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Abstract: Chromophoric dissolved organic matter (CDOM) is the main sunlight absorber in surface
waters and a very important photosensitiser towards the generation of photochemically produced
reactive intermediates (PPRIs), which take part in pollutant degradation. The absorption spectrum of
CDOM (ACDOM(λ), unitless) can be described by an exponential function that decays with increasing
wavelength: ACDOM(λ) = 100 d DOC Ao e− S λ, where d [m] is water depth, DOC [mgC L−1] is
dissolved organic carbon, Ao [L mgC

−1 cm−1] is a pre-exponential factor, and S [nm−1] is the spectral
slope. Sunlight absorption by CDOM is higher when Ao and DOC are higher and S is lower, and
vice versa. By the use of models, here we investigate the impact of changes in CDOM spectral
parameters (Ao and S) on the steady-state concentrations of three PPRIs: the hydroxyl radical (•OH),
the carbonate radical (CO3

•−), and CDOM excited triplet states (3CDOM*). A first finding is that
variations in both Ao and S have impacts comparable to DOC variations on the photochemistry
of CDOM, when reasonable parameter values are considered. Therefore, natural variability of the
spectral parameters or their modifications cannot be neglected. In the natural environment, spectral
parameters could, for instance, change because of photobleaching (prolonged exposure of CDOM to
sunlight, which decreases Ao and increases S) or of the complex and still poorly predictable effects
of climate change. A second finding is that, while the steady-state [3CDOM*] would increase with
increasing ACDOM (increasing Ao, decreasing S), the effect of spectral parameters on [•OH] and
[CO3

•−] depends on the relative roles of CDOM vs. NO3
− and NO2

− as photochemical •OH sources.

Keywords: photochemical reactions; environmental photochemistry; organic matter dynamics;
organic matter spectra; organic matter chromophores; photochemical fate; spectral slope

1. Introduction

Photoinduced processes play a very important role in the degradation of biorecalcitrant
contaminants in sunlit surface freshwaters [1–4]. Many contaminants of emerging concern
(CECs), including several pharmaceuticals and personal care products (PPCPs), are able
to survive conventional wastewater treatment due to a combination of biorecalcitrance,
which slows down or prevents biodegradation by activated sludge, and water solubility,
which hampers an additional pathway of elimination from the aqueous phase (partitioning
on biosolids) [5–8]. These features are also an obstacle to the biological attenuation of the
same CECs in natural water bodies. In these cases, photochemistry can play a key role in
natural decontamination [1,2,9,10].

Photochemical reactions are usually divided into direct photolysis and indirect pho-
tochemistry. In the case of direct photolysis, pollutants absorb sunlight (i.e., radiation
with λ > 280–290 nm), and the absorption process triggers transformation by ionisation,
bond-breaking, or excited-state reactivity. In the case of indirect photochemistry, sunlight is
absorbed by natural compounds called photosensitisers (most notably, nitrate, nitrite, and
chromophoric dissolved organic matter, CDOM) that produce reactive transient species
(photochemically produced reactive intermediates, or PPRIs). CECs degradation by indirect
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photochemistry takes place upon reaction with PPRIs, the main ones being the hydroxyl
(•OH) and carbonate (CO3

•−) radicals, the excited triplet states of CDOM (3CDOM*), and
singlet oxygen (1O2) [11,12].

Irradiated nitrate and nitrite yield •OH, which can, in turn, produce CO3
•− by oxi-

dising HCO3
− and CO3

2−. A secondary pathway to CO3
•− is the oxidation of CO3

2− by
3CDOM*. The irradiation of CDOM yields all the PPRIs; namely, 3CDOM*, 1O2, •OH, and
(indirectly, through •OH and 3CDOM*) CO3

•−. PPRIs are involved in pollutant degrada-
tion, but most PPRI removal from natural waters is usually accounted for by other processes
not involving the contaminants. In fact, •OH is mainly scavenged by DOM (dissolved
organic matter, not necessarily chromophoric) and, usually to a lesser extent, by inorganic
carbon (HCO3

− and CO3
2−). CO3

•− is also mainly scavenged by DOM, while 3CDOM* in
aerated waters is mostly quenched by O2 to produce 1O2 with ~50% yield. Finally, 1O2 is
quenched by collision with the water solvent [1,13–15].

