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Abstract: The CO2 aqueous foams stabilized by bioresource-derived ultra-long chain surfactants
have demonstrated considerable promising application potential owing to their remarkable longevity.
Nevertheless, existing research is still inadequate to establish the relationships among surfactant
architecture, environmental factors, and foam properties. Herein, two cases of ultra-long chain
tertiary amines with different tail lengths, N-erucamidopropyl-N,N-dimethylamine (UC22AMPM)
and N-oleicamidopropyl-N,N-dimethylamine (UC18AMPM), were employed to fabricate CO2 foams.
The effect of temperature, pressure and salinity on the properties of two foam systems (i.e., foamability
and foam stability) was compared using a high-temperature, high-pressure visualization foam
meter. The continuous phase viscosity and liquid content for both samples were characterized
using rheometry and FoamScan. The results showed that the increased concentrations or pressure
enhanced the properties of both foam samples, but the increased scope for UC22AMPM was more
pronounced. By contrast, the foam stability for both cases was impaired with increasing salinity or
temperature, but the UC18AMPM sample is more sensitive to temperature and salinity, indicating the
salt and temperature resistance of UC18AMPM-CO2 foams is weaker than those of the UC22AMPM
counterpart. These differences are associated with the longer hydrophobic chain of UC22AMPM,
which imparts a higher viscosity and lower surface tension to foams, resisting the adverse effects of
temperature and salinity.

Keywords: CO2 aqueous foams; foam properties; ultra-long chain surfactants; CO2-switchable;
surface tension

1. Introduction

Carbon dioxide (CO2) aqueous foams are colloidal dispersions composed of CO2
bubbles dispersed in a continuous aqueous phase [1]. Due to their relatively low density,
larger surface area and excellent fluidity, CO2 aqueous foams have been widely used
in many industrial processes and applications including the petroleum industry [2], ore
flotation [3] and firefights [4]. The traditional CO2 aqueous foams were obtained using
anionic surfactants such as sodium dodecyl sulfate (SDS) [5] and alpha olefin sulfonate
(AOS) [6] as foaming agents by decreasing the CO2–water interfacial tension (C–W IFT) and
capillary forces (Pc). Unfortunately, such CO2 aqueous foams rapidly destabilized through
a combination of drainage [7,8], coalescence [7,8], and Ostwald ripening [9]. As a result,
the lifetime CO2 aqueous foams made of common surfactants do not exceed a few tens of
minutes [10,11] and fail to satisfy the practical requirements. To improve foam lifetime, var-
ious foam stabilizers, including polymer [12,13], protein [14–16], and nanoparticles [17,18],
are introduced into the aqueous foam systems against foam destabilization. In some cases,
there is a demand for both the stable foam formed and controlled foam destruction. Taking
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cleaning processes as an example, the stable foam needs to be destabilized rapidly in a con-
trolled way at the end of cleaning to obtain only a small volume of contaminated liquid that
is easier to handle compared with foam [19]. Therefore, switchable or stimuli-responsive
foams with tunable stability have been paid much attention in recent years.

During the past decade, the use of bioresource-derived ultra-long-chain surfactants
(the hydrophobic chains ≥ C18) as stabilizers to prepare long-lasting aqueous foams has
been widely reported and attracted significant interest. Johnston et al. [20] pioneered
the utilization of erucylamidopropyldimethyl betaine (EAPB) to prepare long-lived CO2
foams. The CO2 foams stabilized by EAPB are intact at temperatures up to 120 ◦C and
CO2 volumetric fractions up to 0.98. Likewise, our laboratory used N-erucamidopropyl-
N,N-dimethylamine (UC22AMPM) to develop a CO2 aqueous foam with a lifetime of
up to 6 h in 120 ◦C and 10 MPa [21]. The mechanism behind the foams stabilization by
ultra-long-chain surfactants can be summarized as follows: (i) ultra-long-chain surfactants
adsorb at CO2–water interfaces to form a dense surfactants layer in foam film, resisting
coarsening and coalescence of bubbles [22]; (ii) the ultra-long-chain surfactants can assemble
into viscoelastic aggregates, enhancing the solution viscosity and thus suppressing the
liquid drains within the foam film [23,24]. In addition to their excellent foam stabilization
capability, another merit of ultra-long-chain surfactants over petrochemical-based short-
chain surfactants is being environmentally benign and sustainable as their feedstocks are
natural renewable materials such as vegetable oil [25,26]. To provide scientific guidance
for the application of CO2 foams in harsh conditions, previous research on ultra-long-
chain surfactants stabilizing CO2 aqueous foams has been focused on establishing the
relationships between various factors (e.g., pH, temperature, salinity and pressure) and
foam properties [21,27]. However, these studies have typically been conducted in a single
foam system, mainly rooted in the previous view that foam destabilization depends more
on the mesoscopic properties of the foam such as bubble radius, foam film thickness and
liquid fraction than on the chemical properties of the surfactant. Consequently, there are
still insufficient insights into the contribution of surfactant structure to foam stability and
evolution, impeding the advancement and exploitation of such foam systems.

