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Abstract: The COVID-19 pandemic caused by SARS-CoV-2 has majorly impacted public health and
economies worldwide. Although several effective vaccines and drugs are now used to prevent
and treat COVID-19, natural products, especially flavonoids, showed great therapeutic potential
early in the pandemic and thus attracted particular attention. Quercetin, baicalein, baicalin, EGCG
(epigallocatechin gallate), and luteolin are among the most studied flavonoids in this field. Flavonoids
can directly or indirectly exert antiviral activities, such as the inhibition of virus invasion and
the replication and inhibition of viral proteases. In addition, flavonoids can modulate the levels
of interferon and proinflammatory factors. We have reviewed the previously reported relevant
literature researching the pharmacological anti-SARS-CoV-2 activity of flavonoids where structures,
classifications, synthetic pathways, and pharmacological effects are summarized. There is no doubt
that flavonoids have great potential in the treatment of COVID-19. However, most of the current
research is still in the theoretical stage. More studies are recommended to evaluate the efficacy and
safety of flavonoids against SARS-CoV-2.
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1. Introduction

COVID-19 is a global disease caused by severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) with a high morbidity and mortality rate. As of November 2022, COVID-19
has spread to 222 countries with more than 600 million confirmed cases and more than
6.5 million cumulative deaths [1]. The COVID-19 outbreak not only endangers human
health and livelihoods, but also has a huge impact on global public health systems and
economic development.

SARS-CoV-2 is a positive-stranded RNA virus with a characteristic coronavirus
spine protein on its outer surface that is capable of droplet transmission [2–4]. The vi-
ral structure of SARS-CoV-2 has a high degree of similarity to SARS-CoV and MERS-CoV,
and it is similarly a zoonotic virus with a long incubation period and high transmis-
sion rate [2,5–7]. SARS-CoV-2 is highly mutagenic, and there are currently four mutant
strains, Alpha, Beta, Gamma, and Delta, with the newly discovered Omicron mutant
strain becoming a major global disease and causing strain in just a few months due to its
strong infectious and immune-escaping ability [8–11]. Some common symptoms include
fever, headache, shortness of breath, fatigue, cough, nausea, vomiting, diarrhea, and nasal
congestion [12–14]. Most infected patients are from mild to moderate and do not require
special treatment, but those with underlying conditions, such as heart disease, lung disease,
and diabetes, as well as the elderly, are more likely to become seriously ill and have a higher
mortality rate [13,15–17].
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In addition to the vaccine, there are currently three new oral crown drugs approved
for marketing worldwide, including Paxlovid (Pfizer, New York, USA) [18], Molnupiravir
(Merck, Kenilworth, NJ, USA) [19], and the recently approved marketed remdesivir deriva-
tive VV116 (Topalliance Biosciences, Shanghai, China) [4,20]. In the early stage of the
pandemic, there was a shortage of therapeutic options for COVID-19. Natural products,
especially flavonoids, played a huge role in the early stage of the epidemic, showing good
results in the treatment and prevention of COVID-19, which attracted widespread attention
and research.

Flavonoids are widely found in many fruits and vegetables and have excellent an-
tidiabetic, activity anti-inflammatory, and antiviral activity [21,22]. Flavonoids are mainly
obtained through chemical synthesis, biosynthesis, and extraction from plants, and this
article provides an overview of the chemical synthesis of several flavonoids. Flavonoid
compounds are extremely potent against SRAS-CoV-2 and can be used to treat COVID-19.
For example, EGCG inhibits the binding of the virus to the ACE2 receptor [3]. Some
flavonoids, such as baicalein, luteolin, and quercetin, can inhibit the activity of 3C-like
protease (3CLpro), papain-like protease (PLpro), and RNA-dependent RNA polymerase
(RdRp) [23–25]. In addition, various flavonoids such as kaempferol, hesperidin, and
isorhamnetin have also been shown to have inhibitory effects on SARS-CoV-2 [26–28].
Flavonoids also modulate the levels of inflammatory factors in the body and improve
inflammation in COVID-19 patients.

Regarding the research progress of the anti-SARS-CoV-2 role of flavonoids, we sum-
marized in this review, expecting to provide some reference for the development of anti-
SARS-CoV-2 drugs. This article will summarize the recent research progress on the anti-
SARS-CoV-2 pharmacological activity of flavonoids. It is hoped that this will provide ideas
for the development of flavonoid drugs.

2. Methods

This paper summarizes the structural classification and pharmacological effects of
flavonoids and provides a detailed review of the chemical synthesis of quercetin, EGCG,
luteolin, baicalein, and baicalin as well as their anti-SARS-CoV-2 effects.

The literature search was performed through the Elsevier, Web of Science, and PubMed
databases. The keywords included: COVID-19; SARS-CoV-2; flavonoids; treatment;
pharmacological effects; and synthesis. Non-English literature was selected for exclu-
sion from this review. Other than that, no other restrictions were used in this paper.
This article was also accessed on the WHO Coronavirus (COVID-19) Dashboard (https:
//COVID19.who.int/table, accessed on 30 November 2022).

3. Pathogenesis of SARS-CoV-2

SARS-CoV-2 (Figure 1) is a positive-stranded RNA virus with four main structural
proteins: the spike protein (S protein), the membrane protein (M protein), the envelope
protein (E protein), and the nucleocapsid coat protein (N protein) in addition to some
nonstructural proteins (nsps) [29–31]. The spike protein is in the outer layer of the virus and
has two subunits, S1 and S2. The receptor-binding domain (RBD) of the S1 subunit binds to
the ACE2 receptor of the host cell and then, with the involvement of cellular proteins, such
as transmembrane serine protease 2 (TMPRSS2), cathepsin B/L (CatB/L), and flavoprotein,
fuses with the cell membrane by the S2 subunit and enters the host cell [32–35]. Upon entry
into the cell, the virus produces the polyproteins, 1a and 1b (pp1a and pp1ab) [36]. This is
immediately followed by cleavage by 3CLpro, also called main protease (Mpro), and PLpro

