Nanomaterials with AIEgen—Peptides for Antimicrobial Application

Antimicrobial peptides are considered to be ideal antimicrobial agents due to their
excellent broad-spectrum antibacterial activity and low drug resistance [51,78–80]. Al-
though antimicrobial peptides have good antibacterial effects against both gram-positive
and gram-negative bacteria, little is known about their bactericidal mechanisms [81–83].
Therefore, realizing a way to dynamically monitor the interaction between antimicrobial
peptides and bacteria is very important [84]. Traditional imaging techniques such as SEM
and TEM can only achieve static observation, not dynamic monitoring [85,86]. On the
contrary, fluorescence signal monitoring can realize not only dynamic observation but also
continuous monitoring [87,88]. The introduction of AIE fluorescent probes can effectively
solve this problem. Compared with the fluorescence quenching caused by the aggregation
of traditional fluorescent probes, the fluorescence signal of AIE fluorescent probes are
significantly enhanced during aggregation, which can allow for good tracer imaging on the
target [43].

Based on this, Chen et al. [89] introduced AIE fluorescent probe HBT into antimicrobial
peptide HHC36 to obtain the AIE active nanomaterial AMP-2HBT (Figure 5a). Subsequent
antibacterial experiments showed that the introduction of AIE fluorescent probes did not
damage the antibacterial activity of the antimicrobial peptides, and the growth of E. coli
was well-inhibited at the concentration of 20 µM (Figure 5b). In addition, as displayed
in Figure 5c, there was a strong green fluorescence signal on the surface of the bacterial
membrane, indicating that the antimicrobial peptides mainly adhered to the surface of the
bacteria and caused the internal nucleic acid or protein to leak by destroying the structure
of the bacterial membranes, thereby leading to the death of the bacteria. In conclusion, the
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combination of AIE molecules and antimicrobial peptides not only has a good bactericidal
effect, but the process can also be dynamically monitored in real time.
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Figure 5. (a) Schematic of AMP-2HBT for bacterial imaging and killing. (b) Left: antimicrobial ability
of HHC36 peptide and AMP-2HBT against E. coli at different concentrations (0, 10, 20, 50, and 100 µM);
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images of E. coli after treatment with AMP-2HBT. The TEM and SEM images of E. coli before and
after treatment with AMP-2HBT. Adapted from [89], copyright 2018, American Chemical Society.

Compared to external bacterial infections, the treatment of intracellular bacterial infec-
tions has always been a difficult problem. The combination of AIE molecules and peptides
can not only realize the imaging and sterilization of extracellular bacteria mentioned pre-
viously, but it can also have a good effect on the imaging and treatment of intracellular
bacterial infections. Qi et al. [90] designed a nano-probe, PyTPE-CRP, specific to casp-1 that
can be used for the imaging and treatment of intracellular bacterial infections by taking
advantage of the property that macrophages can recognize bacterial infections and induce
the activation of casp-1, as shown in Figure 6a. PyTPE-CRP is composed of two parts.
As a reactive part, CRP can cleave between amino acids Asp and Ala (red dotted line in
Figure 6a) during bacterial infections through the activation of casp-1 enzymes. The re-
sulting PyTPE-CRP residues spontaneously self-assemble into aggregates and accumulate
on macrophages containing bacteria. To achieve the specific imaging of bacteria-infected
macrophages, AIE fluorophore (PyTPE), in its molecular state, almost does not emit light,
but as an aggregate, it shows strong emission, which can realize the imaging and killing of
intracellular bacteria. As can be seen in Figure 6b, the fluorescent probes after lysis were
evenly distributed around the intracellular bacteria. Under the irradiation of white light,
the fluorescent probe after cracking produced a large number of ROS around the bacteria,
achieving photodynamic therapy against the bacteria (Figure 6c). At the concentration
of 20 µM, it had a good antibacterial effect on S. aureus, and the minimum inhibitory
concentration was as low as 15 µM (Figure 6d,e).