In fact, many studies have demonstrated that surfactant structure has a noticeable
impact on foam evolution and stability [16,28,29]. Fameau et al. [30] explored the role of
tail length and head groups in foam properties by comparing the performance of foams
made from long-chain fatty acids (myristic acid, palmitostearic acid, juniperic acid and
12-hydroxystearic acid). They found the foamability of fatty acid-based foam increased with
decreasing the alkyl chain length of the fatty acid. Moreover, the presence of a hydroxyl
group on the hydrophobic tail of the fatty acids increases the foamability in comparison
to the non-hydroxylated fatty acids analog. A systematic study of foams made with a
series of multi-tailed surfactants reported by Feitosa and co-workers demonstrated foams
made with tri-cephalic double-tailed molecules have better stability than the single-tail
one, regardless of the head structure [10]. Enlightened by these findings, we can safely
hypothesize that aqueous foams stabilized by ultra-long-chain surfactants with different
structures will exhibit differentiated foam properties and aging processes. In this context,
it is desirable and beneficial to establish the correlation among the molecular structure of
long-tailed surfactants, foam properties and evolution.

The objective of this study is to establish the surfactant structure-foam properties-foam
evolution links and to deepen the understanding of the role of surfactant structure in foam
properties. To attain this goal, UC22AMPM and its analog (UC18AMPM, C18 tail, Scheme 1)
were used as model compounds to develop CO2 aqueous foams. Then, the foaming ability
and foam stability of two CO2 aqueous foam systems were meticulously compared at
various temperatures, pressures and salinity using FoamScan and a high-temperature,
high-pressure (HTHP) visualization foam meter. Meanwhile, the as-prepared CO2 aqueous
foams were investigated by rheometer to unravel the underlying principles driving the
discrepancies in foam properties.
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N-oleicamidopropyl-N,N-dimethylamine (UC18AMPM).

2. Results and Discussion

The section is organized as follows: First, the concentration of UC22AMPM and
UC18AMPM is optimized by the static foam test in atmospheric pressure at 35 ◦C. Then,
the switching behavior of UC18AMPM-CO2 aqueous foam is characterized in comparison
with UC22AMPM-CO2 aqueous foam. Finally, the influence of temperature, salinity, and
pressure on the performance of CO2 aqueous foams UC22AMPM and UC18AMPM is
examined, respectively.

2.1. Determination of Optimum Concentration

It is known that foam properties strongly depend on the concentration of the foam-
ing agent [31,32]. Generally, the foaming properties are referred to as foamability (the
maximum volume of foam system for a certain volume of foaming agent solution after a
certain time of shear effect at a certain temperature, Vmax) [33,34] and foam stability (the
time taken by the volume of foam system from Vmax to a half at a certain temperature,
t1/2) [33,34]. To determine the optimum concentration, the properties of UC22AMPM
and UC18AMPM foams were investigated separately as a function of the concentration
(0.1–0.5%) using FoamScan under atmospheric pressure at 35 ◦C. We previously demon-
strated that UC22AMPM could form stable CO2 aqueous foams but not N2 ones [21,35].
Thus, CO2 was employed as the foaming gas in this work.

Figure 1A,B present the changes in Vmax and t1/2 of both aqueous foams with in-
creasing concentration, respectively. It can be seen the Vmax for UC18AMPM was always
constant at around 180 mL with increasing UC18AMPM concentration (CUC18AMPM), while
the Vmax of UC22AMPM rose from 179 to 189 mL (Figure 1A). Meanwhile, the t1/2 of both
aqueous foams rose as the concentration increased (Figure 1B). From Table 1, the t1/2 of
UC22AMPM-CO2 aqueous foams improved by 2.6 fold as the concentration of UC22AMPM
(CUC22AMPM) increased from 0.1% to 0.5%, higher than the increment factor of UC18AMPM-
CO2 aqueous foams (~1.6). These results indicated that the CUC22AMPM exerts a more
prominent influence on foamability and foam stability compared to CUC18AMPM.

