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Abstract: Heteroleptic 2,3,4,5-tetraphenyl-1-monophosphaferrocene [FeCp(η5-PC4Ph4)] was obtained
at a 62% yield through the reaction of lithium 2,3,4,5-tetraphenyl-1-monophosphacyclopentadienide
Li(PC4Ph4) (1) with [FeCp(η6-C6H5CH3)][PF6]. The structure of 1-monophosphaferrocene 2 and
its W(CO)5-complex 3 were confirmed by multinuclear NMR and single-crystal X-ray diffrac-
tion study and further supported by DFT calculations. Cyclic voltammetry demonstrated that
[FeCp(η5-PC4Ph4)] 2 has a quasi-reversible oxidation wave. The comparison of the properties of
phosphaferrocene 2 with those of W(CO)5-complex 3 shows the possibility of changing the coordina-
tion type during oxidation.

Keywords: phosphaferrocenes; electrochemical properties; X-ray structure; DFT calculations; ESR

1. Introduction

The discovery of ferrocene [Fe(η5-C5H5)2] approximately seventy years ago signifi-
cantly influenced chemical research and provided a key boost for establishing and expand-
ing organometallic chemistry, which has continued to develop rapidly. Over the years of
intensive research, the ferrocene unit has been recognized as an extremely versatile plat-
form for ligand design, materials research, medicinal chemistry, and many other research
fields [1]. Among the various heterometallocenes reported to date, monophosphaferrocenes
are by far the most investigated [2–4]. Recently, a facile one-step method for the synthesis of
“fully inorganic” ferrocene analogue was reported and [Fe(P4)2]2− represents the closest all-
phosphorus derivatives of iron to ferrocene [Fe(η5-C5H5)2] so far [5]. Phosphaferrocenes are
commonly regarded as phosphorus ligands with weaker σ-donor properties than classical
tertiary phosphines and stronger π-acceptor ability similar to that of phosphites P(OR)3 [6].
From a practical standpoint, monophosphaferrocenes have been utilized as chiral ligands in
homogeneous and asymmetric catalysis [7–14], as building blocks for multidentate ligand
systems [15–18], and as functional materials for self-assembled monolayers [19,20].

At present, two main protocols have been developed for the preparation of monophos-
phaferrocenes. The first is the reaction between P-phenyl-phosphole and [CpFe(CO)2]2 at
high temperatures, which was developed by the Mathey workgroup in 1977 [21,22]. The
phosphaferrocenes obtained through this route have a tendency to be contaminated by
the 2-phenylated derivative appearing through the thermal [1,5]-sigmatropic shift of the
P-phenyl substituent onto the phosphole ring. Therefore, this procedure provides a desired
product with low yields [23]. The second method of the synthesis of monophosphafer-
rocenes is the reaction between monophospholide anion and cationic (π-arene)iron(II) com-
plex. In 1986, Wells demonstrated that [(η6-mesitylene)FeCp]PF6 complex playing the role
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of CpFe+ synthon is an excellent precursor for the synthesis of monophosphaferrocenes [24].
Generally, phospholide anions are prepared by the reductive cleavage of the exocyclic C–P
bond in P-phenyl-1-monophospholes with lithium metal. However, phenyllithium PhLi
is an undesirable by-product, the deactivation of which is necessary. This method has
recently been modified by the use of inexpensive aluminum chloride as an in situ-generated
phenyllithium scavenger, and thus a 50% yield of desired [(η6-mesitylene)FeCp]PF6 was
attained [25].

From the atom-economical point of view, it is better to use ready-made monophos-
pholide anion uncontaminated with phenyllithium, since nucleophilic PhLi reacts with
phosphaferrocenes [26,27]. Existing synthetic methods allow various phospholide an-
ions to be obtained in their pure form, without PhLi impurities [4,28]. We have re-
cently reported a convenient and effective method for the preparation of heteroleptic
1,2-diphosphaferrocenes [29,30] and 1,2,3-triphosphaferrocenes [31,32] through the reac-
tion of appropriate 1,2-diphospholide- or 1,2,3-triphospholide anions in their pure form
with a [(η6-toluene)FeCp]PF6 complex. In the present article, we describe the rational and
atom-economical synthesis of 2,3,4,5-tetraphenyl-1-monophosphaferrocene and its W(CO)5
complex and compare their structural and electrochemical properties with the previously
known analogues.

