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Abstract: Suramin was originally used as an antiparasitic drug in clinics. Here, we demonstrate
that suramin can bind to the N-terminal domain of SARS-CoV-2 nucleocapsid protein (N-NTD) and
disturb its interaction with RNA. The BLI experiments showed that N-NTD interacts suramin with
a dissociate constant (Kd = 2.74 µM) stronger than that of N-NTD with ssRNA-16 (Kd = 8.37 µM).
Furthermore, both NMR titration experiments and molecular docking analysis suggested that suramin
mainly binds to the positively charged cavity between the finger and the palm subdomains of N-NTD,
and residues R88, R92, R93, I94, R95, K102 and A156 are crucial for N-NTD capturing suramin.
Besides, NMR dynamics experiments showed that suramin-bound N-NTD adopts a more rigid
structure, and the loop between β2-β3 exhibits fast motion on the ps-ns timescale, potentially
facilitating suramin binding. Our findings not only reveal the molecular basis of suramin disturbing
the association of SARS-CoV-2 N-NTD with RNA but also provide valuable structural information
for the development of drugs against SARS-CoV-2.
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1. Introduction

SARS-CoV-2 is the pathogen of Corona Virus Disease 2019 (COVID-19), consisting
mainly of four known structural proteins, including Spike (S), Membrane (M), Envelope
glycoproteins (E) and Nucleocapsid (N) [1]. Among them, the N protein is a highly
conserved protein, playing essential roles in binding viral RNA and packing it into the
ribonucleoprotein (RNP) complex [2–6]. The N protein is also implicated in host cell
metabolism; regulating biological activities, such as cell cycle progression; host-pathogen
interaction and cell pyroptosis [7–12]. Besides, the N protein can suppress the antiviral
immunity of the host cell by disturbing the RIG-I-like receptor pathway [13]. Therefore, the
N protein is a promising drug target for treating COVID-19 [14–16].

The sequence similarity of the N protein between SARS-CoV-2 and SARS-CoV is as high
as 90%, indicating that both proteins share a similar structural pattern [17]. The SARS-CoV-2 N
protein contains two conserved domains (N-NTD: 44–174 a.a.; N-CTD: 255–363 a.a.) and
three intrinsically disordered regions (IDRs: 1–43 a.a., 175–254 a.a., 364–419 a.a.) [15].
The three-dimensional (3D) structures of N-NTD and N-CTD domains have been deter-
mined [18–21]. Tatsuhito et al. found that the N-NTD and N-CTD structures of SARS-CoV-2
resemble those of other β-coronaviruses, such as SARS-CoV and MERS-CoV [22]. SARS-CoV-2
N-NTD shows a right-handed fist shape composed of a palm subdomain and a basic finger
subdomain. The palm subdomain is the core structure of N-NTD consisting of one five-
stranded β-sheet with the topology β4-β2-β3-β1-β5 and two short flanking α-helices. The
basic finger subdomain is a protruding β-hairpin (86–109 a.a.) between β2 and β3, mostly
containing basic residues. The positively charged canyon between the finger and the palm
subdomains acts as the main RNA-binding site, and residues R92, R107 and R149 play
key roles in capturing RNA [18,19]. In addition, it was reported that N-NTD had different
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affinities for binding different RNA fragments, depending on the length and conformation
of the tested RNA fragments [19,23].

The emergence of the COVID-19 pandemic represents an increased risk to global
public health. Effective drugs are urgently needed against the pandemic. The repurposing
or redesign of existing drugs is a potential way to accelerate this process. Many antiviral,
anti-inflammatory drugs were tested for the treatment of COVID-19, such as rapamycin,
saracatinib, camostat, and so on [24]. Suramin has been reported to have the potency to
prevent the progression of SARS-CoV-2 infection in human airway epithelial cells; however,
the underlying molecular mechanisms still remain unclear [25]. Raphae et al. found that
suramin and quinacrine can cooperatively inhibit the SARS-CoV-2 main protease (3CLpro)
in vitro [26]. The inhibitory activities of these two drugs on 3CLpro still need to be further
verified using in vivo experiments. Recently, Yin et al. demonstrated that suramin can block
the binding of RNA to the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) [27].
These results suggest that suramin has the potency to be developed as an anti-SARS-CoV-2
drug. Furthermore, suramin has been previously used to treat African trypanosomiasis
and parasite infections, and it could bind to the enteroviral nucleocapsid protein and
inhibit its attachment to the human host cell [28,29]. As a symmetrical compound with
three sulfonic groups at each end carrying six negative charges under physiological pH
conditions (Figure 1), suramin more likely binds to positively charged sites in the pockets
of proteins. We thus speculated that suramin might bind to the positively charged pocket
in the N-NTD domain of the SARS-CoV-2 N protein (SARS-CoV-2 N-NTD).
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Figure 1. The chemical structure of suramin.