The foam comprehensive index (FCI) [6], a quantitative measure to assess the foam
properties, was employed to calculate the optimal concentration. The FCI can be expressed
below [36]:

FCI =
∫ t1/2

0
Vdt =

3
4

Vmaxt1/2 (1)

As listed in Table 1, the FCI of UC22AMPM and UC18AMPM reached maximum values
of 1,382,062 s·mL and 49,140 s·mL at a concentration of 0.5 wt.%, respectively. Typically, the
value of FCI is greater, the foam properties are better [37]. Based on the FCI criterion, 0.5
wt.% as the optimal UC22AMPM and UC18AMPM concentration was used in the following
experiments. Furthermore, we also concluded that the 0.5% UC22AMPM has superior foam
properties to 0.5% UC18AMPM.
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Figure 1. The influence of surfactant concentrations on (A) Vmax and (B) t1/2 of UC22AMPM and
UC18AMPM in atmospheric pressure at 35 ◦C, respectively.

Table 1. CO2 foam performance with different concentrations of UC22AMPM and UC18AMPM,
respectively.

Cs (wt.%) t1/2 (s) Vmax (mL) FCI (s·mL)

UC18AMPM

0.1 296 153 33,621
0.15 315 155 36,618
0.25 328 153 37,638
035 388 151 43,941
0.5 445 144 49,140

UC22AMPM

0.1 4509 179 605,333
0.15 5379 176 710,028
0.25 5872 176 775,104
035 6240 187 879,372
0.5 9750 189 1,382,062

To shed light on the reasons behind the difference in properties between UC22AMPM
and UC18AMPM foams at their optimum concentration, the foam evolution process, liquid
content (ϕ) of aqueous foams (the ratio of the liquid volume to the foam volume) and
continuous phase viscosity (η) of foam bulk phase were studied. As shown in Figure 2,
the geometry of the bubble is spherical for both cases at the initial moment (30 s). For
UC22AMPM foams, there was virtually no change in the bubble morphology as time
progressed. In contrast, the bubbles in UC18AMPM aqueous foams evolved quickly into
irregular polyhedral over time. At the 540th second, a substantial number of bubbles of
UC18AMPM aqueous foams disappeared, indicative of foam bursting. In principle, the
bubble shape is dependent on the ϕ of the aqueous foam [8]. In the case of high ϕ in the
aqueous foams, the bubbles are uniformly spherical and densely packed. Decreasing the ϕ
causes bubble deformation and the formation of defined edges. Therefore, we can conclude
that the ϕ of UC22AMPM foams remain constant for 540 s, indicative of slow drainage. In
the case of UC18AMPM foams, the faster bubble deformation could be interpreted by the
rapid lowering of ϕ, resulting from the acceleration of the drainage process. From optical
visualization, we could draw a conclusion that the foam drainage process of UC22AMPM
foams is weaker than that of UC18AMPM foams.
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and 0.5% UC18AMPM with time in atmospheric pressure at 35 ◦C.

The variation in the ϕ as a function of time is shown in Figure 3A. Evidently, the ϕ
in both cases increased significantly over time during the generation process of aqueous
foams, reaching a maximum liquid content (ϕm) on completion of foaming. Comparatively
speaking, the ϕm of the 0.5% UC22AMPM-CO2 aqueous foams was about 24.7%, greater
than that of the 0.5% UC18AMPM-CO2 aqueous foams (10.6%). The lower ϕm is associated
with its Vmax (145 mL), indicative of the inferior foaming ability of UC18AMPM. As is
well-known, the foamability is positively proportional to the C-W IFT (γ) of the surfactant
solution, which can be described by using the previously reported [38]:

W = γA (2)

here W and A stand for external energy applied to generate the foam and the foam area
created, respectively. For a fixed W, the higher the γ is, the lower the Vmax will be. On the
basis of a previous study by Feng et al. [39], with the identical head group, the γ increases
with the decrease in the hydrophobic chain length. One can conclude that the γ of the
UC18AMPM-CO2 solution is higher than that of the UC22AMPM counterpart due to its
shorter alkyl chain. Thus, the UC18AMPM-CO2 solution presents poor foamability as
compared with the UC22AMPM counterpart.