2. Results and Discussion
2.1. Synthesis and Structure of 2,3,4,5-Tetraphenyl-1-Monophosphaferrocene Derivatives

The target 1-monophosphaferrocene was prepared via a classical two-step sequence.
At the first step, the highly moisture-sensitive lithium 2,3,4,5-tetraphenyl-1-monophospha-
cyclopentadienide (1) was obtained by straightforward synthesis from elemental phos-
phorus P4 and in situ-generated 1,4-dilithio-1,2,3,4-tetraphenylbutadiene. Compound 1
was characterized by the 31P NMR resonance at +99 ppm. This direct procedure based on
elemental (white) phosphorus activation has advantages such as step-economy (two steps
in one flask), mild conditions (+25 ◦C, 2 days), and good yields (up to 63%) [33,34].

In the next step, the lithium phospholide 1 was converted into phosphaferrocene 2
upon reaction with (toluene)cyclopentadienedienyl-iron(II) hexafluorophosphate salt
[FeCp(η6-C6H5CH3)][PF6] at a 1:1 ratio in boiling diglyme in 2 h (Scheme 1). Diglyme was
evaporated and the product was extracted with toluene. The subsequent filtration of toluene
solution through a silica gel layer gave pure 2,3,4,5-tetraphenyl-1-monophosphaferrocene
(2) as an air-stable powder in satisfactory yields (68–72%). Novel monophosphafer-
rocene 2 was characterized by multinuclear NMR spectroscopy and elemental analysis
(Supplementary Materials, Figures S1–S3). The 31P{1H} NMR spectrum of 2 shows the sin-
glet at –61 ppm shifted upfield in comparison to 1-monophospholide lithium 1 by ca.
160 ppm. In the 1H NMR spectrum, the characteristic signals of the aryl substituents at 7.06–
7.20 ppm and the cyclopentadienyl ring at 4.43 ppm can be observed. The 13C{1H} NMR
spectrum of 2 shows doublets at 99 ppm (1JPC = 57.7 Hz) and 100 ppm (2JPC = 4.5 Hz) for the
carbon atoms of the 1-monophosphacyclopentadienyl ligand and a singlet at 76 ppm for the
cyclopentadienyl ligand. The NMR data for 2,3,4,5-tetraphenyl-1-monophosphaferrocene
2 are comparable to those of related compounds bearing alkyl [35,36] or aryl [37,38] sub-
stituents.
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The structure of 2 was undoubtedly confirmed by the single-crystal X-ray diffrac-
tion. Appropriate single crystals were obtained by crystallization from a toluene solution.
Complex 2 crystallizes in the orthorhombic space group Pbca with a single molecule in
the asymmetric cell (Figure 1). The phospholyl (PC4) and cyclopentadienyl (C5) ligands
of 2 are almost eclipsed with a turning angle P1–Cnt(PC4)–Cnt(C5)–C5 of 12.38(6)◦ (Cnt
is centroid), and their two planes form an angle ∠(PC4)(C5) equal to 3.14(4)◦ (Table 1).
Selected internuclear distances characterizing the coordination sphere are listed in the
caption. The phenyl substituents exhibit a propeller-like arrangement with torsion angles
varying from 120.9◦ to 140.5◦. All geometrical parameters (bond angles and bond lengths)
of 2 are similar to those of the related monophosphaferrocenes with alkyl substituents
(Table 1). It is worth noting that in this series, compound 2 has the shortest Fe–Cnt(PC4)
distance, while Fe–Cnt(C5) distances are quite close. Despite the steric volume of four
phenyl substituents, the smallest Fe–P distance is also observed for 2.
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Figure 1. ORTEP of 2,3,4,5-tetraphenyl-1-monophosphaferrocene (2) for nonhydrogen atoms at
70% probability level according to the single-crystal X-ray diffraction data. Two different projec-
tions are shown. Selected internuclear distances [Å] are as follows: Fe1–Cnt(PC4) 1.6336(2), Fe1–
Cnt(C5) 1.6600(2), Fe1–P1 2.2761(3), Fe1–C1 2.0675(10), Fe1–C2 2.0643(10), Fe1–C3 2.0599(10), Fe1–C4
2.0792(11), Fe1–C5 2.0668(11), Fe1–C6 2.0645(11), Fe1–C7 2.0492(11), Fe1–C8 2.0430(11), Fe1–C9
2.0469(11), P1–C1 1.7819(11), and P1–C4 1.7824(11).