Herein, we determined the binding affinity of suramin to SARS-CoV-2 N-NTD and
disclosed the structural basis of suramin disturbing the association of N-NTD with RNA.
Our results may be beneficial to both the in-depth understanding of molecular mech-
anisms underlying SARS-CoV-2 viral assembly and the development of specific drugs
against COVID-19.

2. Results and Discussion
2.1. Suramin Disturbs the Association of SARS-CoV-2 N-NTD with RNA

The N protein of SARS-CoV-2 can pack the RNA genome into the ribonucleopro-
tein (RNP) complex, which is crucial for virus replication. The NTD domain of the
N protein (N-NTD) plays an important role in binding RNA. Many previous studies have
demonstrated that the SARS-CoV-2 N-NTD can bind many RNA fragments with differ-
ent lengths [19,23]. Here, we analyzed the interaction of SARS-CoV-2 N-NTD with the
ssRNA-16 fragment (ssRNA-16: 5′-AUAUGGAAGAGCCCUA-3′) derived from the non-
translated region at the 3 ‘end of SARS-CoV-2 genome [30]. The EMSA experiment showed
that when SARS-CoV-2 N-NTD were mixed with ssRNA-16 at a molar ratio of 1:1, most of
the RNA bound to SARS-CoV-2 N-NTD, and only a small amount of free RNA remained
(Figure 2, lane 2). With the concentrations of suramin increasing, RNA was gradually
dissociated from N-NTD, and the corresponding band of free RNA was gradually strength-
ened (Figure 2, lane 3–9). These results showed that suramin could prevent the binding
of SARS-CoV-2 N-NTD with RNA in vitro. Therefore, suramin could be developed as a
potential inhibitor against SARS-CoV-2.
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Figure 2. EMSA experiment for suramin disturbing the association between SARS-CoV-2 N-NTD
and ssRNA-16. Lane 1: free ssRNA-16; lane 2: mixture of N-NTD with ssRNA-16 at the molar ratio of
1:1; lane 3–9: mixture of N-NTD with ssRNA-16 and suramin at molar ratios of 1:1:1, 1:1:2.5, 1:1:5,
1:1:7.5, 1:1:10, 1:1:15, 1:1:20; lane 10: suramin; lane 11: mixture of suramin with ssRNA-16 at the ratio
of 1:1.

2.2. Suramin Has a Higher Affinity for Binding SARS-CoV-2 N-NTD Than RNA

To quantitatively analyze the intermolecular interaction of SARS-CoV-2 N-NTD with
either suramin or RNA, we first determined the binding affinity of N-NTD with ssRNA-16
using BLI experiments, obtaining a Kd value of 8.37 µM. It was previously reported that
binding affinities of N-NTD with different RNA fragments were in the range of 6–190 µM,
depending on the length and conformation of the tested RNA fragments [17]. It seemed
that both the association and dissociation processes of N-NTD with suramin (Figure 3a)
were slower than those with RNA (Figure 3b). Furthermore, we determined the affinity of
N-NTD for binding suramin (Kd = 2.74 µM), which was stronger than those for binding all
reported RNA fragments so far. Therefore, suramin could competitively bind to N-NTD
by replacing RNA. Additionally, the affinity of suramin for binding to N-NTD was also
stronger than that for binding to 3CLpro (Kd = 59.7 µM).
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Figure 3. BLI experiments for detecting the interaction of SARS-CoV-2 N-NTD with suramin (a) or
ssRNA-16 (b).