Upon CO2 sparging cease, the ϕ reduced gradually with time because of the drainage.
It can be seen that the UC18AMPM-CO2 aqueous foams drained in the 200s to ϕ = 0, while
the ϕ of UC22AMPM-CO2 aqueous foam was 20% in this period (Figure 3A), demonstrating
that the drainage from UC18AMPM-CO2 aqueous foams is faster than that of UC22AMPM-
CO2 aqueous solution.

The rheological results demonstrated the UC22AMPM dispersion saturated with CO2
attained very high values of zero-shear viscosity ηo (3.75 × 104 mPa·s) and showed shear-
thinning behavior (Figure 3B). The high magnitude of ηo mirrors the presence of entangled
wormlike micelles in solution [40,41]. In contrast, the ηo for UC18AMPM samples was only
~1.0 mPa·s (Figure 3B), reflecting the absence of wormlike micelles. Numerous studies
have established that drainage velocity (V) should vary inversely with the viscosity of the
continuous phase (η), as the following equation [42]:

V =
dhf
dt

=
h3

f

3ηR2
f

∆Pfilm (3)
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where ∆Pfilm stands for the difference in pressure between the film center and border,
hf refer to the thickness of the thin film. Using Equation (3), one can conclude that the
V of UC18AMPM-CO2 aqueous foams is four orders of magnitude greater than that of
UC22AMPM-CO2 aqueous foams, consistent with our earlier conclusion (Figure 2). The
consequence of faster drainage is that the ϕ decreases rapidly, concomitant with the reduc-
tion in film thickness. The thin films tend to rupture, leading to rapid foam destruction.
As a result, UC18AMPM-CO2 aqueous foams show a t1/2 of 445 s, which is much shorter
relative to UC22AMPM-CO2 aqueous foams (9750 s) in identical conditions.

Molecules 2023, 28, 2567 6 of 16 
 

 

 

Figure 3. (A) Variation of the liquid content () for 0.5% UC22AMPM and 0.5% UC18AMPM as a 

function of time. (B) Shear viscosity () plotted as a function of shear rate for 0.5% UC22AMPM and 

0.5% UC18AMPM solutions at 35 C. 

Upon CO2 sparging cease, the  reduced gradually with time because of the drainage. 

It can be seen that the UC18AMPM-CO2 aqueous foams drained in the 200s to  = 0, while 

the  of UC22AMPM-CO2 aqueous foam was 20% in this period (Figure 3A), demonstrat-

ing that the drainage from UC18AMPM-CO2 aqueous foams is faster than that of 

UC22AMPM-CO2 aqueous solution. 

The rheological results demonstrated the UC22AMPM dispersion saturated with CO2 

attained very high values of zero-shear viscosity ηo (3.75 × 104 mPa·s) and showed shear-

thinning behavior (Figure 3B). The high magnitude of ηo mirrors the presence of entangled 

wormlike micelles in solution [40,41]. In contrast, the ηo for UC18AMPM samples was only 

1.0 mPa·s (Figure 3B), reflecting the absence of wormlike micelles. Numerous studies 

have established that drainage velocity (V) should vary inversely with the viscosity of the 

continuous phase (), as the following equation [42]: 

V= 
dhf

dt
=

hf
3

3ηRf
2

ΔPfilm (3) 

where ΔPfilm stands for the difference in pressure between the film center and border, hf 

refer to the thickness of the thin film. Using Equation (3), one can conclude that the V of 

UC18AMPM-CO2 aqueous foams is four orders of magnitude greater than that of 

UC22AMPM-CO2 aqueous foams, consistent with our earlier conclusion (Figure 2). The 

consequence of faster drainage is that the  decreases rapidly, concomitant with the re-

duction in film thickness. The thin films tend to rupture, leading to rapid foam destruc-

tion. As a result, UC18AMPM-CO2 aqueous foams show a t1/2 of 445 s, which is much 

shorter relative to UC22AMPM-CO2 aqueous foams (9750 s) in identical conditions. 