into 16 nonstructural proteins (nsps) [37,38]. The RdRp is an essential enzyme that can
participate in RNA replication and negative-stranded RNA synthesis. The synthesized
negative-stranded RNA can be used as a model for mRNA synthesis. The mRNA is
translated into a polypeptide chain, which is modified and processed into four structural
proteins [39,40]. The viral RNA is wrapped in the N protein and released from the cell by
cytokinesis (Figure 2) [41–43].
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Figure 2. Pathogenesis of SARS-CoV-2. Abbreviations: ACE2: angiotensin converting enzyme 2;
TMPRSS2: transmembrane serine protease 2; CatB/L: cathepsin B/L; RBD: receptor-binding domain;
nsps: nonstructural proteins; pp1a: polyproteins 1a; pp1ab: polyproteins 1ab; 3CLpro: 3C-like pro-
tease; Mpro: main protease; PLpro: papain-like protease; RdRp: RNA-dependent RNA polymerase.

4. Classification, Synthesis and Activity of Flavonoids
4.1. Structure and Classification of Flavonoids

Flavonoids are a series of polyphenolic compounds found in various plants that
have a benzo-γ-pyrone structure and can be synthesized by the phenylpropane pathway.
Flavonoids are mostly found in esterified or glycosylated forms, and they form the basic
parent nucleus of the C6-C3-C6 structure through 15 carbons (Figure 3) [44].
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Depending on the different substitution patterns of the rings, the position of the B ring,
and the degree of oxidation of the C ring, there are six main subtypes, including flavones,
flavonols, isoflavones, chalcones, flavanes, and anthocyanins (Table 1) [45].

Table 1. Structure of flavonoids.

Flavonoids Basic Structure Example

Flavones
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4.2. Chemical Synthesis of Flavonoids

Flavonoids can be extracted from plants through biosynthesis and chemical synthesis.
This article focuses on the chemical synthesis of flavonoids, emphasizing the synthetic
routes of quercetin, baicalein, baicalin, EGCG, and luteolin.

4.2.1. Quercetin

The synthesis route of quercetin is as follows (Figure 4): 2% H2SO4/H2O is added to
rutin 1, reacted at 80–90 ◦C for 4 h, and then filtered; then, the filter cake is washed with
water to neutral, then recrystallized in ethanol to provide quercetin [46].
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4.2.2. Baicalein and Baicalin

The synthesis route of baicalein is as follows (Figure 5): Compound 3 is obtained by
the reaction of trimethoxyphenol 2 with AcOH and BF3-Et2O at 60 ◦C for 3 h, which is
further condensed with benzaldehyde for 70 h to provide compound 4. Next, compound 4
is subjected to intramolecular cyclization in the presence of I2/DMSO at 100 ◦C for 2.5 h to
provide compound 5; then, the methyl group is removed using pyridine hydrochloride at
190 ◦C for 6.5 h to provide baicalein [47].
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The synthesis route of baicalin is as follows (Figure 6): Using baicalin as the starting
material, the acetylation reaction is carried out in the presence of Ac2O and AcONa at 80 ◦C
to obtain acetylated baicalin 6. The acetylated baicalin is refluxed with BnBr in acetone
by heating in the presence of KI and K2CO3 to yield the benzyl-substituted compound 7.
The obtained compound 7 is removed from the benzyl group in THF by the action of
Pd(OH)2 with H2 to provide compound 8. Additionally, compound 8 is glycosylated with
brominated D-glucose in the presence of Ag2O at room temperature to provide glycosylated
product 9. The removal of the protecting group TBDPS of compound 9 with AcOH and
TBAF for 4 h provides compound 10. The subsequent oxidation of the hydroxyl group of
compound 10 with TEMPO and BAIB at room temperature provides product 11. Finally,
the protecting group is removed using Mg(OMe)2 at room temperature for 3 h to provide
the target compound baicalin [48].
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4.2.3. EGCG

The synthetic route of EGCG is as follows (Figure 7): Compound 12, containing allyl
alcohol, is oxidized by MnO2 at room temperature for 12 h to provide compound 13. In the
presence of HBr, the aldehyde group of compound 13 is cyclized with HOCH2CH2SH to
form cyclic S, O-acetal compound 14. Then, the oxidation of compound 14 with mCPBA at
0 ◦C for 8 h provides the oxidized S, O-acetal 15. The additional reaction with compound 15
in the presence of H2O is carried out with NBS to provide the bromohydrin compound 16
with stereoisomerism. The brominated alcohol of compound 16 is converted to epoxide 17
by CsCO3 in a reaction at 0 ◦C for 5 h. Additionally, the phenol-containing compound 21
is reacted with compound 17 at 45 ◦C to provide the cis-ring-opening product 18. In the
presence of DIC, the alcohol hydroxyl group of compound 18 is esterified using DMAP;
subsequently, the esterified product 19 is treated with an excess of TFAA in the environment
of Et3SiH, and DCM (1:10) is reacted first at −78 ◦C for 0.5 h and then at room temperature
for 27 h to provide the cyclized product 20. Finally, the protecting group of compound 20 is
removed using H2/Pd(OH)2 at 20 atm to obtain the final product EGCG [49].