Table 1. Comparison of some geometrical parameters of compound 2 and the related phosphafer-
rocenes according to the single-crystal X-ray diffraction data a.

Compound Fe–Cnt(PC4) Fe–Cnt(C5) Turning Angle b ∠(PC4)(C5) c Fe–P Reference

1.6336(2) 1.6600(2) 12.38(6) 3.14(4) 2.2761(3) this work

1.6393(10) 1.6609(14) –15.34(12) 2.60(9) 2.2805(11) [38]

1.6433(9)/1.6467(9) 1.6584(11)/1.6614(11) 8.30(15)/–5.35(15) 3.42(8)/3.17(8) 2.2858(6)/2.2895(6) [25] d

1.6440(16) 1.660(2) –1.4(3) 3.83(16) 2.2864(12) [25]
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Table 1. Cont.

Compound Fe–Cnt(PC4) Fe–Cnt(C5) Turning Angle b ∠(PC4)(C5) c Fe–P Reference

1.666(2) 1.690(3) 16.2(3) 3.1(2) 2.2821(16) [39]

a All distances and angles are given in angstroms [Å] and degrees [◦], respectively; the word “centroid” is
abbreviated as Cnt. b Turning angle corresponds to the torsion angle P–Cnt(PC4)–Cnt(C5)–C. c Angle ∠(PC4)(C5)
is the angle between planes of phospholyl and cyclopentadienyl ligands. d The data are given for the first and
second (disordered) symmetry-independent molecules, respectively.

Tungsten complex 3, 2,3,4,5-tetraphenyl-1-monophosphaferrocene-1-tungstenpentacar-
bonyl, was obtained through the reaction of 2,3,4,5-tetraphenyl-1-monophosphaferrocene
(2) with labile complex W(CO)5(THF) at 25 ◦C with a yield of 86% (Scheme 1). It is worth
noting that the reaction of 2 with stable complex W(CO)5(CH3CN) did not proceed at
temperatures from 25 to 110 ◦C. Phosphaferrocene 2 behaves as a weak σ-donor ligand.

In the 31P{1H} NMR spectrum of 3, a singlet at –30 ppm with coupling constant
1JWP = 262 Hz was observed. Both 1H and 13C NMR spectra confirm a definite structure
and purity of complex 3 (Supplementary Materials, Figures S4–S6). In the IR spectrum of 3
recorded in a KBr pellet, four absorption bands ν(CO) were observed at 1930, 1948, 1966,
and 2074 cm−1, which are characteristic for the W(CO)5L complexes. The IR-spectroscopic
investigation of 3, in comparison with [(PPh3)W(CO)5] and [(2,4,6-triphenylphosphinine)W
(CO)5], reveals the expected trend of the donor–acceptor capabilities of the corresponding
ligands. The CO stretching frequencies ν(CO) in the IR spectra clearly indicated that the
2,3,4,5-tetraphenyl-1-monophosphaferrocene (2) (highest ν(CO) = 2074 cm−1) and 2,4,6-
triphenylphosphinine (highest ν(CO) = 2073 cm−1) is the poorest electron pair donors
while tripheylphosphine showed CO stretching frequencies at ν(CO) = 2071 cm−1 [40]. As
expected, the IR studies of these complexes showed that 2 is a better π-acceptor than the
2,4,6-triphenylphosphinine and PPh3. These results display a high π-acceptor with poor
σ-donor ability of 2.

2.2. Electrochemical Properties of 2,3,4,5-Tetraphenyl-1-Monophosphaferrocene Derivatives

The electrochemical properties of monophosphaferrocenes, especially those contain-
ing aryl substituents, remain poorly investigated. According to the literature data, the
introduction of one phosphorus atom instead of the CH-fragment in ferrocene leads to
higher oxidation potentials compared to ferrocene [Fe(η5-C5H5)2] [41,42]. At the same time,
the presence of two or more methyl groups has a slight effect on the HOMO–LUMO gap of
monophosphaferrocenes (Table 2).

Table 2. Electrochemical data for redox properties of 2, 3, and other monophosphaferrocenes.

Compound
Eox

1(1/2Eox
1), V vs.

FcH/FcH+;
{Ia/Ic}

1/2Ered
1, V vs.

FcH/FcH+
1EHOMO, eV 1ELUMO, eV Gap, eV

Ferrocene [42] 0.03 (0 *);
{1} −3.18 * −4.79 * −1.61 * 3.18 *

0.15 (0.17 **);
{1} −3.04 ** −4.97 −1.76 3.21
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Table 2. Cont.