According to the aforementioned results, we attributed the differences in perfor-

mance between UC22AMPM and UC18AMPM foams to their viscosity discrepancy, rooted 

in the different assembled structures of UC22AMPM and UC18AMPM. More specifically, 

UC22AMPM with 0.5% concentration can self-assemble into wormlike micelles, but 

UC18AMPM cannot. For the UC22AMPM system, the entangled worm-like micelles impart 

high viscosity to the foam continuous phase. During the foaming process, a large amount 

of liquid was transported into the foam liquid channels, forming thick foam films. The 

thick films would increase the thermal activation energy barrier against coalescence and 

Ostwald ripening. More important, the drainage is retarded by high . Overall, high con-

Figure 3. (A) Variation of the liquid content (ϕ) for 0.5% UC22AMPM and 0.5% UC18AMPM as a
function of time. (B) Shear viscosity (η) plotted as a function of shear rate for 0.5% UC22AMPM and
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According to the aforementioned results, we attributed the differences in perfor-
mance between UC22AMPM and UC18AMPM foams to their viscosity discrepancy, rooted
in the different assembled structures of UC22AMPM and UC18AMPM. More specifi-
cally, UC22AMPM with 0.5% concentration can self-assemble into wormlike micelles, but
UC18AMPM cannot. For the UC22AMPM system, the entangled worm-like micelles impart
high viscosity to the foam continuous phase. During the foaming process, a large amount
of liquid was transported into the foam liquid channels, forming thick foam films. The thick
films would increase the thermal activation energy barrier against coalescence and Ostwald
ripening. More important, the drainage is retarded by high η. Overall, high continuous
phase viscosity retarded the three types of foam destabilization processes simultaneously,
thereby enhancing the stability of foams. In contrast, the UC18AMPM behaved as a low
η Newtonian fluid due to the absence of wormlike micelles, leading to the formation
relatively thin foam film. Furthermore, lamellae films drained rapidly due to the low η
of the aqueous phase. The consequence of faster drainage is that the foam film becomes
thinner and prone to rupture, leading to foam destruction. Therefore, the UC18AMPM-CO2
solution presents poor foam properties as compared with the UC22AMPM counterpart.

2.2. A Comparison of the Foams Switchability

We previously demonstrated the aqueous foams stabilized by UC22AMPM could
be turned “on” and “off” on demand through the bubbling of CO2 or adding NH3·H2O.
It is essential to examine the switchability of the UC18AMPM-CO2 foam and to make a
comparison with the UC22AMPM ones. The pressure and temperature are constant at
3 MPa and 80 ◦C, respectively, to ensure that the above two compounds can be protonated
again after the neutralization of NH3·H2O.
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Figure 4 depicts the parallel variations of Vmax and t1/2 of both CO2 foam systems
after the alternating addition of NH3·H2O and CO2. It was apparent that the t1/2 rose
or declined accordingly with the alternative introduction of CO2 and NH3·H2O, sug-
gesting the foam lifetime of both foam systems can be reversibly tuned. This finding
proved that CO2 aqueous foams prepared from UC18AMPM feature switchability similar to
UC22AMPM, resulting from their identical hydrophilic headgroups. As shown in Scheme 2,
both UC22AMPM and UC18AMPM in water can be protonated into cationic surfactants
after sparging CO2, lowering C-W IFT by adsorbing at the CO2/water interface and thereby
promoting foam formation. Upon NH3·H2O addition, protonated surfactant converted
to a surface-inactive neutral form. Consequently, UC22AMPM and UC18AMPM would
desorb from the CO2/water interface, disrupting the foam film and thereby leading to
rapid foam destabilization.
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Notably, the Vmax of UC22AMPM-CO2 foams initially remained constant and then
gradually declined as the cycle number increased (Figure 4A), demonstrating foamabil-
ity weakening. By comparison, the Vmax of UC18AMPM-CO2 foams gradually boosted
as the foaming/defoaming cycle number increased (Figure 4B), indicative of enhanced
foamability. On the other hand, the t1/2 of both CO2 foam systems decreased as the num-
ber of foaming/defoaming cycles increased (Figure 4A,B), indicating that foam stability
deteriorated as the cycle number increased. A similar result was observed in our earlier
studies, arising from the accumulation of by-products (a mixture of ammonium carbonate
and bicarbonate) [21].
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2.3. Comparison of the Effect of External Factors on Foam Properties

It has been recognized that external factors such as temperature, pressure and salinity
can significantly affect the foam properties [21]. In the following subsections, the influence
of these external factors on the properties of the above two CO2 aqueous foams was
investigated comparatively using an HTHP visualization foam meter.

