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Abstract: A novel algorithm for covalent bond dissociation is developed to accurately predict fracture
behavior of thermosetting polymers via molecular dynamics simulation. This algorithm is based
on the Monte Carlo method that considers the difference in local strain and bond-dissociation
energies to reproduce a thermally activated process in a covalent bond dissociation. This study
demonstrates the effectiveness of this algorithm in predicting the stress–strain relationship of fully
crosslinked thermosetting polymers under uniaxial tensile conditions. Our results indicate that the
bond-dissociation energy plays an important role in reproducing the brittle fracture behavior of a
thermosetting polymer by affecting the number of covalent bonds that are dissociated simultaneously.

Keywords: molecular dynamics; thermosetting resin; mechanical properties; Monte–Carlo method

1. Introduction

Carbon-fiber-reinforced plastics (CFRPs) have been applied to various structural mate-
rials in the aerospace field owing to their high specific strength and specific stiffness [1,2].
As CFRP has a complex inhomogeneous structure made of carbon fiber (reinforcement)
and thermosetting polymer (matrix portion), it undergoes various forms of fracture, often
initiated as microscopic damage at matrix portions [3–6]. The thermosetting polymer has
a three-dimensional crosslinked structure, and covalent bonds constituting the crosslinks
break under mechanical loading. The dissociation of the covalent bonds expands to the
macroscopic scale, resulting in the fracture of a CFRP. Therefore, it is necessary to elu-
cidate the mechanisms of microscopic damage to improve the toughness and prevent
such fracture behavior of thermosetting polymers. It is difficult to investigate the time
evolution of microscopic-scale damages using meso- to macro-scale approaches such as
conventional experiments and finite element analysis. This study investigates the time
evolutions of covalent bond dissociation and fracture behavior of a thermosetting polymer
based on molecular dynamics (MD) simulation, which is essential for elucidating micro-
scopic damage mechanisms of matrix crack and transverse crack in CFRPs. MD simulation
has been applied to polymers [7–10], reinforcements [11,12], and their composites [13–25],
which have quantitatively reproduced thermomechanical properties near equilibrium state
such as density, Young’s modulus, and glass transition temperature. Characteristics in the
higher-strain region, where covalent bond dissociation is involved, remain challenging to
simulate.

In MD simulation, an individual atom in the condensed molecular system is propa-
gated in time based on the (extended) Newton equation, and thermodynamic properties
are evaluated as a statistical average of the behavior of all atoms [26]. MD simulations

Molecules 2023, 28, 2736. https://doi.org/10.3390/molecules28062736 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28062736
https://doi.org/10.3390/molecules28062736
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0003-2136-6004
https://orcid.org/0000-0001-6754-2822
https://doi.org/10.3390/molecules28062736
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28062736?type=check_update&version=2


Molecules 2023, 28, 2736 2 of 11

traditionally assume that the topology of the individual molecules does not change during
time evolution (such an MD method is hereafter referred to as classic MD). MD simula-
tions using the reactive force field (Reax-FF) have recently attracted significant attention
because this method overcomes the limitations associated with classic MD and reproduces
phenomena associated with molecular topology changes, namely chemical reaction and
microscopic failure [27]. Reax-FF smoothly represents the formation and dissociation of
covalent bonds by approximating the bond order as a continuous function of interatomic
distance, although it requires significantly more computational resources than classic MD.
Numerous studies using Reax-FF have investigated the mechanical properties over a wide
range of strains [28,29], which is difficult to achieve with classic MD.