CDOM is the main sunlight absorber in natural waters, at least below 500 nm, which
is the most important spectral range from a photochemical point of view [16]. For the same
reason, CDOM is a very important photosensitiser [17,18]. The absorption spectrum of
natural waters in general, and of CDOM in particular, can be described by an exponential
function [19] that decreases with increasing wavelength λ [nm], as follows:

A(λ) = DOC A1(λ) = DOC Ao e−S λ (1)

here, A(λ) refers to an optical path length of 1 cm and has units of [cm−1]. Therefore, the
absorbance of a water column of depth d [m] is given by Ad(λ) = 100 d DOC Ao e−S λ,
where 100 is the conversion factor between [m] and [cm]. Furthermore, DOC [mgC L−1]
is the dissolved organic carbon, Ao is the pre-exponential factor of the absorbance [units
of L mgC

−1 cm−1, the same as A1(λ), which is the absorbance per unit depth and DOC],
and S [nm−1] is the spectral slope. As shown in Equation (1), the absorbance of CDOM
at unit depth depends both on the total amount of organic matter (quantified as the DOC
value) and on its spectral features (Ao and S). All these parameters can vary depending on
environmental conditions and processes, including climate change. For instance, increased
precipitation in the Scandinavian peninsula has enhanced the leaching of organic matter from
soil and its transport to surface waters. At the same time, gradual recovery from acidification
has progressively increased the pH of rainwater, thereby increasing the leaching efficiency
of humic and fulvic acids, the ionised fractions of which are more soluble in water [20]. The
resulting effect is the phenomenon of water browning [21–24] as surface waters become
richer in (C)DOM. Browning has a considerable impact on the way water absorbs sunlight.
Moreover, photochemical processes triggered by 3CDOM* and 1O2 (which are generated
by irradiated CDOM) are enhanced in brownified waters at the expense of •OH, CO3

•−,
and direct photolysis [25]. In fact, increasing DOC enhances scavenging of •OH and CO3

•−,
while direct photolysis is inhibited as CDOM absorbs sunlight to a higher extent, which
decreases the available irradiance for photolysis processes [11].

Increases in DOC from enhanced soil runoff might be observed even if average precip-
itation does not increase, in case intense rain events become more frequent, as predicted by
climate models [26]. However, evidence suggests that increasing DOC might not always
be the outcome of climate change. It has been found in several cases that inconsistent and,
sometimes, negligible DOC variations have taken place alongside important changes in
CDOM spectral properties, which could be quantified as modifications (either increase or
decrease) of Ao and S [27]. To our best knowledge, quantitative photochemical implications
of changes in CDOM spectral properties have not been investigated in depth, while consid-
erable attention has been devoted to the photochemical impact of DOC changes [25,28]. We
use a model approach to fill this knowledge gap and determine how changes in the spectral
parameters Ao and S might affect the photochemistry of surface-water photosensitisers
(CDOM, NO3

−, and NO2
−) and, therefore, steady-state concentrations of •OH, CO3

•−, and
3CDOM*. The case of 1O2 was not investigated separately because both 1O2 and 3CDOM*
are produced by similar phenomena that involve irradiated CDOM. Furthermore, the reac-
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tion between 3CDOM* and O2 produces 1O2 with ~50% yield, while the quenching constant
of 3CDOM* (by O2) is about twice higher than that of 1O2 (by collision with H2O). The
overall outcome is [3CDOM*] ~ [1O2]; thus, the [3CDOM*] values are also representative of
[1O2] [14,15].