Compound
Eox

1(1/2Eox
1), V vs.

FcH/FcH+;
{Ia/Ic}

1/2Ered
1, V vs.

FcH/FcH+
1EHOMO, eV 1ELUMO, eV Gap, eV

0.55 (0.44—semidiffE);
{0.6}

−2.25 −5.24 −2.55 2.69

0.06 (0.1 ***);
{››1} n.a. n.a. n.a. n.a.

n.a. (0.07 **);
{≈1} −3.06 ** −4.87 ** −1.74 ** 3.13

0.01 (−0.03 ***);
{≈1} n.a. n.a. n.a. n.a.

0.40 (0.35);
{irrev}

−1.34
1/2Ered

2 = −2.06V −5.15 −3.46 1.69

* Conditions: −50 ◦C, glassy carbon working electrode, the potentials vs. Ag/AgCl recalculated to FcH/FcH+,
0.5 mM concentration, Bu4NBF4, DMF, 100 mV s−1. ** Conditions: 1 mM solutions of a monophosphaferrocene
on a mercury electrode in propylene carbonate containing 0.1 M TEAP at 10 V s−1. The potentials vs. SCE
recalculated to FcH/FcH+ [42]. *** Conditions: 1 mM solutions of a monophosphaferrocene on a Pt electrode.
Solvent CH2Cl2, 0.1 M Bu4NBF4; the potentials vs. SCE recalculated to FcH/FcH+ [41].

In this work, compounds 2 and 3 were studied by cyclic voltammetry. Compound 2
has a quasi-reversible oxidation wave at a potential of 0.55 V vs. FcH/FcH+, which is 0.49 V
more anodic than the literary analogue [(Me5Cp)Fe(η5-PC4Ph4)] (Figure 2). Despite the
paucity of literature data on phosphaferrocenes, it is generally accepted that the presence
of one phosphorus atom in the structure of the cyclopentadienide ring does not lead to
irreversible oxidation processes in a phosphaferrocene solution.

The quasi-reversibility during the oxidation of structure 2 can be associated with
the fact that during the formation of FeII in FeIII, the P-atom could be coordinated to
the Fe-atom, as a result of which the re-reduction potential (−0.28 V vs. FcH/FcH+) is
shifted to the negative region (Scheme 2). Previously, the formation of such complexes was
demonstrated in the case of phosphanickelocene [43]. A change in the type of coordination
can also lead to intramolecular disproportionation, where the charge may not necessarily
be stored on the Fe-atom or phospholide ring (Scheme 2). This assumption is visually
confirmed by comparing the electrochemical properties of compound 2 and its complex 3
with tungsten, in this case of which quasi-reversibility disappears in cyclic voltammetry.
Since the lone pair of P-atom is bounded to W-atom, the intramolecular rearrangement of
the phospholide becomes impossible, and thus the stabilization of the oxidized Fe-atom
becomes unlikely. Additionally, bulky phenyl fragments do not allow the electrolyte anion
to move close enough to stabilize the positive charge, as a result of which an irreversible
oxidation wave is observed.
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It is well known that the oxidation of the ferrocene [Fe(η5-C5H5)2] molecule leads
to the appearance of a FeIII cation with 3d5 configuration in a low spin state [44]. Al-
though low spin state FeIII complexes are often observed by ESR (electron paramagnetic
resonance) [45,46] and have a g-factor close to the g-factor of the free electron of 2.0023,
the ferrocenium cation is ESR-silent at temperatures above 78 K, which is due to the short
relaxation time. Indeed, the oxidation of [Fe(η5-C5H5)2] in the electrochemical ESR cell
did not lead to the appearance of any signals. At the same time, the oxidation of phospha-
ferrocene 2 leads to the appearance of a single line with magnetic resonance parameters
g = 2.0019 and ∆H = 7 G at a potential of 0.55 V (vs. FcH/FcH+) (Figure 3). We attribute
this signal to the phosphaferrocenium cation of 2 in the low-spin state since complexes
with high-spin FeIII have a much larger line width [47,48]. The oxidation of the W(CO)5
complex 3 does not lead to the appearance of an ESR signal, which does not provide an
unambiguous answer to the question about the state of FeIII in the oxidized form of 3. Such
behavior of complex 3 can be explained by the assumption that the relaxation time of the
cation of 3 is shorter than that of the cation of 2.