Odegard et al. utilized Reax-FF for the epoxy-based thermosetting polymer [28].
They quantitatively reproduced an elastic response and yielding point under the tensile
simulation. Koo et al. simulated the brittle fracture behavior of thermosetting epoxy
polymer [29]. They developed new methodology based on Reax-FF with an ultrahigh strain
rate approach for the mechanical response over a wide strain range in order to establish
both accuracy and numerical efficiency. The resulting maximum strains are in quantitative
agreement with the experimental values. Jang et al. investigated the effect of the nanoscale
defects on mechanical properties by classic MD with Morse bond potential [30]. In this
potential, covalent bonds between atoms are represented by anharmonic potentials, and
covalent bond breaking can be approximated as a continuous function of interatomic
distance. The results proved that the defect content has a significant effect on the stress–
strain response, and realistic fracture behavior can be reproduced by introduction of the
nanoscale defects. Konrad et al. obtained the reactive force field that enables us to smoothly
describes the formation and dissociation of thermosetting polymers. In the results, the
yield strain and the maximum stress are quantitatively obtained [31]. More recently, the
bond dissociation has been described based on course-grained MD simulation. Zhao et al.
investigated the fracture behavior of double network structures including physical and
chemical crosslinked structures [32]. They represented that the depth of the Lennard-Jones
potential for the physical network and scission of the chemical network significantly affect
the mechanical responses under tensile simulation.

However, to the best of our knowledge, the brittle behavior of thermosetting polymer
has not been adequately reproduced, even with bond-order-based MD such as Reax-FF.
Although some previous studies successfully captured maximum stress and strain, “the
rapid decrease in stress from maximum value”, which is unique to the brittle fracture of
thermosetting polymer, has not been realized. One of main factors for this irreproducibility
may be originated from the criterion for the covalent bond dissociation. The conventional
algorithm uses only the distance between two atoms as a criterion in dealing with covalent
bond dissociation, which may be insufficient because the presence or absence of a covalent
bond affects not only the atomic pair but also the atoms surrounding them.

In response to the above background, we propose a novel algorithm to represent
covalent bond breaking based on the classic MD method. This algorithm reproduces
covalent bond dissociation as realistically as possible within the scope of classic MD using
the Monte Carlo (MC) method [33], which considers the strain and bond-dissociation
energies of interatomic covalent bonds. The energy-based criteria proposed in this study
can properly represent information on atoms around the covalent bond via angle, dihedral
angle, and Lennard-Jones and Coulomb potentials. To the best of our knowledge, this is the
first study to demonstrate the effectiveness of this algorithm for crosslinked epoxy resin
via the stress–strain relationships depending on the bond-dissociation energy.

The remainder of this paper is organized as follows. The next section describes the
simulation method and simulation system, including the algorithms for covalent bond
dissociation. The third section presents the simulation results and discussions. Some future
research directions are also suggested. Finally, the results are concluded.
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2. Simulation Method

In this study, we first create a crosslinked structure for epoxy resin, which is repre-
sentative of the thermosetting polymer for structural material. Subsequently, the resulting
crosslinked structure is subjected to uniaxial elongational loading, accounting for the disso-
ciation of covalent bonds. In this section, we present the details of the molecular models,
simulation conditions, and protocols used to realize these MD simulations. All simulations
are conducted using the GROMACS software [34].

2.1. Molecular Modeling and Curing Simulation

Epoxy resins form crosslinked structures through chemical reactions between epoxy
groups in the base resin and functional groups in the curing agent. In this study, bisphenol
A diglycidyl ether (DGEBA) and ethylenediamine (EDA) are selected as the base resin and
curing agent, respectively. The details of these molecular structures are shown in Figure 1a.
DGEBA has epoxy groups, and EDA has primary amine groups (-NH2) at both ends of
their backbone. A primary amine turns into a secondary amine (-NH) through a reaction
with an epoxy group. A secondary amine reacts with an epoxy group again to form a
tertiary amine (-N). The branching structures obtained in these sequential reactions are
linked together to form a crosslinked structure extending over the entire system. In this
study, DGEBA and EDA are mixed in an epoxy/amine stoichiometric ratio to achieve total
number of atoms almost 2000. The equilibrium state of the DGEBA/EDA mixture is first
obtained by relaxation calculations under the NPT ensemble (temperature T = 300 K and
pressure P = 1 atm). Using this equilibrated system, the crosslinked structure is created via
chemical reaction calculations. To reproduce the accurate molecular structures and their
interactions, an all-atom optimized potential for liquid simulation (OPLS-AA) force field is
employed [35]. For the electrostatic potential charge, density functional calculations are
conducted under the condition of B3LYP/6-31G (Hamiltonian/basis set) [36,37].
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Figure 1. (a) Molecular structures of DGEBA (upper) and EDA (lower), and (b) snapshot of the
crosslinked structure.