4.2.4. Luteolin

The synthesis route of luteolin is as follows (Figure 8): rutin 1 is used as the starting
material, the protective agent Na2S2O4 is added, and the target product luteolin is refluxed
at 100 ◦C [50].
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4.3. Pharmacological Activity of Flavonoid Compounds
4.3.1. Anti-Inflammatory Effect

Cytokine storm is a feature of the inflammatory response induced by SARS-CoV-2 [51,52].
Flavonoids can target pathways, such as NF-κB, MAPK, ERK, and Akt, and can also reduce
the release of inflammatory cytokines, which play an anti-inflammatory role [53].
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A study showed that quercetin inhibited MC903-induced atopic dermatitis and im-
proved arthritis by reducing proinflammatory factors [54,55]. Kaempferol blocked the
ROS/NF-κB signaling pathway and reduced the inflammatory response in atherosclero-
sis [56]. In addition, kaempferol also regulated the expression of adipogenesis and reduced
lipid accumulation in CCAAT/enhancer binding protein α (CEBPA) by upregulating the
mRNA expression of Pnpla2 and Lipe [57]. Janumetin prevented neuroinflammation
caused by sleep deprivation and also treated atopic dermatitis caused by obesity [58,59].
Both chrysin and lignans have been shown to have preventive effects against ochratoxin
A-induced gastrointestinal inflammation in vitro [60]. Oroxylin A has a therapeutic effect
on collagen-induced arthritis (CIA). In a mouse model of CIA, researchers found that mice
treated with Oroxylin A had significantly lower levels of inflammatory factors in their
serum and reduced somatic damage caused by arthritis [61]. Rutin is reportedly effective
in treating colitis. Animal research discovered that no additional medication was required,
and only 0.1% rutin was added to the daily diet and fed for 2 weeks. The concentration
of proinflammatory factors in the serum of the mice was lowered, and the symptoms of
colitis were reduced [62]. Saeedi-Boroujeni’s study reported that quercetin was able to
affect the thioredoxin-interacting protein (TXNIP), thereby inhibiting NLRP3 inflammatory
vesicles and achieving an inflammatory suppressive effect [63]. Clinical studies have shown
that adjuvant therapy with quercetin in early COVID-19 patients significantly reduced the
release of proinflammatory factors, such as TNF-β and IL-1β, and alleviated inflammation
in patients with COVID-19 [43].

4.3.2. Antiviral Effect

Flavonoids are effective throughout the life of a virus. They can act through the inhibi-
tion of the virus cell entrance, replication of the viral gene set, translation and processing of
proteins, and release of the virus from the cell [64].

It was demonstrated that both biochanin A and baicalin were able to inhibit H5N1 virus
replication in A549 cells, but the mechanisms of action were different [65,66]. Both fisetin
and rutin blocked viral replication by inhibiting the 3CLpro activity of enterovirus A71 [67].
Formononetin modulated COX-2/PGE2 expression, thereby inhibiting the replication
with enterovirus A71 [68]. Silymarin reportedly has anti-dengue virus activity in vitro
and hepatoprotective properties for HCV infection treatment [69,70]. An in vitro study
has shown that flavonoids isolated from the above-ground parts from Marcetia taxifolia
are effective against herpes simplex virus, poliovirus, and hepatitis B virus [71]. The
total flavonoids extracted from Robinia pseudoacacia cv. idaho showed the significant
inhibition of herpes simplex virus type 1 and enterovirus type 71 with therapeutic indices of
113.8 and 46.2 [72]. It was shown that selenium functionalization with quercetin enhanced
the inhibitory effect on Mpro and that quercetin significantly inhibited SARS-CoV-2 infection
at higher concentrations, while quercetin derivatives inhibited the viral infection at low
concentrations [23]. Baicalein and baicalin were able to bind to SARS-CoV-2 RdRp, causing
the RdRp to be unable to participate in the RNA replication process of the virus [73].
Several studies in vitro have shown that EGCG can prevent the RBD region of SARS-CoV-2
from binding to the ACE2 receptor, thus preventing the virus from entering cells [74,75].
Numerous studies have proved that kaempferol, catechin, rutin, hesperidin, naringenin,
and luteolin all have anti-coronaviral effects.

4.3.3. Antidiabetic Effect

Diabetic patients infected by SARS-CoV-2 will lead to exacerbation of the disease.
Reducing the effect of diabetes on COVID-19 is particularly important. Flavonoids are
extremely useful in treating diabetes and diabetic complications. They can exert their thera-
peutic effects on diabetes by enhancing insulin secretion, regulating glucose metabolism,
and reducing inflammation and oxidative stress [76–78].

A study showed that EGCG and quercetin reduced insulin resistance, both in vivo
and in vitro, and also reduced glucose metabolism in the liver [79]. A study in a rat model
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of diabetes showed that EGCG improved diabetes in rats and improved streptozotocin-
induced complications [80]. Catechin is a naturally occurring product that has also been
shown to have anti-diabetic activity. Treating rats with Eudragit particles loaded with
catechins significantly reduced the concentration of blood glucose [81]. Clinical studies
have found that vitamin C and rutin, when administered, significantly lowered fasting
blood sugar in those with type 2 diabetes. In addition, rutin can improve neuropathy in
diabetic patients [82,83]. A study exhibited that flavonoids extracted from Cistus laurifolius
L. inhibited both α-glucosidase and α-amylase in vivo and vitro [84]. In a mouse model
of streptozotocin-induced diabetes, the combination of Astragalus polysaccharides and
Astragalus flavonoids significantly improved the function of insulin and thus exerted
an anti-diabetic effect [85].

The collected evidence suggests that flavonoids can exert their antidiabetic effects
through different mechanisms. However, there are no published studies about the treatment
of COVID-19 diabetic patients with flavonoids.

4.3.4. Anticancer Effect

Studies showed that cancer patients with SARS-CoV-2 had a higher mortality rate [86].
Flavonoids can also exert antitumor effects through mechanisms such as antioxidants,
COX-2 inhibition, immunomodulation, affecting cell cycle effects, apoptosis induction in
cancer cells, tumor angiogenesis prevention, and telomerase activity inhibition [87,88].

In a study of the agent-sensitive LoVo cell lines and their agent-resistant LoVo/Dx
subline model, baicalein and luteolin inhibited the development of colon cancer cells [89].
Baicalein also improves the effectiveness of cisplatin in human lung cancer cells [90].
Apigenin had been shown to inhibit the PI3K/Akt/mTOR pathway during viral accretion,
thereby suppressing viral accretion [91]. Oroxylin A was shown to have a beneficial
therapeutic effect on breast cancer by specifically binding to α-actinins 1 (ACTN1), thereby
inhibiting ACTN1 expression to prevent cancer cell metastasis [92]. Oroxylin A also showed
a positive inhibitory effect on lung cancer by suppressing lung cancer cell proliferation
and metastasis in vivo [93]. Latifolin blocked cell growth, division, migration, invasion,
and adhesion in oral squamous cell carcinoma by targeting PI10K/AKT/mTOR/p3S70K
signaling [94]. EGCG and BAY11-7082 synergistically acted for the suppression of lung
cancer cell proliferation both in vitro and in vivo [95].