The preference for the low-spin state of oxidized species 2 and 3 was also shown
quantum-chemically. Thus, geometries of monophosphaferrocene 2 and its tungsten com-
plex 3 have been optimized quantum-chemically together with their cations (Supplementary
Materials Tables S1–S6). For cations, two possible spin states have been considered, namely
S = 1/2 (low-spin) and S = 5/2 (high-spin). For both low-spin cations, computations predict
the elongation of distances between cyclopentadienyl (C5) and phospholyl (PC4) rings
and the Fe-atom. The optimization of the high-spin states of 2 and 3 leads to the notable
distortion of structures (Table 3). The substituted phospholyl rings (PC4) “tilt” from the
initial position. Energetically, for both cationic forms, the low-spin state is more stable
compared to the high-spin state.
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0.55 V vs. FcH/FcH+.

Table 3. Some structural parameters of optimized structures of neutral and cationic forms of 2 and 3.

Compound 2 Compound 3

Neutral Cation (+1) Neutral Cation (+1)

S = 1/2 S = 5/2 S = 1/2 S = 5/2

Fe-P, Å 2.30 2.30 2.38 2.28 2.33 2.55

Fe-C(PC4), Å 2.06–2.08 2.10 2.30–2.68 2.06–2.08 2.08–2.11 2.22–2.63

Fe-C(C5), Å 2.05 2.08 2.27–2.40 2.07–2.09 2.07–2.09 2.22–2.32

∆E, kcal mol−1 0 12 0 7.3

The presence of four phenyl rings also significantly lowers the reduction potential of
the phospholide ring, and as a result, the HOMO–LUMO gap decreases, which makes them
thermodynamically more stable. The tungsten complex 3 has two reduction waves, unlike
the phosphaferrocene 2 (Figure 4). In the literature [49], the reduction of the W(CO)5 complex
of 3,3′,4,4′-tetramethyl-1,1′-diphosphaferrocene was accompanied by an electrochemical–
chemical mechanism. In our case, with only one phospholide ligand, this mechanism is not
implemented, although two reduction waves are also observed, because, in this case, the
second reduction wave does not coincide with phosphaferrocene 2. The first reduction wave
can be attributed to the formation of a radical anion on the phospholide anion (Scheme 3).
The shift of the potential in comparison with 2 to the anodic region is associated with the shift
in the electron density from the phosphaferrocene fragment to the W(CO)5 fragment. The
second reduction wave probably refers to the reduction of the W(CO)5 fragment and, under
experimental conditions, has time to be fixed without decomposition.
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room temperature.

3. Materials and Methods
3.1. General

The NMR spectra were recorded on a Bruker MSL-400 (1H 400 MHz, 31P 161.7 MHz,
13C 100.6 MHz). SiMe4 was used as an internal reference for 1H and 13C NMR chemical
shifts, and 85% H3PO4 as an external reference for 31P NMR. All experiments were carried
out using standard Bruker pulse programs. The infrared (IR) spectra were recorded on a
Bruker Vector-22 spectrometer.

3.2. DFT Calculations

All calculations were performed with the Gaussian 16 suite of programs [50]. The
hybrid PBE0 functional [51] and the Ahlrichs’ triple-ζ def-TZVP AO basis set [52] were used
for the optimization of all structures. In all geometry optimizations, the D3 approach [53]
was applied to describe the London dispersion interactions, as implemented in the Gaussian
16 program.

3.3. Electrochemical Measurements

Electrochemical measurements were conducted with a BASi Epsilon EClipse electro-
chemical analyzer. The program concerned Epsilon-EC-USB-V200 waves. A conventional
three-electrode system was used with glassy carbon (GC) or carbon paste electrode (CPE)
solutions for powder samples as the working electrode, the Ag/AgCl (0.01 M) electrode as
the reference electrode, and a Pt wire as the counter electrode. A 0.1 M Et4NBF4 was used
as the supporting electrolyte to determine the current–voltage characteristics.