2. Results and Discussion

2.1. Effect of CDOM Spectral Features on the Steady-State [3CDOM*]

The absorption spectrum of CDOM was described here by means of Equation (1).
Freshwater absorbance between 290 and 500 nm is largely dominated by CDOM absorp-
tion [29]; thus, the value of A(λ) represents both the absorption spectrum of natural waters
and that of the CDOM they contain. Representative values for surface freshwaters are
Ao = 0.45 L mgC

−1 cm−1 and S = 0.015 nm−1 [30]. However, there is environmental vari-
ability for both quantities. Moreover, climate change has the potential to alter the spectral
features of CDOM, thereby modifying both Ao and S [27]. In order to assess the possible
implications of CDOM spectral changes on the photochemistry of freshwaters, the couple
(Ao, S) = (0.45, 0.015) was taken as the central point of a 7 × 7 variation matrix, where
Ao ranged from 0.30 to 0.60 L mgC

−1 cm−1, at 0.05 steps, and S ranged from 0.012 to
0.018 nm−1, at steps of 0.001 nm−1. The variation intervals were chosen so as to cover a
reasonable range of spectral values, valid for the majority of surface freshwaters [31].

In Figure 1, A1(λ) = Ao e−S λ is plotted as a function of wavelength for different values
of (Ao[L mgC

−1 cm−1], S[nm−1]) = (0.60, 0.012), (0.30, 0.012), (0.45, 0.015), (0.60, 0.018), and
(0.30, 0.018). It is apparent that A1(λ) is higher as Ao is higher and S is lower. Because S is
part of an exponent, variations in S have a higher impact on the values of water absorbance
than variations in Ao. On the one side, radiation absorption by CDOM is responsible for
the photochemical generation of 3CDOM*, •OH, and 1O2 [1,2]. On the other side, CDOM
competes for sunlight irradiance with the •OH sources nitrate and nitrite [11]. All these
issues were taken into account by means of photochemical simulations carried out with the
APEX software, which predicts the steady-state concentrations of PPRIs as a function of
water chemistry, depth, and sunlight irradiance [30]. The spectral features of CDOM (both
Ao and S) are additional input data for the software.
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[31]. Therefore, CDOM spectral features have the potential to affect surface-water photo-
chemistry in a way comparable to the DOC values. 

Figure 1. Specific water (CDOM) absorbance A1(λ) = Ao e− S λ (DOC = 1 mgC L−1, 1 cm optical path
length), plotted for different values of Ao and the spectral slope S. Note that the measurement units
are always [L mgC

−1 cm−1] for Ao and [nm−1] for S.

Figure 2 reports the computed steady-state [3CDOM*] for different values of Ao and S,
with d = 3 m and DOC = 5 mgC L−1. It is shown that [3CDOM*] would be higher when Ao
is higher and S is lower, thereby following the direction of increasing CDOM absorbance
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(Figure 1). This is reasonable, considering that the formation rate of 3CDOM* from CDOM
is described by the following integral equation [32]:

R3CDOM∗ = Φ3CDOM∗

∫
λ

p◦(λ) [1 − 10
−ACDOM(λ)

] dλ (2)

where Φ3CDOM∗ (mol Einstein−1) is the quantum yield of 3CDOM* formation, p◦(λ)
[Einstein L−1 s−1 nm−1] is the spectral photon flux density of sunlight, and ACDOM(λ)
= 100 d DOC Ao e− S λ (unitless). According to Equation (2), R3CDOM∗ [mol L−1 s−1]
increases with increasing ACDOM. Furthermore, it is clear from Figure 2 that a variation
of S has a much larger impact on [3CDOM*] than a variation of Ao.
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Figure 2. APEX-computed values of [3CDOM*] as a function of S [nm−1] and Ao [L mgC
−1 cm−1].

Water conditions (reasonable values for aquatic environments [33]): 3 m depth, DOC = 5 mgC L−1,
10−4 M NO3

−, 10−6 M NO2
−, 10−3 M HCO3

−, and 10−5 M CO3
2−. Irradiation as per fair-weather,

spring equinox noon at mid latitude.