Although SRAS-CoV-2 does not directly cause cancer, cancer patients infected with
SRAS-CoV-2 have more severe symptoms and a higher lethality rate. Further investigating
cancer cell inhibition would help improve COVID-19 patients’ symptoms.

5. Anti-SARS-CoV-2 Activity of Flavonoids
5.1. Anti-SARS-CoV-2 Pharmacological Effects of Quercetin

Quercetin is a flavanol compound that is widely found in various plants, mainly in the
form of glycosides [96]. Studies have shown that quercetin has strong anti-inflammatory, an-
tiviral, and immunomodulatory activities [97–99]. Cytokine storm is a feature of the inflam-
matory response induced by SARS-CoV-2 and is a major cause of death by COVID-19 [51,52].
According to relevant studies, NLRP3 inflammatory vesicles play an important role in
inflammation [100]. Therefore, inhibiting NLRP3 inflammatory vesicle activation can
effectively suppress the inflammatory response. Saeedi-Boroujeni’s study reported that
quercetin could affect the TXNIP, thereby inhibiting NLRP3 inflammatory vesicles and
achieving an inflammatory suppressive effect [63]. Clinical studies have demonstrated
that the adjuvant treatment of early COVID-19 with quercetin significantly reduces the
viral load and release of proinflammatory factors. Meanwhile, quercetin combined with
antivirals for COVID-19 reduces mortality and the length of stay [101,102]. Meanwhile,
Mangiavacchi et al. have shown that selenium functionalization with quercetin enhances
the inhibitory effect on Mpro. According to the RT-qPCR results, quercetin at higher concen-
trations significantly inhibited SARS-CoV-2 infection, while quercetin derivatives inhibited
the viral infection at low concentrations [23].
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5.2. Anti-SARS-CoV-2 Pharmacological Effects of Baicalein and Baicalin

Baicalein and baicalin are both flavonoid compounds extracted from the dried roots
from scutellaria baicalensis, which have various pharmacological effects, including anti-
inflammatory, antiviral, antibacterial, hepatoprotective, and choleretic [103,104]. Liu et al.
investigated the antiviral activity of baicalein against SARS-CoV-2 using RT-qPCR and
showed that baicalein was able to inhibit the replication of SARS-CoV-2 in Verb cells in vitro
with an EC50 of 2.9 µM, SI > 172 (SI = CC50/EC50) [105]. Su et al. screened the novel
inhibitors of 3CLpro using a FRET protease assay and discovered that baicalein and baicalin
exhibit a significant inhibitory effect on 3CLpro [24]. In addition, Keivan Zandi et al. found
that baicalein and baicalin are able to bind to SARS-CoV-2 RdRp, causing RdRp to be
unable to participate in the virus’ RNA replication process; SARS-CoV-2 RdRp inhibition
was first demonstrated in a study by Keivan Zandi et al. [73].

5.3. Anti-SARS-CoV-2 Pharmacological Action of EGCG

EGCG is a flavonoid extracted from green tea with various pharmacological activ-
ities, such as antibacterial, antiviral, antioxidant, and anti-inflammatory effects [106].
SARS-CoV-2 can enter host cells by binding to the ACE2 receptor via the surface S protein.
Several studies in vitro have shown that EGCG can prevent the RBD region of SARS-CoV-2
from binding to the ACE2 receptor, thus preventing the virus from entering cells with a low
cytotoxicity [3,74,75,107,108]. EGCG can inhibit the replication of SARS-CoV-2 by inhibiting
certain key enzymes in the RNA replication process. For example, Nsp15 (U-specific endori-
bonuclease) can cleave the polyU sequence in viral RNA, thus interfering with the host’s
immune system and enabling the virus to undergo immune escape. Additionally, Nsp15 is
significant in virus replication [109,110]. An in vitro study by Hong et al. exhibited that
EGCG significantly inhibited the Nsp15 activity of SARS-CoV-2, with drug concentrations
below 1 µg/mL completely inhibiting the activity of Nsp15 and thereby inhibiting virus
replication in cells [111]. Furthermore, some studies showed that EGCG inhibits Mpro

in vitro, thereby inhibiting virus replication [112–114].

5.4. Anti-SARS-CoV-2 Pharmacological Action of Luteolin

Luteolin, mostly in the form of glycosides, exists in a variety of plants, has anti-
inflammatory, antiallergic, antiviral, antitumor, antibacterial, and other pharmacological
activities, and is often clinically used for its anti-inflammatory effects, coughs, and expecto-
rants [115–117]. In vitro studies have shown that as little as 20 µM luteolin has an inhibitory
effect on 3CLpro. Additionally, luteolin also inhibits RdRp activity [25]. Xiao et al., in
a SARS-CoV-2 pseudovirus experiment, discovered that luteolin is able to bind to the S
protein and significantly inhibits the entry of SARS-CoV-2 into cells with an EC50 less
than 7 µmol/L [118]. COVID-19 can cause a loss of smell or taste. A clinical study by
L. D’Ascanio et al. showed that daily oral supplementation of palmitoylethanolamide and
luteolin was able to restore the patient’s sense of smell [119]. In addition, clinical studies by
Lisa O’Byrne et al. also exhibited that palmitoylethanolamide and luteolin supplementation
could intervene to treat olfactory dysfunction in those suffering from COVID-19 [120].

5.5. Other Flavonoids with Anti-SARS-CoV-2 Activity

Kaempferol can inhibit the activity of 3CLpro. The study by Abbas Khan and Wang
Heng et al. exhibited that a 62.5–125 µg/mL concentration of kaempferol can significantly
shorten the cytopathic effects (CPE) caused by Vero E6 cell infection in vitro [27].

