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Abstract: The fruit of Rosa laevigata Michx. (FR), a traditional Chinese herb utilized for the treatment
of a variety diseases, has notably diverse pharmacological activities including hepatoprotective,
anti-oxidant, and anti-inflammatory effects. Despite ongoing research on illustrating the underlying
anti-inflammatory mechanism of FR, the principal mechanism remained inadequately understood.
In this study, we investigated in depth the molecular mechanism of the anti-inflammatory actions of
the ethanol extract of FR (EFR) and its potential targets using lipopolysaccharide (LPS)-stimulated
RAW 264.7 macrophages in vitro. We showed that EFR effectively ameliorated the overproduction
of inflammatory mediators and cytokines, as well as the expression of related genes. It was further
demonstrated that LPS-induced activation of nuclear factor kappa B (NF-κB) and mitogen-activated
protein kinases (MAPKs) were significantly inhibited by pretreatment with EFR, accompanied by a
concomitant decrease in the nuclear translocation of the p65 subunit of NF-κB and activator protein 1
(AP-1). In addition, EFR pretreatment potently prevented LPS-induced decreased phosphorylation
of adenosine monophosphate-activated protein kinase (AMPK). Our data also revealed that the
activation of AMPK and subsequent inhibition of the mammalian target of the rapamycin (mTOR)
signaling pathway was probably responsible for the inhibitory effect of EFR on LPS-induced inflam-
matory responses, evidenced by reverse changes observed under the condition of AMPK inactivation
following co-treatment with the AMPK-specific inhibitor Compound C. Finally, the main components
with an anti-inflammatory effect in EFR were identified as madecassic acid, ellagic acid, quinic acid,
and procyanidin C1 by LC–MS and testified based on the inhibition of NO production and inflam-
matory mediator expression. Taken together, our results indicated that EFR was able to ameliorate
inflammatory responses via the suppression of MAPKs/NF-κB signaling pathways following AMPK
activation, suggesting the therapeutic potential of EFR for inflammatory diseases.

Keywords: EFR; LPS; anti-inflammatory; AMPK/MAPK/NF-κB cascade

1. Introduction

Inflammation is a complex pathophysiological response against tissue injury and
infectious pathogens. Activated macrophages are known to play pivotal roles in mediating
several immunopathological conditions by inducing the release of inflammatory mediators,
such as nitric oxide (NO) and prostaglandin E2 (PGE2), and cytokines including tumor
necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 [1]. However, hypernomic inflam-
mation, mainly characterized by the overproduction of these immunosignaling molecules,
has been proven to be deleterious and involved in the pathogenesis of various inflam-
matory diseases, for example arthritis, neurodegenerative diseases, and even cancer [2,3].
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Herein, developing efficient drugs from natural derived extracts/compounds that could
block the production of these inflammatory mediators and cytokines would be a promising
therapeutic strategy for inflammatory diseases.

The LPS-stimulated macrophage model has been widely used for evaluating the anti-
inflammatory activities of various synthetic or naturally derived substances in vitro [4,5].
LPS treatment causes the activation of several intracellular signaling pathways containing
the I kappa B kinase (IKK)/NF-κB pathway and the MAPK pathway, and subsequent
activation of a series of transcription factors containing NF-κB and AP-1, which mediate
the expression of genes that encode inflammatory mediators and cytokines [6–8]. NF-κB
plays a critical part in the regulation of immune responses. Under unstimulated conditions,
NF-κB is retained in the cytoplasm in an inactive form by interaction with inhibitor κBα
(IκBα) [9]. Upon stimulation with LPS, NF-κB is activated via the phosphorylation of IKKs,
which in turn promotes the phosphorylation and ubiquitin-dependent degradation of IκBα,
resulting in the translocation of NF-κB into the nucleus, where it binds to the κB sites
in the promoter regions of multiple genes and enhances the production of inflammatory
mediators and cytokines [10]. The activation of NF-κB is also regulated by the MAPKs,
consisting of c-Jun N-terminal kinase (JNK), p38 MAPK, and extracellular-regulated protein
kinase (ERK), which modulate another transcriptional regulator AP-1 by phosphorylation,
ultimately leading to aggravated inflammatory reactions [11–13]. In addition, several
intracellular kinases, such as AMPK, phosphatidylinositol 3-kinase (PI3K), and protein
kinase B (AKT), have been implicated in the transcriptional regulation of inflammatory
genes [14,15]. Hence, the suppression of inflammatory gene expression via the above
and other cellular kinases or signaling pathways should be an efficacious strategy for the
development of anti-inflammatory therapeutic drugs [14,16].

Rosa laevigata Michx., a famous medicinal plant belonging to the Rosaceae family, is
mainly distributed throughout southern China. Its fruit, known as a commonly used
traditional Chinese medicine, is widely used to treat chronic cough, frequent micturition,
hyperpiesia, and dermatologic diseases [17,18]. Previous studies have demonstrated that
the fruit has a variety of medicinal values and health benefits including anti-oxidant, hepato-
protective, and anti-inflammatory activities [19–21]. Nevertheless, among them, to the best
of our knowledge, the principle mechanism of the anti-inflammatory properties remains
unclear. Therefore, the aim of the present study is to further evaluate the anti-inflammatory
effect of EFR and provide key insights into the potential mechanism underlying its actions.

