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Abstract: In the realm of nanoparticles, metal-based nanoparticles have traditionally been regarded
as the pioneering category. Compared to other nanoparticles, zinc oxide nanoparticles have several
advantages, including optical and biological properties, which provide them a significant compet-
itive advantage in clinical and biological applications. In the current investigation, we used an
aqueous Mangifera indica seed extract to synthesize nanoparticles of zinc oxide (ZnO NPs). UV-Vis
spectroscopy, Fourier transform infrared spectroscopy analysis, atomic force spectroscopy, X-ray
diffraction, scanning electron microscopy, and transmission electron microscopy were used to char-
acterize the synthesized ZnO NPs. The nanoparticles were assessed for their potential to inhibit
bacterial growth and protect cells from free radical damage. According to the current study’s findings,
zinc oxide nanoparticles that had been modified with the aid of mango seeds were very efficient in
preventing the development of the tested bacteria and were also powerful antioxidants.

Keywords: nanotechnology; ZnO NPs; biofabrication; antioxidant; antibacterial activity

1. Introduction

Nanotechnology has been gaining attention recently as a potential platform for future
growth in several fields. Nanotechnology has drawn significant attention in the health-
care, engineering and food industries by offering novel prospects in the respective fields.
In particular, theranostics, a cutting-edge combination system of therapeutics and diag-
nostics, utilize nanotechnology principles for target-specific drug delivery and enhanced
bioavailability of active pharmaceutical ingredients [1,2]. The field of nanotechnology deals
with various synthesis methods, particle size reformations and structural variations of
nanoparticles. Nanoparticles are nanosized materials ranging in size <100 nm with high
thermal stability, high surface-to-volume ratio, high electrical, mechanical, optical as well
as magnetic properties [3].

In the last decade, the use of nanoparticles has been the most significant archetype
advancement in engineering, medicine and technology [4]. Nanoparticles may be classified
as organic and inorganic nanoparticles. While metals and metal-derived oxide nanoparticles
come under the inorganic nanoparticles classification, organic nanoparticles include solid
lipid nanoparticles, polymeric nanoparticles, lipid-based nanocarriers, liposomes and
carbon-based nanomaterials [5]. Metal nanoparticles are promise for site-specific drug
administration, clinical diagnostics, bio-imaging, dental implants, and biomedicine due
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to their selectivity, sensitivity, optical, and electrical capabilities [6,7]. The method used to
synthesize metal nanoparticles is an important key factor. Synthesis of metal nanoparticles
may be accomplished using a wide variety of physical and chemical methods, including sol-
gel, chemical reduction, hydrothermal, laser ablation, ion sputtering, etc., [8,9]. However,
these methods encounter many downsides, including cost-expensive, instrumentations,
skilled labour and environmental toxicity. Therefore, the green synthesis method has
become an optimal method of choice for nanoparticles, wherein plants and microorganisms
are used [9,10]. Furthermore, the green synthesis method of nanoparticle preparation has
been considered eco-friendly and safer due to its stabilizing and reducing potentials [10].
Many different metals, including silver (Ag) [10], gold (Au) [11], copper (Cu) [12] and
trace elements [13], have been used as reduction and coating agents for the fabrication of
nanoparticles. Nevertheless, Ag, Au and Cu nanoparticles have been reported for their
toxicity and consequent limit in clinical applications [10–12].

Zinc oxide (ZnO) is a rare, inorganic metallic oxide that has received significant
attention as a safe, biocompatible and economical material. US FDA has approved ZnO as
the safest metal oxide [14]. Zinc is best recognized for maintaining protein and nucleic acid
interactions in cells and tissues. As compared to other physiologic metals like iron, cobalt,
and manganese, ZnO’s chemical stability is far superior [15]. Zinc oxide nanoparticles (ZnO
NPs) possess a wide range of engineering applications, such as catalysis, a piezoelectric
device, pigments, chemical sensors, bio-molecular detection, diagnostic, cosmetic material
and especially for UV protection [16–22]. Additionally, ZnO NPs have been demonstrated
to possess anticancer, antimicrobial, anti-inflammatory and antidiabetic properties [23–26].
As ZnO is considered safe and exhibits significant antimicrobial properties, it has the
potential against infectious diseases [26]. On exposure to metal nanoparticles, the bacterial
cell membrane undergoes depolarization due to adsorption, resulting in permeability
changes in the bacterial cell wall. Further, the changes lead to the free radical formation
and thus cause membrane damage resulting in antibacterial or bactericidal activity [27,28].