Both hesperidin and hesperitin can inhibit the activity of TMPRSS2 and ACE2 by
binding to them. Additionally, they can block the SARA-CoV-2 S protein from binding
the ACE2 receptor and prevent SARA-CoV-2 from entering the cell [28]. Hesperidin also
blocks the AKT pathway and inhibits Ang II-induced collagen expression and cardiac
fibroblast proliferation during COVID-19 infection [121]. Clinical studies have also shown
that hesperidin can reduce some of the clinical symptoms of COVID-19, such as shortness
of breath, cough, decreased or even absent taste, and fever [122].
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Furthermore, an in vitro study revealed that isorhamnetin also interacts with ACE2
to exert anti-SARS-CoV-2 activity [26]. It was found that naringenin exhibits potent anti-
SARS-CoV-2 activity in vitro by inhibiting Mpro [123,124].

Diosmin, biochanin A, and silymarin are able to reduce the inflammatory response and
alleviate inflammation by decreasing cytokine levels in patients with COVID-19 [125–127].

The in vivo and in vitro activity studies of some flavonoid compounds are shown in
Tables 2 and 3 below.

Table 2. Study on the in vitro activity of flavonoids.

Compound In Vitro Models Conc. Effects Mechanism of Action References

Baicalin

HepG2 cells 16 µM Pneumonia Inhibits NLRP3 inflammatory vesicles [128]

Rat IEC-6 cells 10.0 µg/mL Inflammatory
bowel disease

Inhibits IL-6 and TNF-α inflammatory
factor levels [129]

KOPN-8, RCH-ACV,
SEM, RS4-11,

NALM-6
10 mg/mL

Acute
B-lymphoblastic

leukemia

Inhibits the glycogen synthase kinase 3β
and induces cell cycle arrest by

upregulating p27Kip1
[130]

MCF-7 and
MDA-MB-231 cells 30 µM Breast cancer Inhibits breast cancer cell proliferation

and induces G1/S arrest in cells [131]

Vero, BHK-21, and
HEK 293T cells 100 µM Chikungunya virus — [132]

Baicalein and
baicalin Vero CCL-81 cells 20 µM SARS-CoV-2 Inhibits SARS-CoV-2 RNA-dependent

RNA polymerase activity [105]

Baicalein

Vero E6 cell >2.0 µM COVID-19
Inhibits virus replication in vivo

and reduces serum levels of IL-1β
and TNF-α

[133]

Vero cell lines 50 µM SARS-CoV-2 Inhibits SARS-CoV-2 replication and its
3C-like protease [105]

HCT116 cells 50 µM Colorectal cancer Induces apoptosis in human colon
cancer cells [134]

Silymarin Vero cells 749.70 µg/mL Dengue virus Binds to the surface protein of the virus
to prevent entry into the cell [70]

Luteolin

ARPE-19 cells 50 µM
Age-related

macular
degeneration

Decreases levels of IL− 8 and IL− 6 [135]

MDCK cells and
Vero cells From 3.75 to 240 µM Influenza A virus Inhibits the expression of β-COP protein [136]

Enzymatic inhibition
assay 4.6 µM COVID-19 Inhibits SARS-CoV-2 RNA-dependent

RNA polymerase activity [25]

EGCG

Peripheral blood
lymphocytes 50 µM HIV — [137]

live SARS-CoV-2
strain 1 µg/mL SARS-CoV-2 Inhibits Nsp15 activity [111]

E. coli 7.58 µg/ mL SARS-CoV-2 Inhibits the activity of 3CLpro [112]

Formononetin Vero cells 14.91 µmol/L Enterovirus 71
Inhibits EV71-induced COX-2

expression and PGE2 production via
MAPKs pathway

[68]

Biochanin A A549 cells 5 µM H5N1 influenza A
viruses

Interferes with AKT, ERK 1/2,
and NFκB activation to inhibit

viral replication
[65]

Quercetin T-REx™-293 cell line 10 µg/mL HCV Inhibits NS3 protease, thereby inhibiting
viral replication [138]

Naringenin Huh-7.5 cells 25 µM HCV Reduces production of intracellular
viral proteins [139]
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Table 3. Study on the in vivo activity of flavonoids.

Compound In Vivo Models Conc. Effects Mechanism of Action References

Baicalin

Male C57BL/6 mice 21 mg/kg Arthritis Antagonism of Th-17 cells [140]

Female BALB/C
nude mice 200 mg/kg Breast cancer Inhibits breast cancer cell proliferation and

induces G1/S arrest in cells [131]

Six-week-old male
C57BL/6J mice 21 mg/kg Diabetes Activates AKT/AS160/GLUT4 pathway [141]

Baicalein

Male SD rats 200 mg/kg COVID-19
Inhibits virus replication in vivo

and reduces serum levels of IL-1β
and TNF-α

[133]

Male ICR mice 1, 5, and
10 mg/kg Colorectal cancer Induction of apoptosis in human colon

cancer cells [134]

Female C57BL/6
mice

0.8 mg/mouse
nine times Bladder cancer

Reduces expression of cyclin D1 by
inhibiting new protein synthesis and
promoting proteasomal degradation

and reduces expression of cyclin B1 by
inhibiting new protein synthesis.