2.3.1. Effect of Temperature

To examine the impact of temperature on the CO2 aqueous foams made with UC22AMPM
or UC18AMPM, t1/2 and Vmax were determined in a temperature range of 25–120 ◦C at a
constant pressure of 3 MPa. As shown in Figure 5A, the Vmax of both foams systems in-
creased slightly with the temperature elevated, meaning that the increment of temperatures
improves the foaming ability.
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Figure 5. The (A) Vmax and (B) t1/2 of 0.5% UC22AMPM dispersion and 0.5% UC18AMPM dispersion
plotted as a function of temperature at 3 MPa in the presence of CO2, respectively.

Compared in Figure 5B are the changes in t1/2 for the above two aqueous foams
systems at different temperatures. Both foam systems displayed similar evolution trends,
i.e., the t1/2 diminished steeply with the elevation of temperature, demonstrating that
increased temperature would deteriorate foam stability. Many studies have revealed the
elevating temperature resulted in increased C-W IFT [22] and decreased η [40] at constant
pressure. Therefore, the foam destabilization accelerates with increasing temperature as a
consequence of the higher C-W IFT and lower η, leading to poor foam stability.

Note also that the t1/2 of UC22AMPM-CO2 aqueous foams is greater than that of
UC18AMPM-CO2 aqueous foams within the studied temperature scope, signifying that
the CO2 aqueous foam stabilized by UC22AMPM exhibits better temperature resistance
compared to UC18AMPM foams. In addition, the t1/2 of UC22AMPM-CO2 aqueous foams
diminished by 5.3 fold when temperature increased from 25 to 120 ◦C, smaller than that of
the UC18AMPM-CO2 aqueous foams (~9 fold), illustrating the impact of temperature on
the stability of UC18AMPM-CO2 aqueous foams is more prevalent related to UC22AMPM.
One explanation here could be that the Pc is higher than that of UC18AMPM due to its
relatively lower ϕ.

2.3.2. Effect of Pressure

As observed in Figure 6A,B, the Vmax and t1/2 for both samples increased with the
increasing pressure, demonstrating that increasing pressure is conducive to foaming ability
and foam stability. The finding is consistent with previous studies [21,43,44] attributed
to the decrease in the C−W IFT with the pressure increasing. Specifically, high pressure
enhances the interactions between CO2 and the hydrophobic tail of surfactant molecules,
reducing the contact probability between CO2 and water molecules and thus generating
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a lower C-W IFT [44]. Clearly, a lower C-W IFT enables the foam to easier form and to
mitigate the foam aging process.
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Interestingly, the increased scope of Vmax of both foams showed a similar variation
tendency with increasing pressure. The Vmax for UC22AMPM-CO2 aqueous foam increased
from 70 to 230 mL at the tested pressures scope; the UC18AMPM-CO2 aqueous foam
increased from 54 and 150 mL under identical conditions. Their Vmax increased by ap-
proximately three times, suggesting the effect of pressure on the foaming ability of both
compounds is identical. Instead, the t1/2 for UC22AMPM-CO2 aqueous foam increased
from 3200 and 12,400 s, showing a faint increase; while the t1/2 of UC18AMPM-CO2 aque-
ous foam underwent a slight increase from 1000 to 2200 s. The growth fold of t1/2 for
UC22AMPM-CO2 aqueous foam is around 3.9, higher than that of UC18AMPM ones (2.2).
These results highlighted that pressure is more prominent in enhancing the stability of
UC22AMPM-CO2 aqueous foam compared with that of UC18AMPM-CO2 aqueous foam.

2.3.3. Effect of Salinity

Inorganic salts have been found to modulate the surface activities [45], altering the
properties of the surfactant-stabilized foam [43]. Hence, a common sodium chloride (NaCl)
was used as representative inorganic salt to add the above two foam systems to clarify the
effect of salt on the properties of UC22AMPM and UC18AMPM CO2 aqueous foams.