The results shown in Figure 2 suggest how [3CDOM*] would vary at constant DOC
(5 mgC L−1) as a function of the spectral parameters Ao and S. The DOC value is another
important factor affecting [3CDOM*] [11], and it is thus interesting to see how the same
variation range (1 × 10−16 M < [3CDOM*] < 7.5 × 10−16 M; see Figure 2) could be attained
by varying DOC at constant Ao and S. To this purpose, the DOC value was varied at fixed
Ao = 0.45 L mgC

−1 cm−1 and S = 0.015 nm−1.
The results of the mentioned simulations are reported in Figure 3. It is shown that to have

the same [3CDOM*] value found for DOC = 5 mgC L−1 and (Ao, S) = (0.30, 0.018), one needs
DOC = 0.5 mgC L−1 if (Ao, S) = (0.45, 0.015). At the same time, DOC = 5 mgC L−1 and (Ao, S)
= (0.60, 0.012) give the same [3CDOM*] value as DOC = 50 mgC L−1 and (Ao, S) = (0.45, 0.015).
In other words, a change ∆Ao = ±0.15 L mgC

−1 cm−1 (i.e., ±33%) plus ∆S = ±0.003 nm−1

(i.e., ±20%) is equivalent to an order-of-magnitude variation of the DOC value. Interestingly,
the DOC range 0.5–50 mgC L−1 covers the vast majority of surface-water environments in
a similar way as the studied intervals of Ao (0.30–0.60) and S (0.012–0.018) [31]. Therefore,
CDOM spectral features have the potential to affect surface-water photochemistry in a way
comparable to the DOC values.
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Figure 3. APEX-computed values of [3CDOM*] as a function of varying DOC, with constant
Ao = 0.45 L mgC

−1 cm−1 and S = 0.015 nm−1. The highlighted points and annotations indicate
how the same values of [3CDOM*] were obtained with fixed DOC = 5 mgC L−1 and different values
of Ao and S (note that the point with Ao = 0.45 L mgC

−1 cm−1, S = 0.015 nm−1, and DOC = 5 mgC L−1

has a different symbol because conditions are exactly the same in both cases). Other water conditions:
3 m depth, 10−4 M NO3

−, 10−6 M NO2
−, 10−3 M HCO3

−, and 10−5 M CO3
2−. Irradiation as per

fair-weather, spring equinox noon at mid-latitude.

This issue has environmental significance because, for instance, variations in either (or
both) DOC values and/or CDOM spectral properties have been observed as a consequence
of climate change [20–22,27]. It also means that both qualitative (Ao, S) and quantitative
(DOC) modifications of organic matter are potentially important for their impact on photo-
chemical reactions. In particular, Ao depends on CDOM chromophores, while S is inversely
related to the molecular weight of CDOM [34].

2.2. Effect of CDOM Spectral Features on the Steady-State [•OH] and [CO3
•−]

The radical •OH, which is also a major driver of CO3
•− production, is generated

by irradiation of CDOM, nitrate, and nitrite. Because the three photosensitisers compete
for sunlight irradiance, high CDOM absorbance would decrease the production of •OH
by both nitrate and nitrite, while favouring •OH photoproduction by CDOM itself. The
opposite happens when the absorbance of CDOM is low [1,2,11,12].

Values of [•OH] and [CO3
•−] were first calculated for the same water conditions

(including constant DOC) used to derive [3CDOM*] in Figure 2. The results are shown in
Figure 4 for different values of Ao and S. A trend with a minimum is observed for both
[•OH] (Figure 4a) and [CO3

•−] (Figure 4b) as a function of S, which is noteworthy and
deserves explanation.

First of all, note that to the left-hand side of the minimum in Figure 4 (S < 0.015 nm−1,
which means high ACDOM), both [•OH] and [CO3

•−] increase with increasing Ao and decrease
with increasing S, which is similar behaviour as that seen for [3CDOM*] in Figure 2. In
contrast, to the right-hand side of the minimum (S > 0.015 nm−1, low ACDOM), the values of
[•OH] and [CO3

•−] decrease with increasing Ao and increase with increasing S.
When ACDOM is high, •OH production by nitrate and nitrite is inhibited due to light

screening by CDOM. In these conditions, CDOM is the main •OH source, and a further
increase in ACDOM (Ao increase, S decrease) mainly enhances CDOM photochemistry (inhi-
bition of nitrate/nitrite photolysis has minor role) and leads to higher [•OH] and, therefore,
[CO3

•−]. Discussion here only focuses on •OH (and CO3
•−) generation because scavenging

of •OH and CO3
•− would not change at constant DOC, HCO3

−, and CO3
2− [11,12].
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When ACDOM is low (right-hand side of the Figure 4 minimum), there is limited
production of •OH by CDOM and lesser inhibition of NO3