[142]

Male C57BL/6 mice 0.5 mg/kg Type 2 diabetes
Improves the viability and insulin

secretion of fine beta cells and human
pancreatic islets

[143]

Luteolin

Male ICR mice 100 mg/kg Acute pancreatitis Suppresses the activation of the
NF-κB pathway [144]

Male BALB/cN mice 5mg/kg Nephrotoxicity
Reduces Pt accumulation in the

kidney to improve oxidative stress
and inflammation

[145]

BALB/c nude mice 40 mg/kg Gastric carcinoma Downregulates VEGF-A and MMP-9
and decreases the immune response [146]

EGCG

Male C57BL/6 mice 10 mg/kg SARS-CoV-2 Inhibits virus replication [114]

Male ICR mice 100 mg/kg Diabetic
nephropathy

Inhibits increased OPN expression,
reduces serum creatinine, and causes

proteinuria and normalized
morphological changes in STZ-induced

diabetic nephropathy

[147]

Oroxylin A

Female BALB/c
nude mice 200 mg/kg Lung cancer Inhibits the activation of ERK signaling and

inhibits snail protein content and EMT [93]

Male DBA/1 mice 10 mg/kg Rheumatoid
arthritis

Reduces serum levels of anti-CII Abs,
IL-1β, IL-6, TNFα, and IL-17 [61]

Tiliroside Male C57BL/6 mice

5 mg/kg,
15 mg/kg,
300 mg/kg

Dose-dependent
manner

Type 2 diabetes Regulates miR-27 expression and
inhibits glycoisomerization [148]

Biochanin A Male C57BL/6 mice 12.5, 25, and
50 mg/kg Acute lung injury

Inhibits TLR4/NF-κB signaling
pathway activation and increases
PPAR-γ expression in the lungs

[126]

Isorhamnetin Male ICR mice 1 nM Diabetes Activates JAK/STAT pathway to
increase glucose uptake by muscle cells [149]

Quercetin Male ICR mice 0.1 nM and 1 nM Diabetes
Activates CaMKKβ/AMPK signaling

pathway and
activates IRS3/PI10K/Akt signaling

[149]

Naringenin Pregnant
Sprague–Dawley rats

25, 50, or
100 mg/kg Neuroapoptosis

Regulates PI3/Akt/PTEN signaling
pathway and

inhibits NF-κB-mediated inflammation
[150]
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6. Conclusions

The COVID-19 outbreak endangers human health and livelihoods and heavily impacts
global public health systems and economic development. Although there are vaccines and
specific drugs to treat COVID-19, such as Paxlovid, Molnupiravir, and VV116, due to the
instability of the virus, which is prone to immune escape, researchers need to investigate
more drugs and options for treating COVID-19.

Flavonoids are widely found in various plants and have a significant effect on both
the prevention and treatment of SARS-CoV-2. Several in vivo and in vitro studies have
demonstrated that flavonoids exhibit excellent antiviral activity against SARS-CoV-2 and
can inhibit SARS-CoV-2 by inhibiting key viral targets, including the ACE2 receptor, TM-
PRSS2, Mpro, RdRp, S protein RBD, etc. In addition, flavonoids also have an inhibitory
effect on inflammation caused by SARS-CoV-2, inhibiting the production and release of
various proinflammatory factors in the inflammatory response [151]. At the same time,
flavonoids improve some of the clinical symptoms of COVID-19.

Although many studies have reported flavonoids’ anti-SARS-CoV-2 effects, most of
them are theoretical studies. Only a few in vivo and clinical studies are available. Thus,
more applied experimental studies are needed to explore the drugs’ safety and efficacy.
Secondly, the bioavailability of the ingested compounds is limited, and how to improve
the bioavailability of the compounds is also an issue to be considered. Choosing the right
route of administration and preparing the drug into formulations can improve a drug’s
bioavailability [152]. While there are still some problems, flavonoids can undoubtedly
show anti-SARS-CoV-2 effects through direct or indirect pathways. Thus, they represent
a group of promising anti-SARS-CoV-2 compounds. Flavonoids have excellent medicinal
potential. We are expecting more studies to explore the medicinal value of flavonoids and
to develop flavonoid drugs.
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Administration in Patients with Chronic Venous Disorders on Selected Factors Affecting Angiogenesis. Molecules 2019, 24, 3316.
[CrossRef] [PubMed]

126. Hu, X.; Qin, H.; Li, Y.; Li, J.; Fu, L.; Li, M.; Jiang, C.; Yun, J.; Liu, Z.; Feng, Y.; et al. Biochanin A protect against lipopolysaccharide-
induced acute lung injury in mice by regulating TLR4/NF-κB and PPAR-γ pathway. Microb. Pathog. 2020, 138, 103846. [CrossRef]
[PubMed]

127. Zhu, Z.M.; Sun, G.Y. Silymarin mitigates lung impairments in a rat model of acute respiratory distress syndrome. Inflammophar-
macology 2018, 26, 747–754. [CrossRef] [PubMed]

128. Shi, H.; Zhang, Y.; Xing, J.; Liu, L.; Qiao, F.; Li, J.; Chen, Y. Baicalin attenuates hepatic injury in non-alcoholic steatohepatitis cell
model by suppressing inflammasome-dependent GSDMD-mediated cell pyroptosis. Int. Immunopharmacol. 2020, 81, 106195.
[CrossRef]

129. Chen, J.; Zhang, R.; Wang, J.; Yu, P.; Liu, Q.; Zeng, D.; Song, H.P.; Kuang, Z.Y. Protective effects of baicalin on LPS-induced injury
in intestinal epithelial cells and intercellular tight junctions. Can. J. Physiol. Pharmacol. 2015, 93, 233–237. [CrossRef]

130. Orzechowska, B.U.; Wrobel, G.; Turlej, E.; Jatczak, B.; Sochocka, M.; Chaber, R. Antitumor effect of baicalin from the Scutellaria
baicalensis radix extract in B-acute lymphoblastic leukemia with different chromosomal rearrangements. Int. Immunopharmacol.
2020, 79, 106114. [CrossRef]

131. Gao, Y.; Liu, H.; Wang, H.Z.; Hu, H.L.; He, H.J.; Gu, N.; Han, X.; Guo, Q.; Liu, D.; Cui, S.; et al. Baicalin inhibits breast cancer
development via inhibiting IκB kinase activation in vitro and in vivo. Int. J. Oncol. 2018, 53, 2727–2736. [CrossRef]