As depicted in Figure 7A, the Vmax of both foams samples increased initially and then
maintained constant with increasing NaCl concentration. For example, the UC18AMPM
foam expanded from 151 and 175 mL when NaCl concentration increased from 0 to 1
wt.%; while the UC22AMPM foam slightly grew from 189 and 199 mL by increasing NaCl
concentration from 0 to 0.5 wt.%. This means that the addition of a small amount of NaCl
is beneficial for foamability. A plausible explanation could be that the addition of NaCl
enhanced the adsorption of surfactant molecules at the C-W interface as a result of the
charge neutralization, leading to the reducing C-W IFT, and thereby improving foaming
ability [46]. Thereafter, the Vmax of both samples remained virtually constant with a further
increase in NaCl concentration. We believe that electrostatic repulsions between surfactants
are sufficiently shielded at high NaCl content (≥1.0 wt.%). In this scenario, the surfactants
were saturated in CO2/water interfaces, and the C-W IFT achieved a minimum value.
Consequently, high NaCl concentrations have a negligible effect on foamability.
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Figure 7. Comparison of the effect of NaCl concentrations on (A) Vmax and (B) t1/2 of 0.5%
UC22AMPM-CO2 solution and 0.5% UC18AMPM-CO2 solution, respectively, at 35 ◦C under
atmospheric pressure.

Compared in Figure 7B is the t1/2 for two cases of CO2 aqueous foams as a function of
NaCl concentration. Overall, the t1/2 of the UC22AMPM foam samples showed a down-
trend at the tested NaCl concentrations, manifesting that the addition of NaCl undermined
the foam stability of UC22AMPM. This can be interpreted with the fact that the additional
NaCl causes a transformation from linear to branched micelles, leading to a decrease in
η [47,48]. Upon the decrease in η, the foam aging process would speed up, leading to
rapid foam destruction. As for CO2 aqueous foams made from UC18AMPM, t1/2 gradually
increased and then remain unchanged with increasing salinity. We also attributed this
enhanced t1/2 to the fact that the presence of NaCl enhances the adsorption density of
surfactant molecules on the CO2/water interface through electrostatic screening, enhancing
the strength of foam lamella and therefore resisting gas diffusion between bubbles.

It is also noteworthy that the t1/2 of UC22AMPM-CO2 aqueous foams is higher than
that of UC18AMPM-CO2 aqueous foams within the studied salinity scope, signifying that
the CO2 aqueous foam stabilized by UC22AMPM exhibits better salt tolerance compared to
UC18AMPM foams.

3. Materials and Methods
3.1. Materials

UC18AMPM and UC22AMPM were synthesized according to our previously-reported
procedure [39] and confirmed by proton nuclear magnetic resonance spectroscopy (1H
NMR, Figures 8 and 9). CO2 (≥99.998%) was purchased from Jinnengda Gas Company
(Chengdu, China) and was used as received. Sodium chloride (NaCl, 99%, GC) and
NH3·H2O (25 Vol.%) were purchased from Chengdu Kelong Chemical Factory Co., Ltd.
(China). CD3Cl (≥98% deuterium content) used for 1H NMR analysis was obtained from
Sigma-Aldrich (Shanghai, China). The deionized water with a resistivity of 18.25 MΩ·cm
used throughout this study was prepared from a quartz water purification system (UPH-I-
10T, Chengdu Ultra-pure Technology Co., Ltd., Chengdu, China).
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3.2. Preparation of Foaming Solution

A concentrated parent dispersion was prepared by adding designed amounts of
surfactant samples (UC22AMPM or UC18AMPM) and deionized water to a sealed Schott-
Duran bottle equipped with a magnetic bar inside. Next, the resulting mixture was stirred
at 60 ◦C for at least 10 min, yielding low-viscosity emulsion-like dispersion. Remarkably,
the dispersion concentration was calibrated by adding water to compensate for the water
evaporation during the agitation process. The parent dispersions were cooled to room
temperature. Then, the dispersions with desired concentration were obtained by diluting
the concentrated parent dispersion with deionized water or brine.
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3.3. Evaluation of Aqueous Foams at Atmospheric Pressure

The FoamScan setup (Figure 10, TECLIS, Lyon, France), which combines image analy-
sis and conductivity measurements to monitor foam properties, was employed to character-
ize the foam properties of two types of ultra-long chain tertiary amines (i.e., UC22AMPM
and UC18AMPM). Briefly, 60 mL of dispersions were placed in the glass column with a
porous glass filter (pore diameter 0.2 mm) and heated to the desired temperature by an
embedded electric heating system. The pressure of the chamber was fixed at atmospheric
pressure. Afterward, aqueous foams were formed by bubbling CO2 for two minutes. The
CO2 flow rate is constant at 100 mL/min by mass flow meters. The foam volume and liquid
content were measured by five pairs of electrodes located along the glass column. The
bubbles evolution was captured by the CCD (charge-coupled device) camera after the gas
flow stopped.
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3.4. Evaluation of Aqueous Foams at High Pressure