Most nanomaterials containing antimicrobial peptides kill bacteria directly, mainly by
producing ROS, heat, or by disrupting the structure of the bacterial membrane. Recently, a
new antimicrobial peptide, HD6, attracted attention [91–93]. Unlike traditional antimicro-
bial peptides, HD6 traps microbial pathogens through a network of self-assembled fibres,
thereby preventing their invasion [94]. Based on this, Fan et al. [95] constructed a bionic
analogue peptide, HDMP, which can simulate natural HD6 and achieve the self-assembly
process induced by the ligand–receptor interaction to achieve the purpose of bacterial
recognition and capture, as shown in Figure 7a. HDMP mainly consists of three parts
(Figure 7b). The bacterial targeting recognition part, RLYLRIGRR, can bind to the unique
component LTA in Gram-positive bacteria and has specific targeting ability. The peptide
skeleton, KLVFF, which mimics the fibre structure in HD6, forms a network of fibres that
capture bacteria. The last part is BP, which not only promotes the self-assembly of peptides
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into nanoparticles to improve the ability of intravenous drug delivery, but it also has the
AIE effect, which can monitor the distribution of antimicrobial peptides via fluorescence
in real time. From the perspective of antibacterial mechanisms, it first self-assembles into
nanoparticles in vitro and then binds specifically to bacterial walls, then transforming into a
fibre network, triggered by ligand–receptor interaction, to achieve the purpose of capturing
and inhibiting bacterial invasion. As can be seen in the SEM photo in Figure 7c, compared
with the blank control group, there were many fibre network adhesions on the surface of
bacteria in the experimental group, indicating that the HDMP nanomaterials successfully
realized the recognition and capture of bacteria. Further in vivo infection experiments
in mice also demonstrated that HDMP nanomaterials had a good therapeutic effect on
S. aureus abscesses and bacteraemia.
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Figure 6. (a) Chemical structures of the molecular structure of PyTPE-CRP and the process of
diagnosing and eliminating macrophage-mediated intracellular bacterial infections. (b) Confocal
images showing the localization of PyTPE-CRP 60 min after Raw 264.7 macrophages were infected
with S. aureus (MOI = 20). (c) Confocal images of ROS detection inside the macrophages using
DCF-DA after bacterial infection in the presence of PyTPE-CRP. (d) Intracellular survival of S. aureus
inside Raw 264.7 macrophages in the presence of PyTPE-CRP at different concentrations without
and with light irradiation for 10 min at 40 mW cm−2. (e) MIC of PyTPE-CRP towards extracellular
S. aureus without and with light irradiation (40 mW cm−2, 10 min). Adapted from [90], copyright
2019, Wiley-VCH.

In conclusion, the nanomaterials formed by antimicrobial peptides and AIE molecules
not only improve the antibacterial effect of the materials, but also do not easily produce
drug resistance. More importantly, the introduction of AIE molecules can give nanomate-
rials the function of real-time dynamic monitoring, providing a powerful tool for further
understanding the antibacterial mechanisms of nanomaterials.
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Figure 7. (a) Antimicrobial mechanisms of natural HD6 and artificial HDMP. (b) Schematic illustration
of HDMP assembly into nanoparticles, then into nanorods and nanofibers upon the incubation of
lipoteichoic acid. Schematic illustrations and SEM images of S. aureus treated with (c) HDMP NPs
(30 µM) and bare S. aureus (d), indicating that the HDMP NPs transformed into fibrous networks
and trapped the S. aureus. The SEM images are representative of three independent experiments.
Scale bar, 1 µm. (e) Images of S. aureus inoculated in the right leg muscle in mice in the presence and
absence of HDMP NPs (n = 6). (f) The representative hematoxylin and eosin (H&E) staining images of
the leg muscle tissue of mice, indicating that the HDMP NP-treated S. aureus did not induce bacterial
infection. Adapted from [95], copyright 2020, American Association for the Advancement of Science.

5. Nanomaterials with AIE Metal Complexes for Antimicrobial Applications

Metal-organic frameworks (MOFs) are widely used in drug delivery because of their
excellent loading capacity, easy removal, and low biotoxicity [92,96]. More importantly,
their adjustable chemistry gives MOFs multiple stimulation–response drug release proper-
ties (pH, magnetic field, ions, temperature, and light) to adapt to different physiological
environments [96,97].