Green nanotechnology has originated from green chemistry, which seeks to synthesize
metal nanoparticles using medicinal plants. Medicinal plants are reliable sources of several
chemical components needed to synthesize metallic nanoparticles [29], viz. polyphenols,
flavonoids, alkaloids, terpenes, etc., which act as potent agents to reduce the metal from
ionic state into its respective oxide forms during the process [8,30]. Phytochemicals found
in medicinal plants have replaced the reducing agents’ sodium citrate, ascorbate and
sodium borohydride in the chemical manufacturing technique of nanoparticles. As a
result, the potentially harmful effects of chemical-reducing agents on the environment
will be mitigated [29,31]. As a result, scientists are increasingly interested in developing
methods for creating metal-based nanoparticles from plant extracts that are benign to the
surrounding ecosystem.

The biosynthesis of ZnO NPs has been shown utilizing several plant extracts, including
Lobelia leschenaultiana [32], Agathos mabetulina [33], Laurus nobilis [34], Moringa olifera [35],
Acalypha indica [36], Aspalathus linearis [37], Carica papaya [38], green tea leaves [39], Euphor-
bia jatropa latex [40], Andrographis paniculata [41], Chamaecostus cuspidatus [42]. Compared to
the above sources, the advantage of preparing ZnO NPs using mango seed extracts has
been cost-effectiveness, as rinds and seeds are considered waste materials. However, the
mango seed powder contains protein, oil, crude fiber and carbohydrate and is also enriched
in potassium, magnesium, phosphorus, calcium and sodium. Non-essential amino acids
such as arginine and glutamic acid and essential amino acids such as valine and pheny-
lalanine are also present. In addition, it has other vitamins, including different Vitamin
B (1, 2, 6 and 12), Vitamin C and Vitamin K. The nutritious value of mango seed powder
is much higher [43]. Mangoes were used in the synthesis of zinc oxide nanoparticles, an
economically and ecologically sound breakthrough [44,45]. Hence, our work synthesized
ZnO NPs using mango seed extract. The structure and shape of synthesized ZnO NPs
were investigated using a variety of techniques, ultraviolet-visible spectroscopy (UV-vis.),
Fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy
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(SEM), transmission electron microscopy (TEM), and including atomic force microscopy
(AFM). The antibacterial and antioxidant activities of ZnO NPs that were produced through
green synthesis have also been investigated.

2. Results
2.1. UV-Visible Spectroscopy

As shown in Figure 1, ZnO NPs prepared with mango seeds powder were recorded
using UV-Visible spectroscopy. UV-Visible spectra measurements were carried out at
various time intervals of 4, 12 and 24 h. The absorbance of ZnO NPs rose gradually over
23 h, as evidenced by a linear relationship between the first value and subsequent readings
performed at 1 h 13 min, 3 h 35 min and 19 h 12 min. The formation of ZnO NPs was
confirmed by the observation of maximal absorbance at 480 nm, which is the typical
wavelength for this formation. The observed UV spectrum around 450 nm indicates that in
the reduction process, the semiconducting property of ZnO has not been lost [46].
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Figure 1. UV-Visible Spectrum of synthesized ZnO NPs using Magnifera indica seed extract.