2. Results
2.1. EFR Inhibits LPS-Induced Production of NO and PGE2 via the Suppression of iNOS and
COX-2 Expression

The NO inhibitory effect specially serves as a measure for estimating the effective-
ness of anti-inflammatory agents [22]. To investigate the anti-inflammatory effect of EFR,
we determined the nitrite concentration in the cultured media in LPS-stimulated RAW
264.7 macrophages. As shown in Figure 1A, EFR markedly reduced NO production,
which was measured as nitrite concentration and resulting from LPS treatment in a dose-
dependent manner. In addition to NO, the level of PGE2 was also significantly decreased
by EFR pretreatment in LPS-stimulated RAW 264.7 macrophages in a dose-dependent
manner (Figure 1B). Further MTT assay indicated that EFR had unapparent cytotoxicity at
concentrations ranging from 0 to 200 µg/mL (Figure 1C). iNOS and COX-2 are two vital
enzymes for the synthesis of NO and PGE2, respectively [16]. As can be seen in Figure 1D–F,
both protein and mRNA expressions of iNOS and COX-2 induced by LPS were prominently
inhibited by EFR pretreatment in a dose-dependent manner. These results demonstrated
that the inhibitory effect of EFR on the production of NO and PGE2 was probably attributed
to transcriptional down-regulation of iNOS and COX-2 genes, not cytotoxic effect.
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Figure 1. Effect of EFR on LPS-induced NO and PGE2 production and iNOS and COX-2 expres-
sion in RAW 264.7 macrophages. RAW 264.7 macrophages were pretreated with EFR (10, 100, and
200 µg/mL) for 2 h and then stimulated with or without LPS (1 µg/mL) for 24 h. (A) The nitrite
concentration in the cultured media was determined as an indicator of NO production by Griess reac-
tion. (B) PGE2 production in the cultured media was determined by ELISA. (C) The cell viability was
determined by MTT assay. (D) The protein levels of iNOS and COX-2 were determined by Western
blot analysis. β-actin was used as an endogenous control. Relative intensity of the immunoreactive
bands was analyzed using the Image J software. The mRNA levels of iNOS (E) and COX-2 (F) were
determined by qPCR. Results are shown as the mean ± SD of three independent experiments. The
different letters represent the statistical differences at p < 0.05 among the groups by Duncan’s multiple
range test.

2.2. EFR Suppresses LPS-Induced Production of Inflammatory Cytokines

TNF-α, IL-6, and IL-1β are known to be early secreted and predominantly produced
inflammatory cytokines involved in the pathogenesis of inflammation [23]. Thus, we
determined the effect of EFR on the secretion of these inflammatory cytokines in LPS-
stimulated RAW 264.7 macrophages. Our ELISA results illustrated that EFR pretreatment
noteworthily and dose-dependently attenuated the secreted levels of TNF-α, IL-6, and
IL-1β induced by LPS (Figure 2A). In line with the ELISA results, the qPCR and Western
blot analysis shown that the expression levels of TNF-α, IL-6, and IL-1β were dramatically
decreased by EFR pretreatment in a dose-dependent manner (Figure 2B,C). Based on these
findings, EFR was able to suppress the inflammatory activation stimulated by LPS.
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Figure 2. Effect of EFR on LPS-induced TNF-α, IL-6, and IL-1β production and expression in RAW
264.7 macrophages. RAW 264.7 macrophages were pretreated with EFR (10, 100, and 200 µg/mL)
for 2 h and then stimulated with or without LPS (1 µg/mL) for 24 h. The secretion (A), mRNA (B),
and intracellular protein (C) levels of TNF-α, IL-6, and IL-1β were determined by ELISA, qPCR, and
Western blot analysis, respectively. IL-1β refers to full-length pro-IL-1β. Results are shown as the
mean± SD of three independent experiments. The different letters represent the statistical differences
at p < 0.05 among the groups by Duncan’s multiple range test.