Based on this, Mao et al. [98] developed a strategy for bacterial detection and treatment
by combining MOFs with metabolic labelling technology. First, MIL-100 (Fe) was selected
as the carrier of the metabolic marker molecule 3-azide-d-alanine (D-AzAla), which then
self-assembled with F-127 to obtain the composite nanomaterial D-AzAla@MIL-100, as
shown in Figure 8a. After intravenous injection of D-AzAla@MIL-100, the nanomaterial
can be enriched at the site of bacterial infection through the EPR effect. Subsequently,
under the action of H2O2 secreted by immune cells, MIL-100 (Fe) dissociates and releases
D-AzAla, which can then be specifically absorbed by bacteria in the infected area. During
this process, unnatural azide groups are be expressed on the bacterial wall to achieve
bacterial labelling (Figure 8b). Subsequently, selective fluorescent labelling and precise
sterilization were achieved via biological orthogonal reactions and PDT with the AIE
photosensitizer TPETM (Figure 8c). As shown in Figure 8e, compared to the blank group,
mice in the D-AzAla@MIL-100 pretreatment group showed stronger fluorescence images, a
longer half-life, and a significantly reduced number of bacteria infected at the wound site
(Figure 8e,f).
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such as AMPs [103]. Zheng et al. [104] combined the antimicrobial gold nanocluster 
AuDAMP with the antimicrobial peptide daptomycin Dap to produce a new 
antimicrobial nanocomplex (Figure 9). The conjugation of gold nanoclusters with AMPs 
in this compound results in AIE enhancement. The antibacterial mode of Dap mainly 
occurs through the lipophilic tail inserted into the bacterial cell membrane with the aid 
of calcium, causing rapid cell membrane damage and potassium ion efflux. Membrane 
damage encourages the introduction of antimicrobial compounds into the bacteria and 
leads to more severe bacterial damage at the subcellular level. This strategy provides a 
new perspective for the synthesis of novel antimicrobial agents and AIE-type fluorescent 
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Figure 8. (a) D-AzAla@MIL-100 (Fe) NPs are synthesized by using pluronic F-127 as a matrix to
encapsulate the D-AzAla@MIL-100 (Fe). (b) D-AzAla@MIL-100 (Fe) NPs accumulate at the site of
the infected tissue and are decomposed in the presence of H2O2. (c) Ultrasmall US-TPETM NPs
with dibenzocyclooctyne (DBCO) groups bind with bacteria through click reactions, and specific
tracking and effective photodynamic therapy (PDT) of bacteria can be achieved in the infected tissue.
(d) Chemical structure of TPETM. (e) Time-dependent in vivo fluorescence images of bacteria-bearing
mice pretreated with D-AzAla@MIL-100 (Fe) NPs. (f) Bacteria colony-forming unit (CFU) recovered
from the infected skin (average ± the standard error of the mean (SEM). Adapted from [98], copyright
2018, Wiley-VCH.

In addition, gold nanomaterials are widely used in the biomedical field because of
their excellent biocompatibility [99–101]. Notably, when the size of the gold nanomate-
rials is reduced to the subnanometer scale, these ultra-small Au NCs begin to take on
unique physicochemical and biological properties [102]. These properties make Au NCs
an excellent candidate for combination therapy with other antimicrobial agents, such as
AMPs [103]. Zheng et al. [104] combined the antimicrobial gold nanocluster AuDAMP with
the antimicrobial peptide daptomycin Dap to produce a new antimicrobial nanocomplex
(Figure 9). The conjugation of gold nanoclusters with AMPs in this compound results in
AIE enhancement. The antibacterial mode of Dap mainly occurs through the lipophilic tail
inserted into the bacterial cell membrane with the aid of calcium, causing rapid cell mem-
brane damage and potassium ion efflux. Membrane damage encourages the introduction
of antimicrobial compounds into the bacteria and leads to more severe bacterial damage at
the subcellular level. This strategy provides a new perspective for the synthesis of novel
antimicrobial agents and AIE-type fluorescent materials, and it provides a way to further
study the specific mechanisms behind the conjugation-induced AIE effect.
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6. Other Nanomaterials with AIEgen for Antimicrobial Applications

On one hand, related diseases caused by bacterial infection seriously threaten human
health [98,105–107]; on the other hand, some bacterial communities, such as gut microbes,
are essential to human health [91,108]. Therefore, we have pursued improvement of the
targeting and killing efficiency of antibacterial agents. Studies have shown that phages are
host-specific and can evolve synchronously to infect MDR bacteria [109–111]. However,
bacteriophages alone have low antibacterial efficiency, and it is ineffective against acute
infections and other severe infectious diseases [112]. In addition, due to the lack of imaging
fragments, the target identification, binding, infection, and other processes of phagocytic
therapy are not easy to monitor, and it is difficult to evaluate their therapeutic effects in
real time.