2.3. Suramin Shares Similar Binding Areas with RNA on SARS-CoV-2 N-NTD

We explored the potential binding sites of suramin or RNA on SARS-CoV-2 N-NTD
by observing the peak change in the 2D 1H-15N HSQC spectra of N-NTD before and after
ligand titration. As we know each residue of N-NTD corresponds to one peak in its 2D
1H-15N HSQC spectrum, and the location and intensity of the peak are closely related to the
chemical environment of its corresponding residue, therefore, once a residue is involved in
ligand binding, its peak location or intensity will change. Based on the chemical shift data of
the N-NTD protein deposited in the Biological Magnetic Resonance Bank (BMRB ID: 35411),
we identified binding sites of either suramin or RNA on N-NTD by following the changes
of peaks in the 2D 1H-15N HSQC spectra recorded during the titration experiments. Firstly,
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we titrated ssRNA-16 into 15N-labeled N-NTD protein solution and observed 11 obviously
shifted peaks in the 2D 1H-15N HSQC spectra of N-NTD (Figure 4a), corresponding to
residues G60, A90, G96, G97, K143, I146, A152, Q160, G170, G175 and S176. Additionally,
24 residues underwent significant peak broadening, including L56, D63, L64, K65, F66, N75,
T91, R92, R93, I94, R95, K100, K102, D103, S105, T135, L139, N150, A156, L159, T165, T166,
A173 and R177. These peak perturbations suggested that N-NTD possessed a medium
affinity (~µM) to RNA, which was consistent with the results obtained from the above-
described BLI experiments. Further, these perturbed residues were identified as potential
binding sites of ssRNA-16 on N-NTD. Then we mapped these significantly perturbed
residues onto the 3D structure of N-NTD (PDB ID: 6YI3, Figure 4b), and found they formed
a U-shaped binding region between the finger and the palm subdomains.
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Figure 4. Binding site comparison of ssRNA-16 and suramin on SARS-CoV-2 N-NTD. (a) 2D 1H-15N
HSQC spectra of N-NTD titrated with ssRNA-16. (b) Mapping the residues perturbed during the
RNA titration on the 3D structure of N-NTD (PDB ID: 6YI3). (c) 2D 1H-15N HSQC spectra of N-NTD
titrated with suramin. (d) Mapping the residues perturbed during the suramin titration on the 3D
structure of N-NTD (PDB ID: 6YI3). The broad peaks are indicated in the dashed rectangles in the
spectra and the corresponding residues are shown in yellow in the structure, while the shifted peaks
are indicated as arrows and the corresponding residues are shown in green.

On the other hand, 41 peaks of N-NTD showed obvious shift or/and broaden during
the suramin titration (Figure 4c), indicating a moderate interaction between suramin and
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N-NTD with a medium affinity (~µM), which is also consistent with the results from the
BLI experiments. A total of 11 residues were obviously shifted, including G44, N48, S51,
R68, R95, D128, G129, T135, V158, L167 and G179, and 30 residues were broaden covering
N47, W52, T54, L56, T57, H59, G60, K61, L64, K65, A90, T91, R93, I94, G96, G99, K100,
M101, K102, R107, W108, L139, R149, A155, A156, L159, Q160, Q163, Y172 and G175. These
41 perturbed residues are mapped on the 3D structure of N-NTD (PDB ID: 6YI3, Figure 4d),
which are mostly located at the junction between the finger and the palm subdomains,
similar to the binding area of ssRNA-16 described above. Therefore, we speculate that
suramin can competitively inhibit RNA binding to SARS-CoV-2 N-NTD by occupying the
same binding sites with a binding affinity higher than RNA.