2.2. FT-IR Spectroscopy

Characterization and an explanation of the functional groups involved in the synthesis,
reduction, and stabilization of ZnO NPs were accomplished with the assistance of FT-IR
spectroscopy. As shown in Figure 2, ZnO NPs may be mediated by extracts from mango
seeds. Specifically, a prominent peak was detected at 3336.85 cm−1, analogous to the
stretching vibration of −OH and –NH2 groups. These functional groups could be produced
from the water and mango seed extract [8]. Further, another broad peak was observed
at 2924.09 cm−1, corresponding to the carboxylic group’s O-H stretch. This peak can be
seen in the spectrum. The peak at 1658.78 cm−1, which coincides with the C = O stretch
that the ketone group has. The N = O bend of nitro groups is related to a peak located
at 1352.10 cm−1, and peaks at 1203.58 cm−1 and 1020.34 cm−1, are associated with the
C-O stretch of ester and ether groups, respectively. The peaks associated with aromatic
groups are located at 825.53 cm−1, 754.17 cm−1, and 416.62 cm−1. Although numerous
studies have reported using plant extracts for metal nanoparticle synthesis, the mechanism
of bio-reduction is still elusive. On the other hand, the phytochemicals that are present
in the plant source are the ones that are thought to be responsible for the nanoparticles’
reduction and stabilization [14,46]. In agreement, we speculate in the present study that the
phytochemicals, such as polyphenols, flavonoids, and carotenes found in the seed extract,
might be deeply involved in the bio-reduction of the nanoparticles [42,43].
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Figure 2. FT-IR spectrum of synthesized ZnO NPs using M. indica seed extract.

2.3. Scanning and Transmission Electron Microscope (SEM)

The SEM was used in order to investigate the ZnO NPs’ morphology. Mango seeds
mediated ZnO NPs surface morphology is seen in Figure 3. ZnO NPs powder was kept
in a carbon-coated copper grid. The SEM image (Figure 3a) shows the presence of spher-
ical, cylindrical, rectangle and triangle shape clustered nanoparticles with narrow size
distribution. The images were captured at different magnifications of 27,000×, 44,000×,
49,000×, and 66,000×. Nanoparticles agglomerated, perhaps owing to mango seed extract
phytoconstituents. The size of the nanoparticle was found to be approximately between
40 to 70 nm. Figure 3b shows TEM analysis of green synthesized ZnO NPs to confirm
particle size. TEM confirmed that M. indica seed extract-mediated ZnO NPs were 40–60 nm.
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2.4. EDAX Analysis

Figure 4 shows the ZnO NPs’ EDAX elemental composition. Here, the seed-mediated
ZnO NPs shows signals of Zinc, Oxygen and Carbon, as shown in the tabular column
(Table 1). EDAX analysis also helps to identify the presence of any other compounds. It
displays the energy in KeV. Furthermore, the EDAX spectra also help in confirming the
pureness of the ZnO NPs synthesized from mango seed extract.
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Table 1. Elements present in the nanoparticles.

Element Weight% Atomic%

C K 64.58 74.14

O K 28.25 24.35

Zn K 7.16 1.51

Totals 100.00

2.5. XRD Study of Generated ZnO NPs

The XRD pattern of the synthesized ZnO NPs is shown in Figure 5. ZnO NPs were
synthesized from mango seed extract, and their structure was characterized by XRD
analysis. Analysis of ZnO NPs by XRD showed six different peaks between 10 and 90◦

in the 2θ value. The obtained ZnO NPs pattern was consistent with the XRD pattern
published by the Joint Committee on Powdered Diffraction Standards (JCPDS file no: 85-
1355). Meanwhile, peaks were shown with 2θ values of 31.4◦, 34.0◦, 35.9◦, 47.1◦, 56.2◦, 62.5◦

and 68.7◦ which corresponds to (100), (002), (101), (102), (110), (103) and (200) respectively.
ZnO NPs synthesized from Andrographis paniculate, Chamaecostus cuspidatus and Agathosma
betulina showed an identical XRD pattern [33,41,42].
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2.6. Atomic Force Microscopy (AFM)

In Figure 6, the 3D images obtained by the AFM are reported. The outcome provided
2D and 3D imaging of biosynthesized ZnO NPs, revealing their average size to be 55 nm
and their spherical form (Figure 6).
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2.7. Antibacterial Activity

The antibacterial activity of ZnO NPs that had been aided by mango seed extract
against Bacillus subtilis and E. coli was studied (Figure 7). Previous research indicated
that ZnO NPs demonstrated strong antibacterial action against a wide variety of microor-
ganisms [14,45–47]. In agreement, the present study results also exhibited a significant
inhibitory effect against the tested pathogens, compared with standard antibiotics. Earlier
studies have also shown the ZnO NPs bactericidal activity, indicating that the nanoparticle
can completely kill the bacteria [48]. Nevertheless, our study showed that ZnO NPs pre-
pared from mango seed extract possess bacteriostatic properties. Both the tested organisms
exhibited a minimum inhibitory concentration (MIC) at 10 µL. The inhibitory effect is
indirectly proportional to the size of the nanoparticle. The smaller size of the nanoparticles
the greater will be the inhibitory effect [49].
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2.8. Antioxidant Activity