Therefore, He et al. [113] proposed a novel strategy to bind AIEgens to phages to form
a new class of antimicrobial bioconjugates (TVP−PAP) that are used to image and kill
specific species of bacteria, as shown in Figure 10a. Not only does this new antimicrobial
material retain the specificity of bacteriophage targeting, but the inherent fluorescence of the
introduced AIEgens (TVP) also allows real-time monitoring of bacteriophage interactions.
At the same time, the highly efficient photodynamic inactivation of TVP and the excellent
bacteria-targeting ability of PAP synergistically endow TVP-PAP with excellent bactericidal
effects, significantly exceeding the antibacterial effects of the two components individually.
As can be seen in Figure 10b, TVP-PAP staining for 30 min can bind well to P. aeruginosa
(host bacteria) to produce bright fluorescence, and staining efficiency is as high as 100%.
However, non-host bacteria A. baumannii did not stain all of them, indicating that TVP-PAP
can target bacteria accurately. Subsequent antibacterial experiments further proved that
TVP-PAP not only has a good bacteria-targeting ability, but it also has a good bactericidal
effect on host bacteria, with a selective bactericidal efficiency of up to 90% (Figure 10c,d).

As an inorganic nanomaterial, montmorillonite has been widely used in biomed-
ical fields, such as intestinal diseases, drug delivery, additive manufacturing, and so
on [114–118]. Because of its highly ordered lattice arrangement, it has a high cation ex-
change capacity and surface area; thus, it is a good drug transport carrier [104,119]. In
addition, studies show that MMT can absorb bacteria and bacterial enterotoxins well in the
body. However, in vitro, its antibacterial effect is very weak [120,121], and it is difficult to
meet the needs of clinical external infection treatment with it.
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Figure 10. (a) Cartoon illustration of the synergistic effect of AIEgen-modified phages for partic-
ularly specific bacterial recognition, real-time fluorescent tracking, phage infection, and synergis-
tic AIE–PDI bacteria-killing activity. (b) Specificity test of TVP-PAP by fluorescence imaging of
P. aeruginosa and A. baumanni coincubated with TVP-PAP. (c) P. aeruginosa and (d) A. baumanni (each
with 1.0 × 105 CFU mL−1) incubated together with TVP-PAP (1.59 × 106 PFU mL−1). Adapted
from [113], copyright 2020, American Chemical Society.

Therefore, Zhang et al. [81] developed an ultra-efficient photodynamic/chemokinetic
treatment platform by inserting the aggregation-induced emission (AIE) photosensitizer
TPCI into nanolayers of iron-containing montmorillonite (MMT). Here, the introduction of
iron atoms can achieve chemodynamic therapy and enhance the effect of photodynamic
therapy. Studies show that the site of bacterial infection has a microenvironment with a
low pH value and a relatively high endogenous hydrogen peroxide level. Therefore, iron
ions can convert the endogenous hydrogen peroxide with low activity into highly toxic
hydroxyl radicals under weak acid through the Fenton reaction, thereby inducing bacterial
inactivation. Therefore, the TPCI/MMT treatment system can not only carry out efficient
PDT through the production of singlet oxygen, but it can also continuously implement
CDT by converting endogenous H2O2 into highly toxic hydroxyl radicals, as shown in
Figure 11a. The generation of hydroxyl radicals and singlet oxygen was subsequently
verified with ESR spectroscopy (Figure 11b). The bactericidal effect of TPCI/MMT on E. coli
and S. aureus under white light was more than 99% compared to the blank control group
and the group receiving MMT alone (Figure 11c). In addition, it can be seen in the SEM
results that TPCI/MMT mainly kills bacteria by destroying the integrity of the bacterial
membrane structure (Figure 11d). Subsequently, the antibacterial effect of TPCI/MMT
was evaluated with an in vivo infected wound healing assay (Figure 11e). The results
showed that TPCI/MMT could effectively promote the healing of infected wounds and
significantly reduce the number of bacteria in infected tissues with good therapeutic effects
(Figure 11g,h).
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At present, the regulation of the antibacterial properties of AIE molecules is mainly 
realized based on the reasonable design of the positively charged molecular framework 
of AIEgen and specific recognition groups [21,90,122,123]. However, due to their limited 
molecular skeleton, the further improvement of the antimicrobial properties of AIE 
molecules is greatly restricted [42]. Here, Guo et al. [124] used AIEgen DTPM as the 
inner core and prepared a series of AIE nanofibers that could precisely regulate the 
antibacterial activity by reasonably designing peptides as the recognition system. The 
preparation process is shown in Figure 12a. First, AIE molecules are coated with 
amphiphilic molecules to improve the biocompatibility of the materials. Then, the 
designed peptides are introduced on the surface of AIE molecules via a maleimide–
mercaptan addition reaction to regulate the antibacterial activity of nanomaterials. 
Through mechanism analysis, it was found that this effect can be attributed to the 
combined action of ROS and antimicrobial peptides produced by AIE molecules, which 
had obvious synergistic antibacterial effects (Figure 12b). The antimicrobial activity of 
the materials can be precisely regulated by the modification of different antimicrobial 
peptides. It can be seen in Figure 12c that K18-modified nanofibers had the best bacterial 