2.4. Structural Model of the SARS-CoV-2 N-NTD-Suramin Complex

To clarify the structural basis of SARS-CoV-2 N-NTD binding to suramin, we built a dock-
ing model of the SARS-CoV-2 N-NTD-suramin complex by using the HADDOCK 2.4 online
server. The 3D structure of the N-NTD protein derived from that of the SARS-CoV-2
N-NTD-RNA complex (PDB ID: 7ACT) was used as the initial structural model for docking
N-NTD with suramin. The model with the lowest interface energy was selected as the
optimal docking model (hereinafter referred to as the docking model), which illustrates
that suramin is captured in the positively charged cavity of SARS-CoV-2 N-NTD formed
by the finger and palm subdomains (Figure 5a).
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Figure 5. Structural model of the SARS-CoV-2 N-NTD-suramin complex. (a) The docking model
was built using HADDOCK. Suramin is shown in grey. (b) Schematic diagram of intermolecular
interactions in the structural model of N-NTD-suramin produced using PLIP 2.2.0 online software.
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Then, we analyzed the structural model of N-NTD-suramin using the PLIP online tool.
It is shown that the N-NTD protein binds suramin mainly through three salt bridges. In
detail, R95 and K102 form salt bridges with sulfonic acid groups at both ends of suramin
on one site, while on the other side, the guanidyl group of R88 forms a salt bridge with
suramin. Furthermore, R92, R93, I94 and G96 form hydrogen bonds with suramin to further
stabilize the N-NTD-suramin complex. Besides, I94 and A156 of N-NTD separately form
two hydrophobic contacts with suramin (Figure 5b).

To identify the crucial residues for SARS-CoV-2 N-NTD capturing suramin, we con-
structed seven mutants (R88E, R92E, R93E, I94G, R95E, K102E and A156G), and determined
their affinities for binding suramin by conducting BLI experiments. Compared with the
wild-type N-NTD (WT), these mutants decreased the binding affinities of suramin by
around 50% (Figure 6). In particular, both the R92E and K102E mutants significantly
weakened the binding of N-NTD to suramin with a 59% reduction in affinity compared
to the WT. The affinities of the R88E, R93E, R95E and A156G mutants to suramin were
also decreased by about 51–52%. Besides, the I94G mutant slightly decreased the affinity
to suramin by around 43% compared with the WT. These results suggest that residues
R88, R92, R93, I94, R95, K102 and A156 play crucial roles in the interaction of N-NTD with
suramin. Although we have not obtained the docking model of the N-NTD-ssRNA-16
complex due to the higher flexibility of ssRNA-16, it has been previously reported that the
positively charged cavity between the palm and finger subdomains of SARS-CoV-2 N-NTD
is the main RNA-binding area, and R92, R93, R95, K102 are four important residues for
capturing RNA [14,18]. Future work should be performed to experimentally determine the
3D structure of the SARS-CoV-2 N-NTD-suramin complex.
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2.5. Suramin Binding Changes the Dynamics Property of SARS-CoV-2 N-NTD

Protein dynamics characteristics are usually changed due to the binding of small
molecules. We herein compared the dynamic properties of suramin-bound N-NTD with
those of free N-NTD, to evaluate the effect of suramin binding on the N-NTD dynamics. We
measured the longitudinal relaxation rate R1, transverse relaxation rate R2 and heteronu-
clear {1H}-15N hNOE data of free N-NTD and suramin-bound N-NTD (Figure 7). Except
for 11 proline residues in the SARS-CoV-2 N-NTD and 8 residues with either invisible
resonances or significant resonance overlap in the 2D 1H-15N NMR spectra, 118 residues
were used for the backbone dynamics analysis of free N-NTD. As suramin binding induced
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significant peak broadening and even disappearance in the NMR spectra, only 98 residues
were finally used for the backbone dynamics analysis of suramin-bound N-NTD.
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and suramin-bound N-NTD.