132. Oo, A.; Rausalu, K.; Merits, A.; Higgs, S.; Vanlandingham, D.; Bakar, S.A.; Zandi, K. Deciphering the potential of baicalin as
an antiviral agent for Chikungunya virus infection. Antivir. Res. 2018, 150, 101–111. [CrossRef] [PubMed]

http://doi.org/10.1038/s41467-020-20608-z
http://doi.org/10.1073/pnas.1921485117
http://doi.org/10.1021/acs.jafc.1c02050
http://doi.org/10.1016/j.bbrc.2020.12.106
http://www.ncbi.nlm.nih.gov/pubmed/33454058
http://doi.org/10.1016/j.nutos.2021.12.004
http://www.ncbi.nlm.nih.gov/pubmed/35106518
http://doi.org/10.3390/v13122533
http://doi.org/10.2174/138955709787001712
http://www.ncbi.nlm.nih.gov/pubmed/19149659
http://doi.org/10.1007/s11064-018-2482-2
http://doi.org/10.18632/oncotarget.16092
http://doi.org/10.1007/s11655-022-3686-5
http://doi.org/10.26355/eurrev_202106_26059
http://doi.org/10.1002/14651858.CD013876.pub3
http://doi.org/10.1007/s10787-022-01054-3
http://doi.org/10.1155/2022/3125662
http://doi.org/10.1016/j.jpha.2020.03.009
http://www.ncbi.nlm.nih.gov/pubmed/32296570
http://doi.org/10.1016/j.phrs.2020.105255
http://doi.org/10.3390/molecules24183316
http://www.ncbi.nlm.nih.gov/pubmed/31547271
http://doi.org/10.1016/j.micpath.2019.103846
http://www.ncbi.nlm.nih.gov/pubmed/31698051
http://doi.org/10.1007/s10787-017-0407-3
http://www.ncbi.nlm.nih.gov/pubmed/29098546
http://doi.org/10.1016/j.intimp.2020.106195
http://doi.org/10.1139/cjpp-2014-0262
http://doi.org/10.1016/j.intimp.2019.106114
http://doi.org/10.3892/ijo.2018.4594
http://doi.org/10.1016/j.antiviral.2017.12.012
http://www.ncbi.nlm.nih.gov/pubmed/29269135


Molecules 2023, 28, 2735 19 of 19

133. Song, J.; Zhang, L.; Xu, Y.; Yang, D.; Zhang, L.; Yang, S.; Zhang, W.; Wang, J.; Tian, S.; Yang, S.; et al. The comprehensive study
on the therapeutic effects of baicalein for the treatment of COVID-19 in vivo and in vitro. Biochem. Pharmacol. 2021, 183, 114302.
[CrossRef]

134. Kim, D.H.; Hossain, M.A.; Kang, Y.J.; Jang, J.Y.; Lee, Y.J.; Im, E.; Yoon, J.H.; Kim, H.S.; Chung, H.Y.; Kim, N.D. Baicalein, an active
component of Scutellaria baicalensis Georgi, induces apoptosis in human colon cancer cells and prevents AOM/DSS-induced
colon cancer in mice. Int. J. Oncol. 2013, 43, 1652–1658. [CrossRef] [PubMed]

135. Hytti, M.; Szabo, D.; Piippo, N.; Korhonen, E.; Honkakoski, P.; Kaarniranta, K.; Petrovski, G.; Kauppinen, A. Two dietary
polyphenols, fisetin and luteolin, reduce inflammation but augment DNA damage-induced toxicity in human RPE cells. J. Nutr.
Biochem. 2017, 42, 37–42. [CrossRef]

136. Yan, H.Y.; Ma, L.L.; Wang, H.Q.; Wu, S.; Huang, H.; Gu, Z.Y.; Jiang, J.D.; Li, Y.H. Luteolin decreases the yield of influenza A virus
in vitro by interfering with the coat protein I complex expression. J. Nat. Med. 2019, 73, 487–496. [CrossRef]

137. Fassina, G.; Buffa, A.; Benelli, R.; Varnier, O.E.; Noonan, D.M.; Albini, A. Polyphenolic antioxidant (-)-epigallocatechin-3-gallate
from green tea as a candidate anti-HIV agent. AIDS 2002, 16, 939–941. [CrossRef] [PubMed]

138. Bachmetov, L.; Gal-Tanamy, M.; Shapira, A.; Vorobeychik, M.; Giterman-Galam, T.; Sathiyamoorthy, P.; Golan-Goldhirsh, A.;
Benhar, I.; Tur-Kaspa, R.; Zemel, R. Suppression of hepatitis C virus by the flavonoid quercetin is mediated by inhibition of NS3
protease activity. J. Viral Hepat. 2012, 19, e81–e88. [CrossRef] [PubMed]

139. Khachatoorian, R.; Arumugaswami, V.; Raychaudhuri, S.; Yeh, G.K.; Maloney, E.M.; Wang, J.; Dasgupta, A.; French, S.W.
Divergent antiviral effects of bioflavonoids on the hepatitis C virus life cycle. Virology 2012, 433, 346–355. [CrossRef]

140. Yang, X.; Yang, J.; Zou, H.J. Baicalin inhibits IL-17-mediated joint inflammation in murine adjuvant-induced arthritis. Clin. Dev.
Immunol. 2013, 2013, 268065. [CrossRef]

141. Fang, P.H.; Yu, M.; Zhang, L.; Wan, D.; Shi, M.Y.; Zhu, Y.; Bo, P.; Zhang, Z.W. Baicalin against obesity and insulin resistance
through activation of AKT/AS160/GLUT4 pathway. Mol. Cell. Endocrinol. 2017, 448, 77–86. [CrossRef]

142. Wu, J.Y.; Tsai, K.W.; Li, Y.Z.; Chang, Y.S.; Lai, Y.C.; Laio, Y.H.; Wu, J.D.; Liu, Y.W. Anti-Bladder-Tumor Effect of Baicalein from
Scutellaria baicalensis Georgi and Its Application In Vivo. Evid. -Based Complement. Altern. Med. Ecam 2013, 2013, 579751.
[CrossRef]

143. Fu, Y.; Luo, J.; Jia, Z.Q.; Zhen, W.; Zhou, K.Q.; Gilbert, E.; Liu, D.M. Baicalein Protects against Type 2 Diabetes via Promoting Islet
beta-Cell Function in Obese Diabetic Mice. Int. J. Endocrinol. 2014, 2014, 846742. [CrossRef] [PubMed]