Figure 11. (a) Schematic illustration of the proposed photodynamic/chemodynamic theranostic
platform based on TPCI/MMT for efficient bacterial eradication and fast wound healing. (b) ESR
spectra of TPCI/MMT for the detection of •OH (left) and 1O2 (right) with DMPO before and after
illumination. (c) The survival rate of (left) E. coli and (right) S. aureus treated with MMT (0.5 mg·mL−1)
and TPCI/MMT (0.5 mg·mL−1) with or without light irradiation (4 mW·cm−2). (d) SEM images
of E. coli bacteria treated with PBS, MMT (0.1 mg·mL−1), and TPCI/MMT (0.1 mg·mL−1). (e) The
schematic illustration of drug administration, light treatment, and wound evaluation regimens
toward P. aeruginosa-infected mice. (f) Representative images of infected skin wounds after various
treatments at different time points (0, 2, 4, 8, and 12 days). Scale bar: 50 mm. (g) Assessment of wound
healing rate. (h) P. aeruginosa bacteria colony removed from the wound area and cultured on LB agar
plates; images at days 2, 8, and 14. Adapted from [81], copyright 2022, American Chemical Society.

At present, the regulation of the antibacterial properties of AIE molecules is mainly
realized based on the reasonable design of the positively charged molecular framework
of AIEgen and specific recognition groups [21,90,122,123]. However, due to their lim-
ited molecular skeleton, the further improvement of the antimicrobial properties of AIE
molecules is greatly restricted [42]. Here, Guo et al. [124] used AIEgen DTPM as the inner
core and prepared a series of AIE nanofibers that could precisely regulate the antibacterial
activity by reasonably designing peptides as the recognition system. The preparation pro-
cess is shown in Figure 12a. First, AIE molecules are coated with amphiphilic molecules to
improve the biocompatibility of the materials. Then, the designed peptides are introduced
on the surface of AIE molecules via a maleimide–mercaptan addition reaction to regulate
the antibacterial activity of nanomaterials. Through mechanism analysis, it was found
that this effect can be attributed to the combined action of ROS and antimicrobial peptides
produced by AIE molecules, which had obvious synergistic antibacterial effects (Figure 12b).
The antimicrobial activity of the materials can be precisely regulated by the modification of
different antimicrobial peptides. It can be seen in Figure 12c that K18-modified nanofibers
had the best bacterial adsorption effect, followed by K14. In addition, from the bactericidal
effect, NFs-K18 also had a very good antibacterial effect (Figure 12d).
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Figure 12. (a) The synthesis of AIE-NFs with different peptides. (b) Schematic illustration of AIE-NFs
with different peptides. (c) The number of aggregated S. aureus in each cluster. * denotes p < 0.05,
** denotes p < 0.01, and *** denotes p < 0.001. (d) The in vitro antibacterial activity of the indicated
AIE-NFs to S. aureus. & denotes p < 0.01 compared to the blank group. Adapted from [124], copyright
2022, Wiley-VCH.

7. Summary and Perspective

AIEgen-based nanomaterials further enhance the antimicrobial effectiveness of AIEgens
with the introduction of other materials and the construction of nanoplatforms while re-
taining the advantages of AIEgens. In this review, novel antimicrobial nanomaterials
constructed from AIEgens with polymers, antibiotics, metal elements, peptides, and some
other materials in recent years are presented along with some of the antimicrobial strategies
involved. Finally, the types, sterilization methods, mechanisms, and application scenarios
of nanomaterials in different systems are summarized in Table 1.