2.3. EFR Inhibits LPS-Induced Nuclear Translocation of NF-κB p65 and AP-1

NF-κB and AP-1, two pivotal transcription factors that regulate the production of inflam-
matory mediators and cytokines, play essential roles in the inflammatory responses [24,25].
Herein, we investigated the effect of EFR on the nuclear translocation of NF-κB p65 and
AP-1 in LPS-stimulated RAW 264.7 macrophages. As shown by Western blot analysis
presented in Figure 3A, EFR pretreatment obviously decreased the translocation of NF-
κB p65, c-Jun, and c-Fos from cytosol to nucleus triggered by LPS in a dose-dependent
manner. Similarly, immunofluorescence assay also elucidated that LPS-induced nuclear
translocation of NF-κB p65, c-Jun, and c-Fos was noticeably reversed by EFR pretreatment
(Figure 3B–D). These results revealed that the inhibitory effect of EFR on the inflammatory
responses was due to the inactivation of NF-κB and AP-1.
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Figure 3. Effect of EFR on LPS-induced NF-κB p65 and AP-1 nuclear translocation in RAW
264.7 macrophages. (A) RAW 264.7 macrophages were pretreated with EFR (10, 100, and 200 µg/mL)
for 2 h and then stimulated with or without LPS (1 µg/mL) for 30 min. The nuclear and cytosolic
extracts of cells were prepared, and the protein levels of NF-κB p65, c-Jun, and c-Fos were determined
by Western blot analysis. Lamin B and Tubulin were used as endogenous controls for the nucleus
and cytoplasm, respectively. Relative intensity of the immunoreactive bands was analyzed using the
Image J software. RAW 264.7 macrophages were pretreated with EFR (200 µg/mL) for 2 h and then
stimulated with or without LPS (1 µg/mL) for 30 min. The cellular localization of NF-κB p65 (B),
c-Jun (C), and c-Fos (D) was determined by immunofluorescence assay. Results are shown as the
mean± SD of three independent experiments. The different letters represent the statistical differences
at p < 0.05 among the groups by Duncan’s multiple range test.



Molecules 2023, 28, 2813 6 of 17

2.4. EFR Inhibits LPS-Induced Activation of NF-κB/MAPK Signaling Pathways

To assess the molecular mechanism underlying the inactivation of NF-κB, we firstly
investigated the effect of EFR on LPS-induced NF-κB and MAPK signaling pathways,
which are known as two classical and critical inflammatory pathways. As illustrated in
Figure 4A,C, EFR pretreatment significantly suppressed LPS-induced degradation of IκBα,
as well as phosphorylation of IKKα/β and IκBα in a dose- and time-dependent manner,
directly suggesting the inactivation of NF-κB. MAPKs have been reported to regulate
the transcription factors of NF-κB and AP-1 in LPS-stimulated macrophages [11,12]. Our
Western blot data also demonstrated that LPS-induced phosphorylation of ERK, JNK, and
p38 was obviously attenuated by EFR pretreatment (Figure 4B,D). These results collectively
suggested that NF-κB and MAPK signaling pathways were involved in EFR-mediated
anti-inflammation.
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Figure 4. Effect of EFR on LPS-induced activation of NF-κB and MAPK signaling pathways in RAW
264.7 macrophages. RAW 264.7 macrophages were pretreated with EFR (10, 100, and 200 µg/mL) for
2 h and then stimulated with or without LPS (1 µg/mL) for 30 min. The protein levels of NF-κB (A)
and MAPK (B) signaling pathways were determined by Western blot analysis. β-actin was used as
an endogenous control. RAW 264.7 macrophages were pretreated with EFR (200 µg/mL) for 2 h, and
then the total protein was harvested at different time points (15, 30, and 60 min) after stimulation with
or without LPS (1 µg/mL), and the protein levels of NF-κB (C) and MAPK (D) signaling pathways



Molecules 2023, 28, 2813 7 of 17

were determined by Western blot analysis. β-actin was used as an endogenous control. Relative
intensity of the immunoreactive bands was analyzed using the Image J software. Results are shown
as the mean ± SD of three independent experiments. The different letters represent the statistical
differences at p < 0.05 among the groups by Duncan’s multiple range test. * p < 0.05, ** p < 0.01, and
*** p < 0.001, compared to the LPS-treated group.

2.5. EFR Activates AMPK by Up-Regulating the ADP:ATP Ratio

It is reported that the increased AMP/ADP:ATP ratio causes AMPK activation and in
turn negatively regulates NF-κB activation [26,27]. To further clarify the specific upstream
signaling pathway responsible for EFR-mediated suppression of NF-κB and MAPKs, we
next investigated the effect of EFR on the ADP:ATP ratio and AMPK activation. As
presented in Figure 5A, LPS stimulation resulted in the decreased ADP:ATP ratio as
compared to the control, whereas EFR pretreatment significantly recovered the ADP:ATP
ratio in a dose-dependent manner. In accordance with the changes in the ADP:ATP ratio,
EFR treatment promoted the phosphorylation of AMPKα, indicating the activation of
AMPK (Figure 5B). Furthermore, in agreement with previous studies, LPS treatment caused
the inactivation of AMPK, as evidenced by the decreased phosphorylation of AMPKα and
increased phosphorylated levels of mTOR, AKT, and p70S6K. However, all these alterations
were prominently and dose-dependently blocked by EFR pretreatment (Figure 5C). Based
on these results, it can be concluded that AMPK activation modulated by the change in
ADP:ATP ratio may be related to the anti-inflammatory mechanism of EFR.