In the chemical reaction calculations, we adopt the reaction algorithms based on the
distance-based criteria, i.e., both functional groups react if the carbon atom of the epoxy
group approaches the nitrogen atom of the amine group within a certain distance (6.0 Å).
The crosslinked structure is finally obtained by relaxation calculation under NPT ensemble
(T = 300 K, and P = 1 atm) combined with this reaction algorithm. Figure 1b shows a
snapshot of the calculated crosslinked structure. It should be noted that the chemical
reaction of thermosetting resins is a thermal activation process. Similar to previous studies,
it may be better to consider the reaction probability based on the Arrhenius equation
during the chemical reactions [38–43]. However, the chemical reaction of the distance-
based criterion used in this study is also supported by many previous studies because it
guarantees quantitative accuracy in thermomechanical properties [44–51].
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2.2. Uniaxial Tensile Simulation Considering Covalent Bond Dissociation

Here, detailed simulation algorithms and conditions are introduced for the uniaxial
tensile test incorporating the covalent bond dissociation in a crosslinked epoxy polymer.
Figure 2 shows a flowchart of this tensile test. This flowchart is roughly classified into three
steps: tensile calculation of the entire system, judgment of covalent bond dissociation with
the aid of an MC method, and short time structural relaxation. Finally, this calculation
is terminated when the system reaches the predetermined strain. In the tensile test, the
system is deformed for 1ps at a strain rate of 3.86 × 109/s in the z-direction, while keeping
the size of the cross section in the x–y directions fixed. After executing MC method for
covalent bond dissociation, the system is relaxed for 1 ps under NVT ensemble conditions
to stabilize the system by removing strong forces due to the discontinuous change in the
potential energy in the covalent bond dissociation. The protocol in the MC step for the
bond dissociation, which is between the tensile and relaxation steps, is described as follows.
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MC step for reproducing the covalent bond dissociation.

The bond-dissociation process is a thermally activated process as well as a crosslinking
reaction. To illustrate the realization of this process via our proposed algorithm, Figure 3
represents the potential energy diagram for the bond-dissociation coordinate. First, strain
energy (Estrain) accumulates in each interatomic covalent bond due to the tensile deforma-
tion of the entire system. The strain energy is represented by the difference in the total
potential energy before and after bond dissociation. The covalent bond is then broken when
the activation energy, which represents the energy difference between this strain energy
and the bond-dissociation energy (EBD), is exceeded by thermal fluctuations. To realize
such a thermally activated process via MD simulation, we introduce the following three
steps using the MC method. These steps correspond to the right-hand side of the flowchart
in Figure 2.
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Step 1. Select all covalent bonds whose lengths are greater than the bond length criteria
r0. In this study, this criterion is determined as 0.5–0.7 σ, where σ is the distance at which
the Lennard-Jones potential is the smallest in the carbon-to-carbon bond. At around 0.5
σ, the covalent bond starts to dissociate via the preliminary tensile simulation without
considering EBD.

Step 2. Evaluate the strain energy for all bonds selected in Step 1. The strain energy of a
single bond is expressed as the difference in the total potential energy with and without the
bond. First, the total potential energy before dissociating a bond is measured (Ebefore). Then,
one of the selected bonds is virtually dissociated, the OPLS-AA forcefield is reassigned for
the molecule, and the total potential energy is measured (Eafter). The strain energy for the
single bond is evaluated as this potential energy difference, i.e., Estrain = Ebefore − Eafter.

Step 3. The bond dissociation is determined for all covalent bonds selected in Step
1 via the MC method, accounting for Estrain evaluated in Step 2. In the MC method, the
bond is dissociated if the strain energy is greater than EBD. If it is equal or smaller, the bond
is dissociated according to the probability (k) estimated using the Arrhenius equation as
follows:

k = A exp
(
−EBD − Estrain

RT

)
(1)

where R is the gas constant, and T is the local temperature. A is a frequent factor set to 1 in
this study. The probability evaluated by Equation (1) is compared with a uniform random
number (r) in the range of 0–1: adopt the virtual dissociation in Step 2 if r < k; otherwise,
reject it.