144. Xiong, J.; Wang, K.Z.; Yuan, C.X.; Xing, R.; Ni, J.B.; Hu, G.Y.; Chen, F.L.; Wang, X.P. Luteolin protects mice from severe acute
pancreatitis by exerting HO-1-mediated anti-inflammatory and antioxidant effects. Int. J. Mol. Med. 2017, 39, 113–125. [CrossRef]

145. Domitrovic, R.; Cvijanovic, O.; Pugel, E.P.; Zagorac, G.B.; Mahmutefendic, H.; Skoda, M. Luteolin ameliorates cisplatin-induced
nephrotoxicity in mice through inhibition of platinum accumulation, inflammation and apoptosis in the kidney. Toxicology 2013,
310, 115–123. [CrossRef]

146. Lu, X.Y.; Li, Y.H.; Xiao, X.W.; Li, X.B. [Inhibitory effects of luteolin on human gastric carcinoma xenografts in nude mice and its
mechanism]. Zhonghua Yi Xue Za Zhi 2013, 93, 142–146. [PubMed]

147. Yoon, S.P.; Maeng, Y.H.; Hong, R.; Lee, B.R.; Kim, C.G.; Kim, H.L.; Chung, J.H.; Shin, B.C. Protective effects of epigallocatechin
gallate (EGCG) on streptozotocin-induced diabetic nephropathy in mice. Acta Histochem. 2014, 116, 1210–1215. [CrossRef]
[PubMed]

148. Qin, N.; Chen, Y.; Jin, M.N.; Zhang, C.; Qiao, W.; Yue, X.L.; Duan, H.Q.; Niu, W.Y. Anti-obesity and anti-diabetic effects of
flavonoid derivative (Fla-CN) via microRNA in high fat diet induced obesity mice. Eur. J. Pharm. Sci. 2016, 82, 52–63. [CrossRef]

149. Jiang, H.; Yamashita, Y.; Nakamura, A.; Croft, K.; Ashida, H. Quercetin and its metabolite isorhamnetin promote glucose uptake
through different signalling pathways in myotubes. Sci. Rep. 2019, 9, 2690. [CrossRef]

150. Hua, F.Z.; Ying, J.; Zhang, J.; Wang, X.F.; Hu, Y.H.; Liang, Y.P.; Liu, Q.; Xu, G.H. Naringenin pre-treatment inhibits neuroapoptosis
and ameliorates cognitive impairment in rats exposed to isoflurane anesthesia by regulating the PI3/Akt/PTEN signalling
pathway and suppressing NF-κB-mediated inflammation. Int. J. Mol. Med. 2016, 38, 1271–1280. [CrossRef]

151. Rahman, M.M.; Shohag, S.; Islam, M.R.; Akhter, S.; Mim, S.A.; Sharma, R.; Rauf, A. An Insight into COVID-19 and Traditional
Herbs: Bangladesh Perspective. Med. Chem. 2022, 19, 361–383. [CrossRef]

152. Rauf, A.; Abu-Izneid, T.; Khalil, A.A.; Hafeez, N.; Olatunde, A.; Rahman, M.; Semwal, P.; Al-Awthan, Y.S.; Bahattab, O.S.; Khan,
I.N.; et al. Nanoparticles in clinical trials of COVID-19: An update. Int. J. Surg. 2022, 104, 106818. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.bcp.2020.114302
http://doi.org/10.3892/ijo.2013.2086
http://www.ncbi.nlm.nih.gov/pubmed/24008356
http://doi.org/10.1016/j.jnutbio.2016.12.014
http://doi.org/10.1007/s11418-019-01287-7
http://doi.org/10.1097/00002030-200204120-00020
http://www.ncbi.nlm.nih.gov/pubmed/11919502
http://doi.org/10.1111/j.1365-2893.2011.01507.x
http://www.ncbi.nlm.nih.gov/pubmed/22239530
http://doi.org/10.1016/j.virol.2012.08.029
http://doi.org/10.1155/2013/268065
http://doi.org/10.1016/j.mce.2017.03.027
http://doi.org/10.1155/2013/579751
http://doi.org/10.1155/2014/846742
http://www.ncbi.nlm.nih.gov/pubmed/25147566
http://doi.org/10.3892/ijmm.2016.2809
http://doi.org/10.1016/j.tox.2013.05.015
http://www.ncbi.nlm.nih.gov/pubmed/23648354
http://doi.org/10.1016/j.acthis.2014.07.003
http://www.ncbi.nlm.nih.gov/pubmed/25154791
http://doi.org/10.1016/j.ejps.2015.11.013
http://doi.org/10.1038/s41598-019-38711-7
http://doi.org/10.3892/ijmm.2016.2715
http://doi.org/10.2174/1573406418666220829144746
http://doi.org/10.1016/j.ijsu.2022.106818
http://www.ncbi.nlm.nih.gov/pubmed/35953020

	Introduction 
	Methods 
	Pathogenesis of SARS-CoV-2 
	Classification, Synthesis and Activity of Flavonoids 
	Structure and Classification of Flavonoids 
	Chemical Synthesis of Flavonoids 
	Quercetin 
	Baicalein and Baicalin 
	EGCG 
	Luteolin 

	Pharmacological Activity of Flavonoid Compounds 
	Anti-Inflammatory Effect 
	Antiviral Effect 
	Antidiabetic Effect 
	Anticancer Effect 


	Anti-SARS-CoV-2 Activity of Flavonoids 
	Anti-SARS-CoV-2 Pharmacological Effects of Quercetin 
	Anti-SARS-CoV-2 Pharmacological Effects of Baicalein and Baicalin 
	Anti-SARS-CoV-2 Pharmacological Action of EGCG 
	Anti-SARS-CoV-2 Pharmacological Action of Luteolin 
	Other Flavonoids with Anti-SARS-CoV-2 Activity 

	Conclusions 
	References