2.6. AMPK Activation Is Necessary for EFR-Mediated Suppression of NF-κB/MAPK Signaling
Pathways

To further ascertain the role of AMPK activation in the EFR-mediated anti-inflammatory
mechanism, we first compared the inhibitory effect of EFR and that of the AMPK activator
5-aminoimidazole-4-carboxamide1-β-D-ribofuranoside (AICAR) on LPS-induced changes
in AMPK, NF-κB, and MAPK signaling pathways. As shown in Figure 6A, both EFR and
AICAR effectively recovered LPS-induced inactivation of the AMPK signaling pathway
and activation of the NF-κB signaling pathway. However, in the MAPK signaling pathway,
AICAR had no significant effects on the phosphorylation of ERK and p38. We next evalu-
ated the effect of EFR on LPS-induced NF-κB and MAPK signaling pathways under the
circumstance of AMPK inactivation using the AMPK-specific inhibitor Compound C. As
depicted in Figure 6B, EFR-induced phosphorylation of AMPKα and ACC, and dephos-
phorylation of mTOR was abolished following the combined treatment with Compound
C, implying the successive inactivation of AMPK. Meanwhile, as expected, EFR could not
attenuate LPS-induced phosphorylation of IKKα/β and IκBα and subsequent degradation
of IκBα in the present of Compound C. In parallel, the inhibitory effect of EFR on the
activation of the MAPK pathway stimulated by LPS was prominently abrogated by AMPK
inactivation. These data definitely authenticated that AMPK activation was indispensable
for the anti-inflammatory effect of EFR in response to LPS treatment.

2.7. Identification of Anti-Inflammatory Compounds in EFR

Chemical composition of EFR was further analyzed by LC–MS (Figure S1, Supplementary
Materials). The top 20 components with relative abundance are shown in Table 1. We
preliminarily examined the anti-inflammatory property of components which are com-
mercially available by the inhibitory effects on LPS-induced NO production and found
that only madecassic acid, ellagic acid, quinic acid, and procyanidin C1 were obviously
effective. Therefore, these four compounds were chosen for further verification. As can be
seen in Figure 7A, madecassic acid, ellagic acid, quinic acid, and procyanidin C1 exerted a
remarkable inhibitory effect on LPS-induced NO production, hardly affecting the viability
of tested cells. Furthermore, similar results were observed in protein levels of iNOS and
COX-2 (Figure 7B). Our finding indicated that the presence of these four compounds in EFR
may be a part of contributing factors responsible for EFR’s anti-inflammatory activities.
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Figure 5. Effect of EFR on AMPK activation in LPS-stimulated RAW 264.7 macrophages. RAW
264.7 macrophages were pretreated with EFR (10, 100, and 200 µg/mL) for 2 h and then stimulated
with or without LPS (1 µg/mL) for 30 min. (A) The ADP:ATP ratio was measured. The protein levels
of p-AMPKα, AMPKα, p-mTOR, mTOR, p-AKT, AKT (B), and AMPK signaling pathways (C) were
determined by Western blot analysis. β-actin was used as an endogenous control. Relative intensity
of the immunoreactive bands was analyzed using the Image J software. Results are shown as the
mean± SD of three independent experiments. The different letters represent the statistical differences
at p < 0.05 among the groups by Duncan’s multiple range test.
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Figure 6. The role of AMPK activation in the EFR-mediated anti-inflammatory effect in LPS-
stimulated RAW 264.7 macrophages. (A) RAW 264.7 macrophages were pretreated with or without
AICAR (1 mM) for 2 h, then with or without EFR (200 µg/mL) for 2 h and stimulated with or without
LPS (1 µg/mL) for 30 min. The protein levels of AMPK, NF-κB, and MAPK signaling pathways
were determined by Western blot analysis. β-actin was used as an endogenous control. (B) RAW
264.7 macrophages were pretreated with or without Compound C (10 µM) for 2 h, then with or
without EFR (200 µg/mL) for 2 h and stimulated with or without LPS (1 µg/mL) for 30 min. The
protein levels of AMPK, NF-κB, and MAPK signaling pathways were determined by Western blot
analysis. β-actin was used as an endogenous control. Relative intensity of the immunoreactive bands
was analyzed using the Image J software. Results are shown as the mean ± SD of three independent
experiments. The different letters represent the statistical differences at p < 0.05 among the groups by
Duncan’s multiple range test.
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Figure 7. Inhibitory effect of major compounds in EFR on LPS-induced inflammatory responses in
RAW 264.7 macrophages. RAW 264.7 macrophages were pretreated with madecassic acid, ellagic
acid, quinic acid, and procyanidin C1 (10 and 100 µM) for 2 h and then stimulated with or without
LPS (1 µg/mL) for 24 h. (A) The nitrite concentration in the cultured media was determined as an
indicator of NO production by Griess reaction. (B) The protein levels of iNOS and COX-2 were
determined by Western blot analysis. β-actin was used as an endogenous control. Relative intensity
of the immunoreactive bands was analyzed using the Image J software. Results are shown as the
mean± SD of three independent experiments. The different letters represent the statistical differences
at p < 0.05 among the groups by Duncan’s multiple range test.

Table 1. Identification of the top 20 components with relative abundance in EFR by LC–MS (n = 3).