It should be noted that atoms with different types of bonding atoms are generally
distinguished as different atomic types, even if they are of the same atomic species. For
example, a carbon atom in methane and a carbon atom in a benzene are considered different
types of atoms. Therefore, it is better to define a new atomic type after the bond dissociation.
However, for simplicity, this study assumes that the atom type does not change before and
after bond dissociation.

In this study, the uniaxial tensile simulations are performed with changing r0 and
EBD as parameters. Although EBD depends on the covalent bond type, e.g., C–N and
C–C are different in EBD, this study used the same value for simplicity. For stress–strain
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diagram, the strain is evaluated by (Lz(t)− Lz(t = 0))/Lz(t = 0), where Lz(t) is the length
of the system in the tensile direction (z-direction) at time t. Based on the virial theorem,
the stress (σ ≡ σzz(t)) at time t is expressed by ∂(K(t) + ϕ(t))/∂εzz(t)/V(t), where K(t)
and ϕ(t) are kinetic energy and potential energy of the system, V is the system volume,
and 〈· · · 〉 represents the statistical averaging operation. To ensure statistical correctness,
three independent simulations were performed for each parameter. The results show that
the stress–strain diagrams of the three samples are almost identical in their shape, and
characteristic stress and strain values, e.g., the errors in the maximum strain and stress, are
within 10%, respectively. Therefore, in this study, the sample with intermediate values on
the stress–strain diagram was selected as representative.

3. Results and Discussion

Figure 4a shows the stress–strain curves depending on r0 for EBD = 0, where each
covalent bond dissociates upon reaching the criterion length r0. For all curves, the stress
monotonically increases with the system deformation, and suddenly decreases due to the
bond dissociation event. This stress increase and decrease in stress are repeated three, four,
or five times, and finally, the stress reaches zero, i.e., the system is fractured. The slope of
the stress–strain graph decreases with the bond dissociation events because the number of
bonds supporting the load decreases. Consequently, the stress gradually decreases from
its maximum value as the system deforms, as reported previously [52,53]. This figure also
shows that r0 does not change the shape of the stress–strain curve, although the maximum
stress and strain are significantly affected. Notably, the stress changes discretely owing to
the small system size. As the number of atoms inside the system increases, the change in
the stress becomes smoother even at the dissociation events.
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Figure 4b shows the stress–strain curves depending on EBD for r0 = 0.55σ. By in-
troducing EBD, the following two changes appear in the stress–strain curve. First, the
maximum stress and its strain increase with EBD. This occurs because the larger strain
energy Estrain is required to overcome the larger EBD for the bond dissociation. Second, the
larger EBD results in a smaller difference in the strain at the maximum stress and material
fracture because of the larger single stress reduction. In particular for EBD = 400 kJ/mol,
more than 80% of the maximum stress is reduced at a strain of around 1.7. Thus, brittle-like
behavior inherent to thermosetting polymers is reproduced.

To understand the fracture behavior depending on EBD, Figure 5a,b show the number
of dissociated covalent bonds (N) with respect to the strain (ε) and EBD, respectively. These
figures show the results of the three characteristics associated with N. First, the strong
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positive correlations between N and ε as well as N and EBD are presented. Second, N at the
first event increases with EBD. Third, the smaller EBD increases the bond dissociation event.
These three results indicate the following microscopic aspects. For a smaller EBD, the strong
load applied to the system is supported by a small number of covalent bonds, leading to
the sequential replacement of the loaded bond every time the bond breaks. Consequently,
multiple events in the covalent bond dissociation occur. However, in the case of a large EBD,
many covalent bonds in the entire system become too unstable to support the strong loads
via large deformations. Therefore, many covalent bonds are simultaneously dissociated via
thermal fluctuation, causing a large stress reduction.
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Figure 5. Number of dissociated bonds with respect to (a) strain and (b) E_BD, whose results
correspond to Figure 4b. In subfigure (a), the number of the first and second dissociated bonds is
represented by blue diamond (�) and orange circle (•), respectively. The corresponding value of
E_BD is listed near each datum. In subfigure (b), numbers from the first to fifth dissociation events
are represented in blue, orange, grey, yellow, and green, respectively.