3.4. ESR Measurements

ESR measurements were carried out on an X-band ELEXSYS E500 ESR spectrometer.
Samples in a cell of combined electrochemistry–ESR were inserted into an ER 4102ST
cavity, after which the spectrometer was tuned and the ESR spectra were recorded. Oxygen
was removed from liquid samples through three cycles of “freezing in liquid nitrogen–
evacuation–thawing” and, after the last cycle, the cell was filled with gaseous helium. The
material of the auxiliary electrode was platinum, the reference electrode was Ag/AgCl,
and a platinum plate served as a working electrode. A Bruker E 035M teslameter was used
to accurately determine the g-factor.
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3.5. Single Crystal X-ray Diffraction

The X-ray diffraction data for the single crystal 2 were collected on a Bruker D8
QUEST diffractometer with a PHOTON III area detector and an IµS DIAMOND microfocus
X-ray tube, using Mo Kα (0.71073 Å) radiation. The diffractometer was equipped with
an Oxford Cryostream LT device for low-temperature experiments. The data reduction
package APEX4 v2021.10-0 was used for data collecting and processing. The analysis of
the integrated data did not show any decay. The data were corrected for systematic errors
and absorption: numerical absorption correction based on integration over a multifaceted
crystal model and empirical absorption correction based on spherical harmonics according
to the mmm point group symmetry using equivalent reflections. The structures were solved
by the direct methods using SHELXT-2018/2 [54] and refined by the full-matrix least-
squares on F2 using SHELXL-2018/3 [55]. Non-hydrogen atoms were refined anisotropically.
The hydrogen atoms were inserted at the calculated positions and refined as riding atoms.

Crystallographic data for 2. C33H25FeP, orange prism (0.434× 0.380× 0.367 mm3), for-
mula weight 508.35 g mol−1; orthorhombic, Pbca (No. 61), a = 12.8590(3) Å, b = 14.8048(3) Å,
c = 25.9145(5) Å, V = 4933.47(18) Å3, Z = 8, Z′ = 1, T = 100(2) K, dcalc = 1.369 g cm−3,
µ(Mo Kα) = 0.696 mm−1, F(000) = 2112; Tmax/min = 0.6842/0.6168; 227694 reflections were
collected (2.231◦ ≤ θ≤ 32.060◦, index ranges: −19≤ h≤ 19,−21≤ k≤ 22 and−38 ≤ l ≤ 38),
8559 of which were unique, Rint = 0.0485, Rσ = 0.0194; completeness to θ of 32.060◦

99.3%. The refinement of 316 parameters with no restraints converged to R1 = 0.0310 and
wR2 = 0.0762 for 7234 reflections with I > 2σ(I) and R1 = 0.0424 and wR2 = 0.0810 for all
data with goodness-of-fit S = 1.039 and residual electron density ρmax/min = 0.410 and
–0.544 e Å−3, rms 0.064; max shift/e.s.d. in the last cycle 0.004. Deposition number 2218908
contains the supplementary crystallographic data for compound 2. These data are provided
free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformation-
szentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures (deposited
on 10 November 2022).

3.6. Synthesis

All reactions and manipulations were carried out under dry pure N2 in the standard
Schlenk apparatus. All solvents were distilled from sodium/benzophenone or phos-
phorus pentoxide and stored under nitrogen before use. Starting materials [FeCp(η6-
C6H5CH3)][PF6] [56] and Li(THF)2-2,3,4,5-tetraphenyl-1-monophosphacyclopentadienide
(1) [34] were prepared according to literature procedures. W(CO)6 was purchased from
Aldrich and used without additional purification.

3.6.1. Synthesis of 2,3,4,5-Tetraphenyl-1-Monophosphaferrocene (2)

[FeCp(η6-C6H5CH3)][PF6] (0.54 g, 1.51 mmol) was added to lithium 2,3,4,5-tetraphenyl-
1-monophospholide (1) (0.82 g, 1.52 mmol) in 20 mL of diglyme. The reaction mixture was
stirred at 25 ◦C for 1 h and then heated to 160 ◦C for additional 2 h. Then, the reaction
mixture was cooled to 25 ◦C, filtered, and the solvent was evaporated and the remaining
solid was dissolved in 30 mL toluene. The toluene solution was kept at −20 ◦C for 2 days,
filtered, and passed through a layer of silica (4–5 cm), and the silica was additionally
washed with toluene (3 × 15 mL). After the removal of the solvent, compound 2 was
obtained as a reddish powder (0.62 g, 72% yield), and recrystallization from hot toluene
gave crystals 2,3,4,5-tetraphenyl-1-monophosphaferrocene (2) with m.p. 180 ◦C. 1H NMR
(CDCl3, δ, ppm, J, Hz): 4.43 (s, 5H, Cp), 7.06–7.20 (m, 20H, Ph). 31P{1H} NMR (CDCl3, δ,
ppm, J, Hz): −60.8 (s). 13C{1H} (CDCl3, δ, ppm, J, Hz): 75.5 (s, Cp), 99.2 (d, 1JPC = 57.7,
C2/C5), 99.8 (d, 2JPC = 4.5, C3/C4), 126.0 (s, Ph), 126.5 (s, Ph), 127.2 (s, Ph), 127.4 (s, Ph),
130.5 (d, 3JPC = 7.1, Ph), 132.4 (s, Ph), 137.0 (s, Ph), 139.2 (d, 3JPC = 16.8, Ph). IR (KBr, cm−1):
460 (w), 493 (w), 562 (w), 591 (w), 697 (s), 718 (s), 747 (m), 759 (w), 825 (w), 916 (w), 1026
(w), 1074 (w), 1156 (w), 1388 (w), 1492 (s), 1597 (w), 1871 (w), 1945 (w), 2345 (w), 2926 (w),
2963 (w), 3054 (w), 3077 (w). Calculated for C37H37FeP (M 568): C 78.17, H 6.56, Fe 9.82, P
5.45. Found: C 78.33, H 6.72, P 5.71.