Compounds Formula m/z Retention Time (min) Ion Mode

Myrianthic acid C30H48O6 469.3293 6.4002 pos
Glabrolide C30H44O4 469.3313 4.7757 pos

Madecassic acid C30H48O6 503.3342 5.9403 neg
16b-16-Hydroxy-3-oxo-1,12-oleanadien-28-oic

acid C30H44O4 469.3311 4.1621 pos

Ganolucidic acid B C30H46O6 503.3361 6.2071 pos
N6-(L-1,3-Dicarboxypropyl)-L-lysine C11H20N2O6 276.1455 1.5622 pos

PC(18:1(9E)/0:0)[U] C26H52NO7P 522.3557 8.3217 pos
1,2-Dimethoxy-13-methyl-[1,3]benzodioxolo

[5,6-c]phenanthridine C21H17NO4 348.1243 4.6405 pos

Ellagic acid C14H6O8 301.0002 3.4479 neg
Ile Ser Arg Lys C21H42N8O6 501.3214 6.0690 neg

Tomentosolic acid C30H46O3 437.3411 8.2216 pos
PC(16:0/0:0)[U]/PC(16:0/0:0)[rac] C24H50NO7P 496.3406 8.0506 pos

4,4′-Methylenebis
(2,6-di-tert-butylphenol) C29H44O2 425.3429 5.0260 pos

Cyanidin 3-O-rutinoside C27H31O15 1189.2998 2.2124 neg
Quinic acid C7H12O6 191.0577 0.7015 neg

Procyanidin C1 C45H38O18 865.1970 2.6351 neg
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Table 1. Cont.

Compounds Formula m/z Retention Time (min) Ion Mode

5-Acetylamino-6-formylamino-3-methyluracil C8H10N4O4 451.1260 2.4086 neg
(−)-Catechin C15H14O6 289.0696 2.7075 neg

1-Oleoyl-sn-glycero-3-phosphocholine C26H52NO7P 566.3457 8.3592 neg
Neriifolin C30H46O8 533.3122 5.2195 neg

3. Discussion

Natural products or bioactive compounds from plant materials, especially traditional
Chinese herbs, have attracted widespread attention in terms of the development of ben-
eficial dietary supplements and therapeutic drug candidates owing to their medicinal
properties with low toxicity and side effects. Previous studies have reported that the
total flavonoids or saponins from Rosa laevigata Michx. fruit exert anti-inflammatory ef-
fect by inhibiting NF-κB transcriptional activities [19–21,28,29]. However, how NF-κB is
affected, or in other words, the exact anti-inflammatory mechanism remains unclear. In
this study, we demonstrated for the first time that EFR effectively restrained inflammatory
responses in LPS-stimulated RAW 264.7 macrophages through NF-κB/MAPK signaling
pathways via AMPK activation. Additionally, madecassic acid, ellagic acid, quinic acid,
and procyanidin C1 were proved to be some of the active components responsible for
EFR’s anti-inflammatory actions. These results indicated an accurate anti-inflammatory
mechanism and the potential of EFR to be a therapeutic drug candidate for inflammatory
diseases.

Redundant inflammatory mediators (NO and PGE2) and cytokines (TNF-α, IL-6, and
IL-1β) produced by activated macrophages have been demonstrated to aggravate the
progress of inflammatory damage and ultimately result in auto-inflammatory and autoim-
mune disorders [30,31]. Therefore, evaluating the inhibitory effect of natural products or
compounds on the production of these inflammatory markers could be a feasible method
for developing alternative immunosuppressive and anti-inflammatory therapeutic can-
didates. In the present work, we found that EFR-mediated suppression of the excessive
production of NO and PGE2 in LPS-stimulated RAW 264.7 macrophages was attributed
to the down-regulated expression of iNOS and COX-2 at both protein and mRNA levels
(Figure 1). In addition, EFR was also shown to effectively inhibit LPS-induced TNF-α,
IL-6, and IL-1β production (Figure 2). Based on these results, we suggested that EFR may
effectively attenuate inflammatory responses through the suppression of inflammatory
mediators and cytokines production in LPS-stimulated RAW 264.7 macrophages.

NF-κB is considered to be the most decisive nuclear transcription factor that me-
diates the production of inflammatory mediators and cytokines during inflammatory
responses [24,32]. Numerous studies have illustrated that many anti-inflammatory agents
exhibit their potency by the suppression of the NF-κB signaling pathway [4,22,23]. The acti-
vation of NF-κB occurs by the IKK-mediated phosphorylation and proteolytic degradation
of IκBα. Then, activated cytosolic NF-κB dimer (p65/p50) translocates into the nucleus
and activates the transcription of the targeted genes such as COX-2 and iNOS [9,10,33]. In
this study, our Western blot analysis revealed that the phosphorylation of IKKα/β and
IκBα, as well as the degradation of IκBα induced by LPS was effectively reversed by EFR
pretreatment (Figure 4). Further Western blot and immunofluorescence analysis indicated
that preincubation with EFR significantly recovered LPS-induced nuclear translocation of
NF-κB p65 subunit, supporting the inactivation of NF-κB by EFR (Figure 3A,B). Similar
results were also obtained from the analysis of nuclear translocation of AP-1 (Figure 3C,D).
Evidence has shown that the MAPK pathway, among the most ancient and highly con-
served signaling pathways, has been proved to implement vital roles in inflammatory and
immune responses, and the activation of JNK, ERK, and p38 by phosphorylation is closely
associated with the expression of iNOS, COX-2, and cytokine genes by promoting NF-κB
signaling events [34,35]. According to our results, the phosphorylation of JNK, ERK, and
p38 induced by LPS was expressively alleviated by EFR pretreatment (Figure 4). Herein, it



Molecules 2023, 28, 2813 12 of 17

is likely that the suppression of MAPKs phosphorylation may contribute to EFR-mediated
inhibition of the NF-κB signaling pathway.