The DPPH experiment assessed ZnO NPs’ antioxidant capabilities. The experimental
methodology used 0.1 mM DPPH solution to examine ZnO NPs at 10, 20, 30, 40, and
50 µg (Figure 8). After mixing the solutions together, they were left to sit for 30 min at
room temperature and out of the light. After that, absorbance and optical density were
both obtained at a wavelength of 517 nm. The reference standard used in this assay was
Ascorbic acid. According to the results, the level of DPPH inhibition dramatically increased
whenever there was a higher concentration of ZnO NPs. The results that were acquired
revealed that the ZnO NPs that were produced had powerful antioxidant capabilities.
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3. Materials and Methods
3.1. Mango Seed Extract Preparation

Raw mangoes were purchased and used as a source for harvesting mango seeds. The
mango’s endocarp part (seed part) was cut into smaller pieces and shade dried for 5–7 days
in Nanobiomedicine Lab, Saveetha Dental College and Hospitals, India. The shade-dried
mango seed was ground into coarsely powdered form. A conical flask containing 100 mL
of distilled water and 1 g of powdered mango seed. It was continuously stirred using a
magnetic stirrer up to 600 rpm. After that, it was placed in the heating mantle at 70 ◦C and
heated for 15–20 min until the hard powder became soft and mushy. Whatman No.1 filter
paper was used to filter the fluid. Figure 9 depicts the steps required to make mango seed
aqueous extract.
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3.2. Zinc Oxide Nanoparticle Synthesis

A 10 mM Zinc nitrate solution was added to 75 mL of distilled water. To that, 25 mL
of the ready-to-use seed extract was added, and everything was mixed well. At 30 ◦C,
the solution combination was maintained in an orbital shaker for 15 h. ZnO NPs formed
when the solution’s colour changed from white to dark brown after 15 h (Figure 10). The
solution was then centrifuged at 8000 rpm for 20 min. After the centrifugation process, the
supernatant was discarded, and the pellet was washed twice with deionized water in order
to eliminate any remaining residual contaminants. After that, the pellet was extracted from
the centrifuge and kept in an oven with heated air at a temperature of 80 ◦C. Upon drying,
the pellet was ground into a powder. This ZnO NPs powder was used for further SEM,
EDX, AFM, XRD and FT-IR investigation.
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3.3. ZnO NPs Characterization

In order to evaluate the UV absorption spectra of the ZnO NPs that were created, a
Shimadzu UV spectrophotometer was used to measure the spectrum from 300 to 800 nm.
This was done so that the spectra could be used to calculate the UV absorption spectra.
An FT-IR spectrum was recorded with a BRUKER alpha 2. In order to determine the
nanoparticles’ X-ray diffraction (XRD) pattern, XPERT PRO, PANalytical XRD was used.
Using a JEOL-JSM IT 800 model, we performed the SEM-EDAX analysis. Atomic force
microscopy (AFM) was used in order to investigate the synthesized ZnO NPs for their size
and surface roughness (Nanosuf AGG Switzerland).

3.4. Antioxidant Activity

According to the findings of Koleva et al. [50], the 2,2-diphenyl-1-picrylhydrazyl
(DPPH) test was used to evaluate the ZnO NPs’ capacity to scavenge free radicals. A
DPPH solution of 150 µM in 100 mL of methanol was made. For this experiment, 190 µL of
DPPH solution was combined with 10 µL of the synthesized ZnO NPs and varying doses of
standard ascorbic acid (10–50 µg/mL). The liquid was let to rest at room temperature and
in the dark for 30 min. Instead of a sample or standard, 200 µL of methanol was used in the
control blank. The maximum absorbance was found to be at 517 nm. ZnO NPs’ ability to
scavenge DPPH radicals was calculated using the following formula.