Given that the FoamScan cannot perform at high pressure, the foam properties under
high-pressure conditions were evaluated by an HTHP visualization foam meter (Jiangsu
Hongbo Machinery Manufacturing Co., Ltd., Haian China). A detailed description of
the HTHP visualization foam meter and operating procedures have been reported in our
previous work [6–8]. Firstly, 100 mL dispersions were pumped into the visual chamber and
heated to the desired temperature by an embedded electric heating system. The CO2 was
then bubbled into the chamber to achieve the desired pressure. Afterward, the surfactant
dispersions and CO2 were vigorously stirred at 1100 rpm for 3 min. Once agitation ceased,
the Vmax and t1/2 were recorded by observing the foam height. All values were measured
three times per experiment, and the average value was taken as the final result.

3.5. Characterization of Switchability of Aqueous Foams

To examine the switchability of aqueous foams produced from UC22AMPM and
UC18AMPM, the CO2 and NH3·H2O (25 vol.%) were used as triggers to “switch” foam
on and off. First, at a 3 MPa CO2 atmosphere, the aqueous foams were generated by the
agitation of 100 mL of UC22AMPM and UC18AMPM aqueous dispersion at 1020 rpm for
3 min using an HTHP visualization foam meter, respectively. Subsequently, the appropriate
amount of NH3·H2O was introduced to the CO2 aqueous foam system, during which the
foaming and defoaming processes were tracked. This operation was repeated five times,
and each cycle was separated by 10 min. All measurements were performed at 80 ◦C.
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3.6. Rheological Test of Foaming Solution

The rheological measurements of the foaming solution were carried out on a Physica
MCR 302 (Anton Paar, Graz, Austria) rotational rheometer equipped with a concentric
cylinder geometry CC27. At atmospheric pressure, CO2 was first bubbled into the sample at
a flow rate of 200 ± 1 mL/min for 2 min. Then, 16 mL of previously gas-treated sample was
introduced to the measuring cell and thermostatically incubated at the desired temperature
for 20 min prior to experimentation. A solvent trap was used to reduce water evaporation
in the experiments. For all experiments, flow curves were registered in a stress-controlled
mode, and the data were acquired by the software Rheoplus TM. The temperature was
finely controlled by a Peltier temperature control device.

4. Conclusions

In this work, we investigate comparatively the properties of CO2 foams stabilized
by UC22AMPM and UC18AMPAM and examined the evolution trend of foam properties
concerning variation in external factors (i.e., temperature, pressure and salinity). The results
showed that CO2 aqueous foams prepared from UC18AMPM exhibited similar switching
properties to UC22AMPM, arising from their identical tertiary amine headgroups. However,
due to the relatively long hydrophobic chain, UC22AMPM molecules self-assembled into
wormlike micelles, but UC18AMPM cannot. The entanglement of these wormlike micelles
into a transient network imparts high viscosity to the continuous phase of foam. During the
foaming process, a large amount of liquid was transported into the foam liquid channels,
forming the thicker foam film. Meanwhile, the high continuous phase viscosity of the
foam system decelerates lamellae drainage. With lower drainage, the lamella remained
thicker. The thicker films would enhance foam strength as well as hinder gas diffusion,
arresting coalescence and Ostwald ripening, thereby enhancing the foam’s lifetime. On
the contrary, the viscosity of the UC18AMPM sample decreased to ~1.0 mPa·s because of
the absence of wormlike micelles. The lower viscosity accelerated the drainage process,
weakening the strength of the foam film. The reduced strength and thickness of foam film,
in turn, led to the bursting of bubbles. As a result, UC22AMPM foam displayed better
foaming ability and foam stability compared to UC18AMPAM foam under identical con-
centrations. More importantly, for UC22AMPM-CO2 foam, the positive influence derived
from pressure and concentration on its foam properties is much more pronounced than
those of its UC18AMPM counterpart. Compared with UC18AMPM-CO2 foam, the salinity
and temperature had a relatively weak negative effect on the properties of UC22AMPM-
CO2 foam. In summary, this comparative study advances mechanistic insights into the
role of surfactant architecture in foam properties, as well as establishes macroscopic links
among foam properties, surfactant structure and environmental factors, promoting the
development of such foam systems.
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