Figure 6 shows the snapshots of the system during the tensile deformation for (a)
EBD = 0 and (b) EBD = 400 (kJ/mol), visualizing the effect of EBD on the fracture behavior
of the covalent bonds. For EBD = 0, the covalent bonds that constitute a molecular segment
elongated in the tensile direction are successively dissociated with the deformation from
ε = 0.5 to 2.0. For EBD = 400, the covalent bonds in tension are widely distributed inside
the system, and several of these bonds are simultaneously broken between ε = 1.5 and 2.0.
Fragments of molecules not included in the crosslinked structure are also found at ε = 2.0.
It should be noted that EBD of the covalent bonds in the backbone of the DGEBA/EDA
reactant is in the range of 270–380 kJ/mol, according to the calculations by ALFABET, a
software based on quantum calculations and machine learning techniques [54–56]. EBD
used in this study is believed to be adequate for a practical system.

The following inferences can be drawn from the results of this study. When EBD is
small, the stress gradually decreases from the first peak because the crosslinked structure is
broken sequentially. In contrast, for a larger EBD, the crosslinked structure is simultaneously
broken throughout the system, causing a drastic reduction in the stress and brittle behavior
of the material.
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The stress–strain curve for the brittle fracture behavior can be reproduced by introduc-
ing the Estrain and EBD. However, the maximum stress and strain are significantly different
from those determined experimentally. One of the main reasons for the discrepancy be-
tween the simulation and experimental results may be the inaccurate treatment during
the electrostatic interactions. In this study, the point charge for each atom does not change
during the MD simulation. However, the electrostatic field around a molecule depends
on molecular conformation. In particular, the electrostatic field significantly changes in
response to the molecular topological change associated with the chemical reaction and
covalent bond fracture. Owing to the covalent bond dissociation, unpaired electrons are
usually generated, resulting in the destabilization of separated molecules. Such a destabi-
lization is expected to affect the proposed thermally activated process. The point charge
should be redefined to improve our protocols.

In the future, the stress–strain curve over a wide range of system deformations will be
quantitatively reproduced by scaling up the system, refining the electrostatic interaction,
and other parameters such as r0, EBD, and the frequency factor in Equation (1). Furthermore,
failure mechanisms for various loading conditions, including the cyclic loading for the
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fatigue failure, will be elucidated on micro to macro scales by combining this approach with
coarse-grained simulations such as dissipative particle dynamics [57], density functional
theory [58], and the finite element method [59].

4. Conclusions

In this study, we developed a novel algorithm that can represent a thermally activated
process during covalent bond dissociation by combining classic MD simulation with the
MC method. Many previous studies based on classic MD and bond-order-based MD have
considered only covalent bond length when determining bond dissociation. However, the
angles between the neighboring three and four atoms are also important for determining
the strain energy of a covalent bond. For the first time, in this study, the strain energy
accumulated in a single bond is represented by the sum of all potential energy contributions,
such as bond, angle, dihedral angle, and Lennard-Jones and Coulomb potentials. Another
novel aspect of this study is the introduction of the bond dissociation energy (EBD), which
the strain energy exceeds during bond dissociation.

This algorithm is applied to the uniaxial tensile simulations for the crosslinked struc-
ture obtained by the chemical reaction between DGEBA and EDA, leading to the following
results. When EBD is small, the stress decreases gradually from its maximum value because
the covalent bonds are sequentially broken. However, many covalent bonds are simulta-
neously broken for a large EBD, resulting in a drastic reduction in the stress. These results
indicate that covalent bond dissociation as a thermal activation process strongly influences
the brittle fracture behavior of thermosetting polymers.
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