−/NO2
− photolysis; thus,

nitrate and nitrite play comparatively more important roles as •OH sources. In these
conditions, an increase in ACDOM would mainly inhibit the photolysis of nitrate and nitrite,
and the corresponding decrease in •OH photogeneration by NO3

−/NO2
− would not be

offset by the still low (albeit enhanced) photoproduction of •OH by CDOM. This issue
explains why, if S > 0.015 nm−1, [•OH] and [CO3

•−] both decrease as Ao increases and
S decreases.

To obtain better insight into the trends shown in Figure 4, the input concentration
values of NO3

− and NO2
− were modified so as to make the two nitrogen species either

consistently minor photosensitisers or the main sources of •OH and CO3
•−. Figure 5 reports

the calculated steady-state [•OH] (Figure 5a) and [CO3
•−] (Figure 5b) in the presence

of 10−6 M NO3
− and 10−8 M NO2

−, as a function of S and for different values of Ao.
The concentration values of NO3

− and NO2
− are 100 times lower than before, and they

ensure that the photochemistry of nitrate and nitrite plays a minor role when compared to
CDOM [11,12,30]. As shown in Figure 5, [•OH] and [CO3

•−] decrease with increasing S and
they are higher as Ao is higher. These trends resemble quite closely the trend of [3CDOM*]
shown in Figure 2, and they mirror the photochemistry of CDOM that is enhanced as
ACDOM is higher.
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The same trends also bear similarity with those reported on the left-hand side of
Figure 4a,b (low S values). In this case as well, CDOM irradiation played the main role as
the direct •OH source and, indirectly, as the source of CO3

•−.
The opposite case (nitrate and nitrite as major •OH and CO3

•− sources) is shown in
Figure 6, in which circumstance it was assumed 10−3 M NO3

− and 10−5 M NO2
−. In this

case, both [•OH] and [CO3
•−] increase with increasing S, and they are higher as Ao is lower.

Such trends resemble those of the right-hand side of Figure 4a,b (high S values), in that high
values of [•OH] and [CO3

•−] are obtained when ACDOM is low. This is reasonable, because
when NO3

− and NO2
− are the main sources of •OH and CO3

•−, the values of [•OH] and
[CO3

•−] are enhanced by a lower light-screening effect of CDOM, which produces lesser
inhibition of the photochemistry of nitrate and nitrite. In these conditions, the effect of
ACDOM on CDOM photochemistry only plays a secondary role.
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Low concentration values of nitrate and nitrite (Figure 5) are, for instance, representa-
tive of hypertrophic lakes, where nitrogen is the limiting element for algal growth and its
inorganic forms are quickly assimilated by algae [35]. In contrast, high NO3

− and NO2
−

concentrations (Figure 6) are quite near the guideline values for drinking-water quality
(maximum admissible concentrations) and might apply, for instance, to a surface water
body receiving inputs from contaminated groundwater [36]. Moreover, increasing Ao and
decreasing S mean that CDOM is more aromatic and has higher molecular mass [37]. These
circumstances favour sunlight absorption by CDOM (higher ACDOM values). The opposite
happens when CDOM is less aromatic and has lower molecular mass, which decreases
Ao and increases S, causing ACDOM to be lower. The latter circumstance may be observed
when CDOM undergoes prolonged exposure to sunlight, which causes photobleaching
with inactivation of chromophores (which lowers Ao) and fragmentation of large molecules
(which increases S) [34,38].