% free radical scavenging effect = [(Control absorbance − Test absorbance)/Control absorbance] × 100

3.5. Antibacterial Activity

Gram-positive B. subtilis and Gram-negative E. coli strains were used in an experiment
to test the antibacterial activity of synthesized ZnO NPs. The experiment was conducted
using the agar well diffusion method [41]. The nutritional broth was contaminated with the
clinical pathogens and cultivated for a whole day at 37 ◦C. Cotton swabs made from sterile
material were used to apply a suspension of the organisms to be tested on Mueller-Hinton
agar (MHA) plates that had been prepared using aseptic methods. With a clean borer, four
holes were drilled in each MHA plate. Then, 50 µL of precursor, 50 µL of ZnO NPs and
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15 µL of ampicillin were introduced into the bored wells. Afterward, plates were incubated
at 37 ◦C for 12 h. A distinct zone of inhibition surrounded each well after incubation, which
could be measured with the ruler.

3.6. Statistical Analysis

The value of antioxidant activity was expressed in terms of Mean ± SE for three inde-
pendent experiments. One-Way ANOVA followed by Tukey post hoc multiple comparison
tests were performed to compare and evaluate the data with p ≤ 0.05 considered to be
significant.

4. Discussion

Green nanotechnology employs medicinal plants for the synthesis of metal as well as
other nanomaterials that have the potential to be used in the identification and treatment
of various diseases/disorders. Metal nanoparticles synthesized from medicinal plants,
microbes and other food sources have been shown to be safe and economical. However,
environmental sustainability is a concern due to the load on global food security and the
scarcity of natural resources [51]. In this context, researchers have initiated to utilize the
biowaste materials from various plant and fruit sources to synthesize metal-based and
metallic oxide nanoparticles. Several ways for generating ZnO NPs utilizing various plant
extracts have been established by researchers [32–42]. We report here on the large - scale
production of ZnO NPs by using an aqueous extract of mango seed powder as the raw
material. The ZnO NPs were produced by combining a zinc nitrate solution combination
with an aqueous extract of mango seeds as the phytoconstituents throughout the synthesis
process. The solution’s colour dramatically altered after being incubated for a certain
amount of time. The shift in hue is attributed to the production of ZnO NPs and the
resulting surface plasmon resonance from the collective excitation of free electrons in the
NPs. The qualitative phytoconstituent analysis of aqueous mango seed extract showed the
presence of polyphenols, tannins, flavonoids and terpenoids, which might be attributed
as responsible for biological properties. These phytochemicals found in the mango seed
aqueous extract may also be liable for reducing the Zinc ions to zinc oxide and, thus,
nanoparticle preparation.

In this work, we used green synthesis, an environmentally friendly approach to create
ZnO NPs from fruit biowaste. A zinc nitrate solution was combined with an aqueous
extract of mango seeds in order to produce ZnO NPs. This method was determined to be
cheap, quick and safe for the environment. In a previous investigation, ZnO NPs were
synthesized using the seeds of the longan fruit. The seed was found to be enriched in
catechin and flavonoids [52]. The current investigation also employed Mango seed extract
to produce ZnO NPs. The findings demonstrated the emergence of ZnO NPs. ZnO NPs
formation was originally seen as a colour shift in the metal solution upon addition of mango
seed extract; this observation was subsequently confirmed using further physicochemical
techniques. Absorption spectra at 480 nm, typical of ZnO NPs, were observed through
UV-Vis spectroscopy. Previous research also reported the UV-Visible absorption peak up to
381 nm using Pomegranate extract [53].

The FT-IR analysis demonstrates the presence of carboxylic, ketone, nitro, ester and
ether groups. The XRD analysis predicts seven prominent peaks. The SEM data indicate
the presence of spherical and cylindrical nanoparticles between the size range of 40–70
nm and a few rectangular and triangular particles. Recently, a study by Rini et al. (2021)
reported that ZnO NPs synthesized using Ananas comosus peel extract had a spherical
shape [54]. The findings of EDAX indicate the existence of carbon, oxygen and zinc. The
morphology of the nanoparticle’s surface is studied using an AFM. In addition, data on the
size and surface roughness of the produced nanoparticles are provided. The TEM analysis
identified the nanoparticle’s shape as spherical and the size ranging from 40–60 nm. It was
reported in a prior research that the average size of the ZnO NPs that were synthesized
using Azadirachta indica extract was 9.6–25.5 nm, and that their form was spherical [55]. The



Molecules 2023, 28, 2818 12 of 15

AFM may be used to take 3D images without causing any damage. The AFM data indicated
that the nanoparticles were present in the spherical form [56]. Furthermore, the mango
seed extract-assisted ZnO NPs have been demonstrated to possess potent antibacterial and
antioxidant properties, as observed from agar well diffusion assay and DPPH free radical
scavenging assay.