The R1 distribution of free N-NTD ranged from 0.661 to 1.260 s−1, with an average
value of 0.849 s−1. The R1 values of residues located in the loop regions between the
N-terminus, C-terminus and β2-β3 segment were slightly higher than the average value,
indicating that these regions were flexible. On the other hand, the R1 distribution of
suramin-bound N-NTD ranged from 0.332 to 1.293 s−1, with an average range of 0.555 s−1

which is obviously lower than that of free N-NTD. The lowered R1 value suggested that
the fast motion of the suramin-bound N-NTD on the ps-ns timescale was suppressed.
However, the residues located at the loop region between β2 and β3 had higher R1 values
at around 0.710 s−1 than the average value, implying that this segment still experienced
faster motion on the ps-ns timescale after N-NTD binding to suramin. The averaged R2
value of the suramin-bound N-NTD was about 34.1 s−1, which was apparently higher
than that of free N-NTD (14.3 s−1), indicating that the internal motion of N-NTD on µs-ms
timescale was suppressed upon suramin binding. The hNOE values of free N-NTD were
distributed between 0.067 and 0.938 with an average value of 0.770, and the residues on the
loop region between β2 and β3 were significantly lower than the average value, indicating
that this loop region was highly flexible in solution. The suramin-bound N-NTD basically
had similar hNOE values as free N-NTD (Figure 7). These results indicated that both the
ps-ns fast motion and µs-ms slow motion of residues in N-NTD are mostly suppressed after
suramin binding. Notably, the loop between β2 and β3 still exhibited ps-ns fast motion,
which might be related to the association and dissociation of suramin with N-NTD. As
previously reported, conformational changes in the loop region between β2 and β3 can
facilitate N-NTD binding RNA [19]. Therefore, it can be expected that the internal motion
of the loop between β2 and β3 might facilitate N-NTD binding suramin.

We further processed the relaxation parameters by using Mathematica Notebooks to
obtain low-spectral density functions J(0), medium-spectral density functions J(ωN) and
high-spectral density functions J(0.87ωH) for free N-NTD and suramin-bound N-NTD
(Figure 8). In free N-NTD, the locally averaged J(0) values of residues on the loop region
between the N-terminus, C-terminus and β2-β3 were significantly lower than the globally
averaged J(0) value of (5.3 × 10−6 s·rad−1). On the other hand, the locally averaged
J(ωN) and J(0.87ωH) values of these loops were significantly higher than the globally
averaged values of N-NTD (J(ωN), 2.1 × 10−7 s·rad−1; J(0.87ωH), 3.3 × 10−9 s·rad−1).
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These results indicated that these loop regions are structurally flexible with fast motion
on the ps-ns timescale. The globally averaged J(0) value of suramin-bound N-NTD was
4.5 × 10−6 s·rad−1, which was obviously lower than that of free N-NTD, implying that
the internal mobility on µs-ms timescale was somewhat suppressed. The average J(ωN)
value of the suramin-bound N-NTD was 1.3 × 10−7 s·rad−1, which was also lower than
that of free N-NTD, suggesting that suramin binding observably suppressed the structural
flexibility of N-NTD on the ps-ns timescale. However, residues R93, K100 and D103 located
at the loop between β2 and β3 still had higher J(ωN) values, implying that this loop
kept certain flexibility in the ps-ns timescale. Although the average J(0.87ωH) value of
the suramin-bound N-NTD was slightly different to that of free N-NTD, residues R95,
D98 and D103 located at the loop between β2 and β3 still displayed high J(0.87ωH) values,
suggesting that the ps-ns fast motion of this loop remains in the suramin-bound N-NTD.
These results indicated that suramin binding makes the N-NTD protein more rigid and that
the loop between β2 and β3 still exists in fast motion on the ps-ns timescale to facilitate the
association and dissociation of suramin with N-NTD.
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3. Materials and Methods
3.1. Cloning, Expression and Purification

The plasmid pET28a harboring the DNA fragment of SARS-CoV-2 N protein (pET28a-N)
was provided by the Guangdong Laboratory Animals Monitoring Institute. Then, the DNA
fragment corresponding to the N-terminal domain of SARS-CoV-2 N protein (N-NTD,
residues 44–180) was amplified using PCR with pET28a-N as the template and inserted
into the pSUMO vector containing an N-terminal 6xHis-tag followed by a SUMO fusion
partner with a SUMO protease cutting site between them. Seven N-NTD mutants were
generated using site-directed mutagenesis, including R88E, R92E, R93E, I94G, R95E, K102E
and A156G. All recombinant plasmids used in this study were verified via DNA sequencing
and transformed into E. coli BL21 (DE3) strain. The recombinant cells were then induced
with 0.5 mM IPTG at OD600 nm of 0.6 and continually cultured at 25 ◦C for 12 h in LB liquid
media. For preparing uniformly 15N-labeled N-NTD samples, the cells were cultured in
M9 media with 0.1% (m/v) of 15NH4Cl as a nitrogen source.