www.ccdc.cam.ac.uk/structures
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3.6.2. Synthesis of 2,3,4,5-Tetraphenyl-1-Monophosphaferrocene-1-Tungstenpentacarbonyl (3)

A solution of W(CO)6 (0.35 g, 1.0 mmol) in THF (100 mL) was exposed to UV light
(365 nm) in a quartz reaction vessel under argon at 0 ◦C for 3 h. The color of the resulting
solution was yellow. A solution of 2 (0.56 g, 1.0 mmol) in THF was added and the reaction
mixture was stirred for 20 h at 25 ◦C. The color changed to brown-red. The solvent was
removed in vacuo and the product was extracted with toluene. The solvent was evaporated
to give 0.76 g (86%) 3 as an orange powder with m.p. 204 ◦C. 1H NMR (CDCl3, δ, ppm, J,
Hz): 4.70 (s, 5H, Cp), 6.94–7.30 (m, 20H, Ph). 31P{1H} NMR (CDCl3, δ, ppm, J, Hz): −30.1 (s,
1JPW = 263.3). 13C{1H} (CDCl3, δ, ppm, J, Hz): 77.3 (s, Cp), 93.4 (s, C2/C5), 97.2 (s, C3/C4),
126.9 (s, Ph), 127.1 (s, Ph), 127.6 (s, Ph), 127.7 (s, Ph), 132.6 (s, Ph), 132.6 (s, Ph), 132.7 (s,
Ph), 136.2 (s, Ph), 136.7 (s, Ph). IR (KBr, cm−1): 491 (w), 513 (w), 574 (w), 593 (w), 663 (w),
669 (w), 800 (s), 865 (m), 1020 (br.s.), 1098 (br.s.), 1262 (s), 1414 (w), 1445 (w), 1470 (w),
1496 (w), 1930 (m), 1948 (m), 1966 (w), 2074 (w). Calculated for C42H37FePO5W (M 892): C
56.53, H 4.18, Fe 6.26, P 3.47, W 20.60. Found: C 56.49, H 4.32, P 3.68.

4. Conclusions

In this paper, we described the rational synthetic method of novel 2,3,4,5-tetraphenyl-
1-monophosphaferrocene 2 and its W(CO)5-complex 3 and elucidated their electrochemi-
cal properties. The structures were extensively studied from experimental (NMR and IR
spectroscopies and X-ray diffraction) and theoretical points of view. Chemical properties
and IR study showed a high π-acceptor with poor σ-donor ability of 2,3,4,5-tetraphenyl-1-
monophosphaferrocene (2). Cyclic voltammetry showed that [CpFe(η5-PC4Ph4)] 2 has a
quasi-reversible oxidation wave and a potential more positive by 0.49 V than its literary ana-
logue [(Me5Cp)Fe(η5-PC4Ph4)]. A comparison of electrochemical properties with the tungsten
complex 3 showed the possibility of changing the type of coordination upon oxidation.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules28062481/s1, Figure S1–S3: NMR spectra of 2; Figure S4–S6:
NMR spectra of 3; Figure S7–S8: Semi-derivative of CV for oxidation of 2 and 3; Table S1–S6: Cartesian
coordinates of the optimized ground state structure of neutral and cationic forms of 2 and 3 with
S =1/2 and S =5/2.
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