Although these novel antimicrobial nanomaterials have made good progress in the
field of antimicrobial activity, there are still some challenges and issues to be further investi-
gated. One such issue is finding out how to further simplify the functionalised modification
steps of AIEgens and how to enhance the diversity of functionalised modifications to meet
the needs of a wider range of environments. A second challenge is to discover how to
make greater use of the advantages of AIEgen fluorescence imaging, how to apply it to the
enhancement of antibacterial performance, and how to reflect its superiority to traditional
antibiotics. In addition, there is the issue of how to resolve the difficulty in reaching infected
areas via laser in deep tissue phototherapy. Finally, the biocompatibility of various nanoma-
terials in clinical treatment and the issues related to in vivo retention and metabolism need
further validation. It is hoped that this review will inspire some inspiration for researchers
to do more excellent work and advance further research in this field.
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Table 1. Summary of the current progress of AIEgen-based nanomaterials for bacterial imaging,
detection, and therapy.

Serial
Number Type of Nanomaterial Protocol Application Reference

1 Nanoparticle of polymer-based
NIR-II AIEgens (PDTPTBT) NIR-II imaging-guided PTT Subcutaneous abscess and

diabetic skin infection [60]

2 Polymeric antimicrobial
catiomer-based AIEgens Electrostatic interaction Biodegradable antibacterial

agents and bacterial detection [62]

3 Zwitterionic polymer
nanoparticle-based AIEgens

Inactivation of bacteria by
generating ROS under acidic

conditions

Antibacterial under acidic
infection sites [112]

4 AIE nanoparticle by
self-assembly

PTT and PDT of pathogens by
producing 1O2 and heat

Accelerate S. aureus-infected
wound healing [125]

5
Nanomaterial based on MSNs
loading AMO, PGEDA, and

TPE-(COOH)4

Bacterial imaging and
antibacterial action with

TPE-(COOH)4 and release
of AMO

Antibacterial and
bacterial detection [126]

6 Nanoparticles with loading
ciprofloxacin and AIEgens

Accurate delivery of antibiotics
and dynamic monitoring Intracellular bacterial infection [73]

7
Organosilica nanoparticles

loading rifampicin and
NIR AIEgens

Imaging-guided synergistic
photodynamic/

antibiotic therapy
Bacterial imaging and killing [77]

8 Ciprofloxacin-based
nanodrugs with AIE

Bacterial imaging and
antibacterial action with
AIE-active luminogens

and drugs

Combating drug-resistant
bacterial infections [127]

9 AIE-active probe based
antimicrobial peptide (AMPs)

Real-time monitoring
bactericidal process

Investigation of the
bactericidal mechanism

of AMPs
[98]

10
AIEgen-peptide-based

fluorescent bioprobe specific to
caspase-1

Caspase-1 activation and
bacteria killing with ROS

Detection and elimination of
intracellular bacteria [90]

11
Human defensin-6 mimic
peptide (HDMP) based

AIEgens

Bacteria are trapped by fibrous
networks and monitoring MRSA-induced bacteraemia [95]

12 MIL-100 (Fe) nanoparticles
loading D-AzAla

Bacteria metabolic labelling
and precise bacteria killing

with PD

Precise bacterial detection
and therapy [98]

13 Conjugating gold nanoclusters
and daptomycin

Destroy the bacterial
membrane and DNA with

daptomycin and ROS
MDR bacterial infection [104]

14
A tetraphenylethylene-based
discrete organoplatinum (II)

metallacycle

Photodynamic inactivation
with ROS generation and

strong
membrane-intercalating ability

Control of bacterial infections,
especially for

Gram-negative bacteria
[128]

15 AIE bioconjugate-based phage
Specifically targets, infects, and

kills bacteria via phages
and ROS

Antibiotic-sensitive and MDR
bacteria-infected wounds [113]

16 AIEgen intercalated
nanoclay-based

Photodynamic/chemodynamic
theranostics by generating 1O2

and •OH

P. aeruginosa-infected
subcutaneous wounds [81]

17 Peptide-engineered AIE
nanofibers

Synergistic antibacterial
activities of the ROS

and peptides

Precise adjustment of
antibacterial activities and

bacterially infected
wound healing

[124]

18 AIEgen-loaded nanofibrous
membrane

Sunlight-triggered
photodynamic/photothermal

antipathogen

Interception of pathogenic
droplets and aerosols [129]

19
Nanoparticles-based
nanographene oxide

and AIEgen

Photothermal/photodynamic
synergistic antibacterial Bacterial tracer and killer [130]
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