The harvested cell pellets of SARS-CoV-2 N-NTD or its mutants were resuspended
in 50 mM Tris, pH 8.0, 200 mM NaCl, 1.0 mM phenylmethylsulfonyl fluoride (PMSF),
and lysed on ice using sonication. The soluble fraction of the lysate was collected using
centrifugation and loaded onto 5 mL of Ni-NTA resin. After washing impurities, the target
proteins were eluted with 50 mM Tris, pH 8.0, 200 mM NaCl, 250 mM imidazole. Thereafter,
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the protein was buffer-exchanged into an NMR buffer (25 mM Na3PO4, 50 mM NaCl,
pH 6.5) and further purified through size exclusion chromatography (SEC) using ÄKTA
FPLC system with a Superdex 75 10/300 GL column (GE Healthcare, Chicago, IL, USA)
setting flow rate as 0.6 mL/min and alarm pressure as 1.5 MPa. Additionally, the purified
proteins were incubated with 0.4 mg/mL SUMO-protease at room temperature for 3 h
to remove the SUMO-tag, and the enzymatic mixture was further purified using second
Ni-NTA affinity chromatography. Finally, the N-NTD target protein was eluted using the
NMR buffer successively with 40 mM and 60 mM imidazole.

3.2. Gel Mobility Shift Assay

Binding reaction mixtures containing 25 µM ssRNA-16 (5′-AUAUGGAAGAGCCCUA-3′)
and 25 µM N-NTD in 30 µL of NMR buffer were incubated at 25 ◦C for 30 min. Then,
suramin (Sigma, St. Louis, MO, USA, product No. S2671-100MG) was gradually added
into the reaction mixtures step-by-step in molar ratios of 1:1:1, 1:1:2.5, 1:1:5, 1:1:7.5, 1:1:10,
1:1:15 and 1:1:20. All samples were analyzed using electrophoresis on a 20% native poly-
acrylamide gel and stained with 50 mL of dye solution containing 50 mL of H2O, 0.292 g
NaCl and 15 µL of 4S Red Plus Nucleic.

3.3. BLI Assays

BLI experiments were performed at 298 K on ForteBio OCTET96 to measure the
affinities of SARS-CoV-2 N-NTD or its mutants for binding ligand (ssRNA-16 or suramin).
All recombinant proteins were dissolved in 25 mM Na3PO4, 50 mM NaCl, pH 6.5. Firstly,
20 µM biotinylated N-NTD protein was loaded onto the super streptomycin probe, and
ssRNA-16/suramin at a series of concentrations (0.62, 1.25, 2.5, 5.0, 10 and 20 µM) were
gradually associated with recombinant proteins. Then, the dissociation was processed in
the buffer of 25 mM Na3PO4, 50 mM NaCl, pH 6.5. The probes without biotinylated protein
were used as blank. The association time and dissociation time for N-NTD interacting with
ligands were set to be 120 s and 200 s, respectively. The loading time and baseline time
were set to be 300 s and 200 s, respectively. ForteBio Data Analysis 9.0 software was used
to obtain the dissociation constants of N-NTD proteins and ligands.