Despite the ongoing research, the specific target by which EFR regulated the NF-
κB/MAPK signaling pathways was not fully revealed. Therefore, we next explored the pos-
sible upstream regulating signaling molecules and pathways. AMPK is the major cellular en-
ergy sensor and regulator of metabolic homeostasis, consisting of a catalytic α subunit and
regulator β and γ subunits [36,37]. AMPK is activated by increased AMP/ADP:ATP ratio
and phosphorylation of the α subunit at Thr172 by upstream kinases such as LKB1 [38,39].
Previous studies have indicated that AMPK activation is highly associated with the reg-
ulation of inflammatory responses via the suppression of NF-κB and MAPK signaling
pathways [15,40,41]. Thus, we turned our attention to examine whether AMPK activa-
tion was involved in the EFR-mediated anti-inflammatory mechanism. The present study
showed that EFR could activate AMPK possibly through the elevated ADP:ATP ratio, result-
ing in the suppression of LPS-induced activation of NF-κB and MAPK signaling pathways
(Figure 5). We also found that AICAR, an agonist of AMPK, exerted its effectiveness similar
to that of EFR (Figure 6A). Additionally, EFR could not alleviate LPS-induced inflammatory
responses in the presence of Compound C (Figure 6B). These results suggested that EFR
exerted anti-inflammatory effect via AMPK activation.

Previous phytochemical and pharmacological studies indicated the presence of polysac-
charides, triterpenoids, flavonoids, and saponins in Rosa laevigata Michx. fruit, which was
shown to have hepatoprotective, neuroprotective, anti-oxidant and anti-inflammatory ac-
tivities [21,28,42,43]. However, we found via literature searches that there was few research
systematically revealing the anti-inflammatory mechanism and chemical composition re-
sponsible for the anti-inflammatory actions. In this study, LC–MS was conducted to analyze
the chemical composition of EFR (Figure S1). Madecassic acid, ellagic acid, quinic acid,
and procyanidin C1 were identified and proved to show a remarkable inhibitory effect on
LPS-stimulated NO production and inflammatory mediator expression (Figure 7A,B). Many
studies have indicated the anti-inflammatory effects of these four compounds. Madecassic
acid was reported to inhibit LPS-induced iNOS, COX-2, TNF-α, IL-1β, and IL-6 expression
via the down-regulation of NF-κB activation in RAW 264.7 macrophage cells [44]. Ellagic
acid has been demonstrated to suppress the inflammatory responses in keratinocytes by
regulating MAPK and STAT signaling pathways [45]. It was shown that quinic acid could
inhibit vascular inflammation in TNF-α-stimulated vascular smooth muscle cells by sup-
pressing the MAP kinase and NF-κB signaling pathways [46]. Procyanidin C1 was clarified
to exert an anti-inflammatory effect by regulating LPS-induced MAPK and NF-κB signaling
through TLR4 in macrophages [47]. Based on experimental verification combined with
literature searches, the presence of these four compounds, as well as other unidentified
components, may contribute to EFR’s anti-inflammatory effects.

4. Materials and Methods
4.1. Plant Material and Extraction Preparation

The Rosa laevigata Michx. fruit was purchased from Anhui Zhixin Zhongyao Yinpian
Co., Ltd. (Anhui, China). The extraction process was conducted via cold maceration with
the sample to solvent ratio of 1:10. Briefly, the dried powder (100 g) was extracted with
95% ethanol (1 L) for 12 h at 4 ◦C, the decoction was filtered, concentrated using a rotary
vacuum evaporator (N-1200BV, EYELA, Tokyo, Japan) at 55 ◦C, and then lyophilized by a
freeze-dryer (FDU-1200, EYELA, Tokyo, Japan). The extract was kept at −20 ◦C for later
experiments.

4.2. Chemicals and Reagents

Lipopolysaccharide (LPS), 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bro-
mide (MTT), AICAR, and Compound C were purchased from Sigma-Aldrich (St. Louis,
MO, USA). Oligonucleotides were synthesized by Sangon Biotech (Shanghai, China). TRI-
zol, Dulbecco’s Modified Eagle’s Medium (DMED), fetal bovine serum (FBS), penicillin, and
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streptomycin were purchased from Invitrogen (Carlsbad, CA, USA). All other chemicals
and reagents were analytical purity and commercially available.

4.3. Cell Culture

The murine macrophage cell line RAW 264.7 was purchased from the Shanghai Cell
Bank of the Chinese Academy of Sciences (Shanghai, China). Cells were cultured in
DMEM with 10% FBS, 100 U/mL penicillin, and 100 µg/mL streptomycin in a humidified
atmosphere with 5% CO2 at 37 ◦C.