Even while research has shown that ZnO NPs has a powerful antioxidant capacity, the
method by which this occurs is still a mystery. During the green synthesis of nanoparticles,
the functional groups of the phytoconstituents have been shown to form a linkage with
the ZnO. This linkage may improve the potential of ZnO NPs in free radical scavenging ef-
fect [57]. The high redox potential of the ZnO breaks the water molecules into hydroxyl and
hydrogen radicals, stabilizing the DPPH free radicals and inhibiting the DPPH effect [58].
According to the findings, there was a considerable increase in the inhibitory capacity of
ZnO NPs against the DPPH free radicals that was dose-dependent. It may be deduced from
this that the ZnO NPs that were manufactured using the mango seed extract exhibited a
substantial amount of antioxidant activity. Furthermore, as was previously indicated, the
phytoconstituents’ functional groups adsorbing onto the nanoparticles’ surfaces might be a
contributing cause to their inhibitory action on free radicals [59].

One of the most significant issues in the medical field is the incorrect and excessive
use of antibiotics, which results in antimicrobial resistance. The persistent emergence of
bacterial resistance has raised the need for novel antibiotics. Metal nanoparticles, which
have been reported to have potent antibacterial action in a majority of investigations, are
considered among the promising as well as novel antibiotic agents [27,28]. Production of
new biomedical implants involves the use of metallic nanoparticles in order to prevent
any bacterial infections [59]. As a result, one of our goals was to determine whether or not
the ZnO NPs that we had manufactured using mango seed extract have any antibacterial
properties. In the present experiment, it was discovered that the ZnO NPs that were
artificially manufactured have a substantial antibacterial activity. ZnO NPs have been
shown to inhibit bacterial growth via a variety of distinct methods, which has led to its use
in antibacterial applications. According to a number of studies, metal nanoparticles have
the ability to physically interact with the cell wall of bacteria, as well as with sub-cellular
components [60]. On exposure to metal nanoparticles, the bacteria’s cell wall undergoes
membrane damage due to the adsorption of metal oxide on the cell wall.

The negatively charged surface of the bacteria stimulates electrostatic interactions
between strong positive charges such as ZnO (>9) with high isoelectric points [58]. This
results in the membrane depolarization effect, which alters the cell wall’s permeability,
allowing an easier penetration of the nanoparticles and producing reactive oxygen species
(ROS) inside the bacterial cell. The increased ROS production eventually causes oxidative
stress and elevates lipid peroxides, thereby degradation of macromolecules and resulting
in cell death [61,62]. Ion leaching is another proposed mechanism for the antibacterial
effect of metal nanoparticles. The pH and rate of dissolution of ZnO NPs have also been
shown to cause inhibition in bacterial cell growth [28,63]. Further, it was also reported that
spherical-shaped nanoparticles could easily penetrate the cell wall of the bacteria, thus
resulting in cellular membrane damage [48].

5. Conclusions

In conclusion, our findings have provided new insights into the biomedical applica-
tions of biowastes, such as seeds or peels of medicinal plants, in the preparation of metal
nanoparticles. This work showed that ZnO NPs synthesized with the aqueous mango
seed were efficient against tested clinical pathogens and exhibited considerable antioxidant
activity. The seed-mediated nanoparticles show very good antimicrobial potential against
Gram-negative and Gram-positive bacterial isolates, viz., B. subtilis and E. coli. Therefore,
it is possible to propose that this technique of synthesizing nanoparticles by employing
plant extracts may assist in discovering new unique active pharmaceutical components and
heal the sickness, considering the high nutritional content and cost-effectiveness. However,
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before clinical investigations can be carried out, it is necessary to conduct in vitro toxicity
tests using human cells as well as in vitro and vivo models.
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