3.4. NMR Titration Assays

2D 1H-15N HSQC spectra were recorded at 298K on a Bruker Avance III 850 MHz
spectrometer equipped with a 1H/13C/15N TCI cryogenic probe. All protein samples for
NMR spectroscopy were dissolved in the NMR buffer containing 5% D2O for magnetic
field lock. All spectra were processed with NMRPipe and analyzed with NMRFAM-
SPARKY. For suramin titration, suramin was added to 50 µM N-NTD protein solution
in molar ratios of 1:0.5, 1:1, 1:1.5, 1:2 and 1:2.5. For ssRNA-16 titration, the ssRNA-16
(5′-AUAUGGAAGAGCCCUA-3′) was added to 50 µM N-NTD protein solution at molar
ratios of 1:1, 1:2, 1:3 and 1:4. 2D 1H-15N HSQC spectra were recorded at each titration point
at 298K. The chemical shift perturbation (CSP) was determined with the empirical formula:

∆δ =

√
1
2

[
(∆δH)

2+0.14(∆δN)
2
]
, (1)

in which ∆δH and ∆δN represented the chemical shift displacements of N-NTD for 1H and
15N nuclei observed upon ligand titration, respectively.

The intensity perturbation index (IPI) was determined with the empirical formula:

IPI = 1 − H(complex)/H(free), (2)

in which H(complex) and H(free) represented peak intensities for ligand-bound N-NTD
and free N-NTD.
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3.5. Molecular Docking

The HADDOCK webserver (https://wenmr.science.uu.nl/haddock2.4/ (accessed on
8 March 2022)) was employed to build the structural model of the N-NTD-suramin complex.
The 3D structure of N-NTD was obtained from Protein Data Bank (https://www.rcsb.
org/ (accessed on 8 March 2022)) (PDB ID: 7ACT). The docking sites were defined based
on the coordinate centers of residues with peaks undergoing significant chemical shift
perturbations or peak broadening in 2D 1H-15N HSQC spectra. Set the number of rigid-
body structures for docking to 10,000, and all the numbers of semi-flexible refinements,
final refinements and analyses to 1000. The lowest-energy conformation model with the
highest score was analyzed by the PLIP webserver (https://plip-tool.biotec.tu-dresden.
de/plip-web/plip/index (accessed on 8 March 2022)). The structural representations were
prepared with the PyMOL program.

3.6. NMR Relaxation Measurements

The N-NTD protein sample at a concentration of 1.2 mM was used to conduct NMR
relaxation measurements of R1, R2 and hNOE. R1 values were calculated with relaxation
delays of 10, 50, 100 (×2), 200, 400, 600, 800 (×2), 1200, 1600 and 2000 ms, while R2 values
were determined with relaxation delays of 16.32, 32.64 (×2), 48.96, 65.28, 81.60, 97.92, 114.24,
130.56 (×2), 146.88, and 163.20 ms. The hNOE values were obtained in interleaved spectra
with and without a 3 s 1H pre-saturation, the latter being replaced by a 3 s relaxation delay.
NMRFAM-SPARKY was used to fit exponential decay curves to the experimental serial
data for determining R1 and R2 rates. The relaxation measurement for suramin-bound
N-NTD was also performed following the same approach.

3.7. Reduced Spectral Density Mapping

The relaxation rates R1, R2 and hNOE were used to map the spectral density parame-
ters J(0), J(ωN) and J(0.87ωH) following the approach of spectral density function [31]. The
calculations were implemented using the script reported by Leo Spyracopoulos [32].

4. Conclusions

As one of the highly conserved proteins in coronaviruses, the N protein binds the
viral RNA and packs it into the ribonucleoprotein (RNP) complex. Therefore, the N
protein acts as a promising target for developing drugs against coronaviruses. Herein, we
found suramin can disturb the association of the NTD domain of SARS-CoV-2 N protein
(SARS-CoV-2 N-NTD) with RNA through competitive binding to the RNA-binding area
on the protein. Compared with RNA, suramin possesses a significantly higher affinity for
binding to SARS-CoV-2 N-NTD. Residues R88, R92, R93, I94, R95, K102 and A156 play
crucial roles in SARS-CoV-2 N-NTD capturing suramin. Furthermore, suramin binding
increases the structural rigidity of the N-NTD protein by suppressing global ps-ns fast
motion and µs-ms slow motion. However, the ps-ns fast motion of the loop between β2 and
β3 remains, potentially facilitating the association and dissociation of suramin with N-NTD.
Our results not only disclose the structural basis for suramin disturbing the interaction
between SARS-CoV-2 N-NTD and RNA but also shed light on the development of drugs
against SARS-CoV-2 and other coronaviruses.
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