4.4. MTT Assay

Cell viability was determined using the MTT assay. RAW 264.7 macrophages (2 × 104

cells/well) were seeded in 96-well plates to adhere overnight. Cells were pretreated with
EFR (10, 100, and 200 µg/mL) for 2 h and then stimulated with or without LPS (1 µg/mL)
for 24 h. Then, 10 µL of 5 mg/mL MTT were added in each well, followed by another 4 h
incubation. The cultured media were discarded, and 150 µL DMSO were added to dissolve
the formazan crystals. Absorbance of formazan solution was measured at 490 nm using a
SpectraMax® i3x Multi-Mode Microplate Reader (Molecular Devices, CA, USA).

4.5. Griess Assay

RAW 264.7 macrophages (2 × 104 cells/well) were seeded in 96-well plates to adhere
overnight. Cell were pretreated with EFR (10, 100, and 200 µg/mL) for 2 h and then
stimulated with or without LPS (1 µg/mL) for 24 h. The cultured media were collected
and centrifugated. The nitrite concentration in the cultured supernatants was measured
as an indicator of NO production using the Nitric Oxide Assay Kit (Beyotime Institute of
Biotechnology, Shanghai, China) according to the manufacturer’s instructions.

4.6. Enzyme-Linked Immunosorbent Assay (ELISA)

RAW 264.7 macrophages (4 × 105 cells/well) were seeded in 12-well plates to adhere
overnight. Cells were pretreated with EFR (10, 100, and 200 µg/mL) for 2 h and then
stimulated with or without LPS (1 µg/mL) for 24 h. The cultured media were collected
and centrifugated. The level of PGE2 in the cultured supernatants was quantitated by the
Prostaglandin E2 Parameter Assay Kit (R&D Systems, Minneapolis, MN, USA), and levels
of TNF-α, IL-6, and IL-1β were determined using the ELISA kits (ABclonal Biotechnology,
Wuhan, China) according to the manufacturer’s instructions.

4.7. Measurement of Cellular ADP: ATP Ratio

RAW 264.7 macrophages (4 × 105 cells/well) were seeded in 12-well plates to adhere
overnight. Cells were pretreated with EFR (10, 100, and 200 µg/mL) for 2 h and then
stimulated with or without LPS (1 µg/mL) for 30 min. The cellular ADP:ATP ratio was
measured using the ADP:ATP Ratio Assay Kit (Abcam, Cambridge, UK) according to the
manufacturer’s instructions.

4.8. Preparation of Nuclear and Cytosolic Extracts

RAW 264.7 macrophages (5 × 106 cells/well) were seeded in each 60 mm dish to
adhere overnight. Cells were pretreated with EFR (10, 100, and 200 µg/mL) for 2 h and
then stimulated with or without LPS (1 µg/mL) for 30 min. The nuclear and cytosolic
extracts of the cells were prepared using the Nuclear and Cytoplasmic Protein Extraction
Kit (Beyotime Institute of Biotechnology, Shanghai, China) according to the manufacturer’s
instructions.

4.9. Total RNA Extraction, Reverse Transcription, and Quantitative Real-Time PCR Analysis

Total RNAs of RAW 264.7 macrophages were isolated using TRIzol reagent. Then,
1 µg of total RNA was reverse transcribed to cDNA using the HiFi-MMLV cDNA kit
(CoWin Biosciences, Beijing, China) according to the manufacturer’s instructions. Quan-
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titative Real-time PCR analysis was performed by the Roche Light Cycler® 480 System
(Roche Group, Switzerland) using the Ultra SYBR Mixture (CoWin Biosciences, Beijing,
China) referring to the protocol. The following sequences of specific primers were used
in the present study. iNOS: Forward 5′-CAACCAGTATTATGGCTCCT-3′; Reverse 5′-
GTGACAGCCCGGTCTTTCCA-3′, COX-2: Forward 5′-CAGCAAATCCTTGCTGTTCC-3′;
Reverse 5′-TGGGCAAAGAATGCAAACATC-3′, TNF-α: Forward 5′-AGCCGATGGGTTGT
ACCTTG-3′; Reverse 5′-ATAGCAAATCGGCTGACGGT-3′, IL-6: Forward 5′-GAGTGGCTA
AGGACCAAGACC-3′; Reverse 5′-AACGCACTAGGTTTGCCGA-3′, IL-1β: Forward 5′-
TCCAGGATGAGGACATGAGCAC-3′; Reverse 5′-GAACGTCACACACCAGCAGGTTA-
3′, GAPDH: Forward 5′-AAACGGCTACCACATCCAAG-3′; Reverse 5′-CCTCCAATGGAT
CCTCGTTA-3′.

Thermocycler conditions included an initial denaturation at 94 ◦C for 3 min, 40 cycles
of denaturation at 94 ◦C for 30 s, annealing at 60 ◦C for 30 s, and extension at 72 ◦C for
30 s, followed by a 2 min extension at 72 ◦C. The results were analyzed using the 2−∆∆Ct

method. The relative gene expression was normalized to GAPDH expression.

