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1.1. Characterization  

The structural features of as-prepared materials were analyzed by powder X-ray diffraction 

(X-ray diffractometer model XRD-6100, Shimadzu, Japan) with CuKα X-ray radiation 

(λ = 0.15406 nm). The morphological features were examined by the scanning electron 

microscopy (FESEM, Hitachi, S-4800 and HRTEM, Tecnai G2 F20 S-Twin at an accelerating 

voltage of 200 kV). The elements of active materials were recognized using energy dispersive X-

ray spectroscopy (EDS) attached to the SEM. The chemical states of the materials were tested 

using a Thermo Scientific X-ray photoelectron spectroscopy (XPS) instrument utilizing Al Kα 

radiation (λ = 1486.6 eV).  

1.2 Pre-treatment of Ni-foam 

Foam nickel with the thickness of 2 mm was used as substrate. Before cleaning, the nickel 

foam was cut into rectangles of 15 × 5 mm2. Then immerse the nickel foam in a solution of 20% 

hydrochloric acid solution and deionized water mixed in a ratio of 3:1 and wash in an ultrasonic 

cleaner for 14 min to remove the surface oxide. After that soak the nickel foam in deionized water 

and clean it in the ultrasonic cleaner for 14 min, replace with new deionized water when finished, 

ultrasonic clean for 1 min and repeat six times. Finally, replace the deionized water with ethanol 

and clean with the same procedure to remove the residual acid and organic matter from the surface. 

Dry in a vacuum oven at 90 ℃ for 12 h. 

1.3. Electrochemical tests  

The electrochemical activity of the electrodes was tested using a standard three-electrode 

cell, which consists of Hg/HgO and platinum mesh as the reference electrode and counter 

electrode. The working electrode was organized by mixing the active material, carbon black, and 



polyvinylidene difluoride (PVDF) in a mass ratio of 8:1.5: 0.5 with N-methyl-2-pyrrolidone 

(NMP). This obtained slurry was then covered on nickel foam via the drop casting technique and 

dried in an oven at 90°C for 12 h. Cyclic voltammetry (CV), galvanostatic charge-discharge 

(GCD), and electrochemical impedance spectroscopy (EIS) were used to assess the 

electrochemical activity of the electrodes. The CV tests were carried out at several scan rates, 

ranging from 5 to 300 mV s−1 at a potential of 0.0 V to 0.6 V in a 1 mol L-1 KOH aqueous solution. 

The GCD tests were executed within the range of 0–0.5 V vs. Hg/HgO at various current densities. 

The electrochemical impedance spectroscopy (EIS) measurements were carried out in the 

frequency range from 100 Hz to 1 MHz at the open-circuit potential. All electrochemical 

experiments were performed using a Biologic SP-200 electrochemical workstation.  

1.4. Preparation of gel electrolyte 

In order to prepare the alkaline polyvinyl alcohol/potassium hydroxide (PVA/KOH) gel 

electrolyte, initially, 5.6 g of PVA was dissolved in 50 mL of pure deionized water at 90 °C the 

temperature with continuous vigorous stirring to get a clear solution. As a result, after 1 h we 

obtained a clear viscous solution. 6 g of KOH was liquefied in 10 mL deionized water, then 

dropped into the cleared PVA solution with continues stirring until complete dissolution and 

formation of a gel like solution, finally, PVA/KOH gel electrolyte cooled to room temperature for 

further use. 

1.5. CeQDs/CN-3//AC device fabrication  

A hybrid coin-cell-type asymmetric supercapacitor device (HCASDs) was developed with 

in-situ synthesized CeQDs/CN-3 nanostructure as positive electrode and active carbon and PVDF 

with Nafion (5 μL) in a mass ratio of 95:5 slurry was drop casted on a nickel foam to act as the 

negative electrode, separated with filter paper as separator. The CeQDs/CN-3 nanostructure was 



estimated from weight change of the nickel foam before and after deposition. The specific 

capacitance (Cs) from charge –discharge curves in a three-electrode cell was intended using Eq. 

S1 [1-3]: 

𝐶𝑠 =
(∆𝑡)(𝐼)

𝑚∆𝑉⁄      (S1) 

where I (mA) and t (s) is the discharge current and discharge time, ΔV (V) is the voltage drop upon 

discharging (apart from the IR drop), and m (mg) is the mass of the active material. In addition, 

the energy density (Ed) (Wh/kg) and power density (Pd) (W/ kg) of the device were estimated on 

the total mass of the active materials, as per Eqs. S2 and S3 [4–6]: 

𝐸𝑑 =
1

2
 [

𝐶𝑠 (𝑉𝑓−𝑉𝑖)
2

3.6
]           (S2) 

𝑃𝑑 =
3600 𝑋 𝐸𝑑

∆𝑡
            (S3)   

where ∆𝑡 and (𝑉𝑓 − 𝑉𝑖) are discharge time (s) and potential window for discharge process (V), 

respectively.  

 

 

 

 

 

 

 

 

 

 

 

 



Table: S1 A comparison of g-C3N4-based supercapacitor electrodes reports in previously 

published studied.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Materials 

Current 

density 

Specific 

capacitance  

(F g-1) 

 

Ref. 

MnO2/g-C3N4 

NiCo2O4/g-C3N4 

NiCo2O4/MWCNT 

PEDOT/g-C3N4 

α-Fe2O3/g-C3N4 

ZnS/g-C3N4 

Tubular g-C3N4 

Fe3O4/g-C3N4 

Ni(OH)2/g-C3N4 

g-C3N4 nanofibers 

g-C3N4 

 

g-C3N4/CeO2QDs 

1 A g−1 

1 A g−1 

1 A g−1 

2 A g-1 

1 A g−1 

1 A g−1 

1 A g−1 

1 A g−1 

1  A g−1 

1 A g−1 

0.75 A g−1 

 

0.75 A g−1 

 

211 

325.7 

374 

200 

167 

497.7 

233 

56.7 

445.6 

263.8 

96.9 

 

202.5 
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