3. Materials and Methods

The steady-state concentrations of •OH, CO3
•−, and 3CDOM* were assessed by

means of the APEX software (version 1.1 [30]), which computes PPRI concentrations as
a function of solar irradiance and spectrum, water absorption spectrum, water chem-
istry, and depth [30,39]. The default solar irradiance in APEX is 22 W m−2 in the UV
(290–400 nm), which can be observed in fair-weather conditions at mid-latitude during
summer (15 July, 9 am or 3 pm), or at noon on the spring equinox [30]. APEX is able
to compute seasonal variations in photochemical reaction rates and PPRI steady-state
concentrations [40], but conditions chosen for this study were fixed and corresponded to
the mid-latitude spring equinox.
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Water depth d was fixed at 3 m, which is representative of well-illuminated water envi-
ronments where photochemistry can play an important role in transformation reactions [32].
The concentration of inorganic carbon species was taken as 10−3 M HCO3

− and 10−5 M
CO3

2−, which is observed in several water environments [33]. In a first series of runs, it was
additionally assumed DOC = 5 mgC L−1, [NO3

−] = 10−4 M, and [NO2
−] = 10−6 M.

Water absorption spectrum is modelled in APEX as Ad(λ) = 100 d DOC Ao e− Sλ, with
default values of Ao = 0.45 L mgC

−1 cm−1 and S = 0.015 nm−1 [30]. The quantum yields of
•OH, 3CDOM*, and CO3

•− photoproduction by irradiated CDOM were assumed not to
vary and were left at their default values.

The APEX output data include the relative roles played by nitrate, nitrite, and CDOM
in •OH photoproduction [30], which largely reflect the roles of the three photosensitisers
in the generation of CO3

•−. The (secondary) contribution to CO3
•− from the oxidation of

CO3
2− by 3CDOM* [41] is also taken into account by APEX.
APEX modelling assumes thoroughly mixed water environments, but it also applies

to the well-mixed surface layer (epilimnion) of stratified lakes [30]. Hypolimnion photo-
chemistry (not relevant to this study) can also be addressed by modifying the input values
of p◦(λ) [28].

4. Conclusions

Variations in the spectral parameters Ao and S strongly affect radiation absorption by
CDOM. Considering the typical ranges of Ao, S, and the DOC values that are observed
in natural waters [31,33,42], it can be envisaged that the variability of CDOM spectral
properties has a comparable impact as DOC variability, and cannot thus be overlooked.

The effects of spectral properties on [3CDOM*] depend on the resulting ACDOM values,
because [3CDOM*] increases as ACDOM is higher. In contrast, variations in CDOM spectral
properties affect [•OH] and [CO3

•−] differently, depending on the relative roles of CDOM
vs. NO3

−/NO2
− as •OH and CO3

•− sources. In particular, for a given DOC value, CDOM
dominates •OH and CO3

•− photoproduction when the concentration values of NO3
− and

NO2
− are low, and the opposite happens when these concentrations are high [43]. At

intermediates values of [NO3
−] and [NO2

−], the relative roles of CDOM vs. NO3
−/NO2

−

as •OH and CO3
•− sources depend on CDOM spectral properties and, therefore, on

ACDOM. High ACDOM decreases [•OH] and [CO3
•−] when nitrate and nitrite are the main

•OH/CO3
•− sources, and the opposite happens when CDOM is the main •OH/CO3

•−

source.
The described variations are important as far as pollutant phototransformation is

concerned. In particular, 3CDOM* and CO3
•− are highly involved in the degradation

of phenols, aromatic amines, and sulphur-containing compounds [44]. 3CDOM* also
takes part in the transformation of phenylurea herbicides, sulphonamide antibiotics, and
cyanobacterial toxins, such as microcystin-LR [44–46]. Highly reactive •OH plays important
roles in the degradation of recalcitrant pollutants such as hydrocarbons, some pesticides
(e.g., atrazine), and PPCPs including carbamazepine and acesulfame K [47–50].

In environmental waters, CDOM photobleaching destroys chromophores (lower Ao) and
causes molecular fragmentation (higher S), thereby decreasing CDOM absorbance [34,37].
The steady-state [3CDOM*] would be decreased as a consequence, while [•OH] and [CO3

•−]
would decrease when nitrate and nitrite are low (the main effect being the inhibition of CDOM
photochemistry) or increase when nitrate and nitrite are high (the main effect being enhanced
photochemistry of NO3

− and NO2
−, due to lower sunlight screening by CDOM). Therefore,

photobleaching would amplify the photochemical role of NO3
− and NO2

− concentrations.
As far as climate-change effects are concerned, variations in Ao and S would be highly
environment-specific, and they should be assessed on a case-by-case basis.
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