4.10. Immunofluorescence Assay

RAW 264.7 macrophages (4 × 105 cells/well) were seeded on coverslips in 12-well
plates to adhere overnight. Cells were pretreated with EFR (200 µg/mL) for 2 h and then
stimulated with or without LPS (1 µg/mL) for 30 min. After that, cells were fixed with 4%
paraformaldehyde for 20 min, treated with 0.2% Triton-X-100 for 10 min, and then blocked
with 5% bovine serum albumin (BSA) in PBS for 1 h. Thereafter, cells were incubated
with primary antibodies for NF-κB p65 (1:400), c-Jun (1:100), and c-Fos (1:200) at 4 ◦C
overnight, and then washed with PBS twice before incubation with donkey anti-rabbit
IgG, Alexa Fluor 488 (1:500) (Thermo Fisher Scientific, Waltham, MA, USA) for 1 h at room
temperature. After washing twice with PBS, the nuclei were stained with DAPI Staining
Solution (Beyotime Institute of Biotechnology, Shanghai, China) in the dark. Images were
captured using a Leica TCS SP8 Confocal Microscope (Leica Microsystems GmbH, Wetzlar,
Germany).

4.11. Western Blot Analysis

Total proteins of RAW 264.7 macrophages were extracted and the protein concen-
trations were determined using the Enhance BCA Protein Assay Kit (Beyotime Institute
of Biotechnology, Shanghai, China) according to the manufacturer’s instructions. Then,
aliquots of proteins (20~40 µg) were separated by sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) and transferred onto polyvinylidene diflfluoride (PVDF)
membranes (Millipore Corp., Billerica, MA, USA). The membranes were blocked with 5%
BSA in Tris-buffered saline with Tween-20 (TBST) for 1 h at room temperature and then
incubated with a 1:1000 dilution of various primary antibodies in 5% BSA with TBST at
4 ◦C overnight. Antibodies against IL-6, IKKα/β, p-IKKα/β, IκBα, p-IκBα, JNK, p-JNK,
ERK, p-ERK, p38, p-p38, AMPKα, p-AMPKα, ACC, p-ACC, AKT, p-AKT, mTOR, p-mTOR,
p70S6K, and p-p70S6K were purchased from Cell Signaling Technology (Beverly, MA, USA).
Antibodies against iNOS, COX-2, NF-κB p65, LKB1, p-LKB1, GSK3β, p-GSK3β c-Jun, c-Fos,
α-Tubulin, Lamin B, and β-actin were purchased from ABclonal Biotechnology (Wuhan,
China). Antibodies against TNF-α and IL-1β were purchased from Proteintech Group
(Wuhan, China). The membranes were washed three times with TBST and then incubated
with horseradish peroxidase-conjugated secondary antibodies to rabbit IgG or to mouse
IgG (1:5000) purchased from Jackson ImmunoResearch Laboratories (West Grove, PA, USA)
for 1 h at room temperature. After washing three times with TBST, the immunoreactive
proteins were visualized using the NcmECL Ultra (NCM Biotech, Suzhou, China) according
to the manufacturer’s instructions and then imaged using the ChemiDoc™ XRS+ System
(Bio-Rad, Hercules, CA, USA).
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4.12. LC–MS Detection

The Waters Acquity I-Class PLUS ultra-high-performance liquid tandem Waters Xevo
G2-XS QTOF high-resolution mass spectrometer (Waters Corporation, Milford, MA, USA)
was used for metabolite analysis of EFR. UPLC fitted the Waters Acquity UPLC HSS T3
column (1.8 µm, 2.1 × 100 mm). The parameter was performed as follows: mobile phase A,
0.1% formic acid in water; mobile phase B, 0.1% formic acid in acetonitrile; gradient with
2% mobile phase B for 0~0.25 min, 2~98% mobile phase B for 0.25~10 min, 98% mobile
phase B for 10~13 min, 98~2% mobile phase B for 13~13.1 min, 2% mobile phase B for
13.1~15 min. The parameters of the electrospray ionization-mass spectrometry (ESI-MS)
analysis were 2.0 kV (positive ion mode) and −1.5 kV (negative ion mode), cone voltage of
30 V, ion source temperature of 150 ◦C, desolvent gas temperature of 500 ◦C, backflush gas
flow rate of 50 L/h, and desolventizing gas flow rate of 800 L/h. MassLynx V4.2 with MSe
mode (Waters) was utilized for collection of primary and secondary mass spectrometry
data. The peak extraction, alignment and data processing operations were conducted by
Progenesis QI software. The METLIN database and Biomark’s self-built library (Biomarker
Technologies Co., Ltd., Beijing, China) were used for metabolite identification.

4.13. Statistical Analysis

Results are expressed as the mean ± standard deviation (SD) and all assays were
performed at least in triplicate. Duncan’s multiple range test of one-way analysis of
variance (ANOVA) was performed by IBM SPSS Statistics 20 software package (SPSS Inc.
Chicago, IL, USA) at a confidence level of 95%. Other statistical evaluations were performed
by Student’s t-test. A p value < 0.05 was considered statistically significant.

5. Conclusions

In summary, the findings of this study enriched the anti-inflammatory mechanism
of EFR, which has been demonstrated to inhibit inflammatory responses through NF-
κB/MAPK signaling pathways via AMPK activation, and represents an effective therapeu-
tic intervention for the treatment of inflammatory disease.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28062813/s1, Figure S1: LC–MS analysis of the chemical
composition of EFR in positive and negative modes (n = 3).
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