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Abstract: A deep learning-based quantitative structure–activity relationship analysis, namely the
molecular image-based DeepSNAP–deep learning method, can successfully and automatically cap-
ture the spatial and temporal features in an image generated from a three-dimensional (3D) structure
of a chemical compound. It allows building high-performance prediction models without extracting
and selecting features because of its powerful feature discrimination capability. Deep learning (DL) is
based on a neural network with multiple intermediate layers that makes it possible to solve highly
complex problems and improve the prediction accuracy by increasing the number of hidden layers.
However, DL models are too complex when it comes to understanding the derivation of predictions.
Instead, molecular descriptor-based machine learning has clear features owing to the selection and
analysis of features. However, molecular descriptor-based machine learning has some limitations in
terms of prediction performance, calculation cost, feature selection, etc., while the DeepSNAP–deep
learning method outperforms molecular descriptor-based machine learning due to the utilization of
3D structure information and the advanced computer processing power of DL.

Keywords: DeepSNAP; ensemble learning; neural network; pharmacokinetics; regression model

1. Introduction

Machine learning (ML) is a data analysis method that discovers associated regularities
and rules through the repeated learning of past cases and data. ML methods can be
classified into three types: supervised learning, unsupervised learning, and reinforcement
learning [1]. Supervised learning methods involve making a computer learn the correct
data and produce the correct output for the input data. In contrast, unsupervised learning
methods do not set correct data, and hence the computer itself learns the data characteristics
through a large amount of data. In reinforcement learning methods, a computer makes
judgments so that the numerical value of the output result is the highest. Therefore, in ML,
predictions and inference are made by applying the regularities obtained through learning
to unknown and future cases. Furthermore, deep reinforcement learning combines deep
learning (DL) and reinforcement learning and is used when a small amount of labeled data
and a large amount of unlabeled data are prepared. Supervised learning is divided into two
tasks: classification to sort learning data into predetermined classifications and regression
to predict future values of continuous data [2,3]. The main purpose of classification is to
predict the classification to which the data for analysis belong. However, the main purpose
of regression is to make predictions based on trends in continuous values. Regression
analysis is a statistical technique that examines the relationship between a result number
and a factor number. At this time, the factor value is called the explanatory variable and
the resulting value is called the objective variable. An ML model is a mechanism that
outputs results for input data and analyzes the input data for evaluation and judgments
based on some evaluation criteria. That is, ML is a system that realizes a mechanism
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equivalent to human learning with computers. Based on a certain calculation method or
algorithm, in an ML method, a computer discovers patterns and rules from input data,
and by applying those patterns and rules to data, it predicts data. DL is an ML method in
which a neural network consisting of many layers is used. The concept of DL is focused on
this multilayered neural network, but DL makes it possible for computers to extract feature
values themselves when discovering patterns and rules, even if the feature amount is not
set in advance. The pattern is recognized by checking how well the input pattern matches
the prepared pattern. It is a big breakthrough that feature values are created by themselves
without being instructed in this way. In DL in the field of image recognition, the main focus
is the combination of a large number of images and a convolutional neural network (CNN),
which is a mathematical model that mimics the neural circuits of the brain and returns an
output for an input value. In a CNN, the neural network has convolutional layers and
pooling layers that function by the characterization of two main factors: recognition in the
“local receptive field” and “extraction with weight sharing” [4,5]. When humans recognize
an object, they do not grasp the whole image at once but recognize the object little by little
by extracting each partial area. The property that responds to the clipped area is called
a local receptive field, and a characteristic of a CNN is that it responds to only a small
part of the input data, such as the local receptive field. Weight sharing is a mechanism for
recognizing the features deemed as important at a specific position in an image as having
high importance at another position. CNNs have been applied for classification, object
detection, and voice recognition in various fields, including quantitative structure–activity
relationship (QSAR). In this review, we summarize the advances in and give an overview
of novel QSAR systems, including CNNs, ensemble learning, supervised learning for
regression, and molecular descriptor-based ML.

2. Classification of Images by a Neural Network

The term “neural” in neural networks stands for neurons, i.e., nerve cells. It is one
of the ML methods that artificially reproduces the mechanism of the cranial nerves with
a computer program. DL is a more complex version of these neural networks [6]. A
neural network of artificial neurons can be regarded as a function that receives multiple
data and outputs the calculated results. For example, if a photograph is captured with
a 1-megapixel CCD camera, there are 1,000,000 pieces of data, and if colors are defined
by red, green, and blue (RGB) values, the image comprises 3 million data points. By
specifying the color information and positions of one-million-pixel data, the photograph
can be reproduced. Inputting many data and creating a well-fitting function that can be
judged well is supervised ML. By constructing a function that can be judged well, even if a
new photo is input, it can be judged with a high probability. A structure called a multilayer
perceptron is often used for a neural network, and a more complicated network with 10 or
more intermediate layers is used in DL. The input layer has a large amount of data, and the
data obtained by multiplying the numerical values by some coefficient and totaling them
become the data of the middle layer in the first layer, and the second layer of the middle
layer data is obtained by multiplying the data by some coefficient and totaling them. An
output is derived from these data, but it involves a huge number of calculations. A function
that can be judged by deriving the optimum value of the kind of coefficient combination
that can be judged most correctly is completed. In addition, a recurrent network is a type
of neural network that has a regressing, recurrent structure that can use the information
previously incorporated into the model for predicting continuous data, such as time-series
data and language data. DL is a neural network with a large number of intermediate layers.
By increasing the number of hidden layers, highly complex problems can be solved and the
prediction accuracy can be improved. However, DL models are sometimes called black-box
models because they are too complex for humans to understand how the prediction is
derived [7].
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3. Evaluation of Predictive Models and Predictive Performance

In supervised learning, the collected data are divided into training data and evaluation
data for learning. Thus, the separated data evaluation is called “cross validation” [8].
Supervised learning builds a model that makes predictions on other data after a machine
learns from human labels for correct answers. The step of constructing a model with
a “correct label” is performed using training data, and prediction is performed using
evaluation data. When building a model using all training data, a model can be formed
that can fit the data but never fit the unknown data that comes later—this phenomenon is
called “overfitting” [9]. To prevent overfitting, the data at hand are divided into training
data and evaluation data to build and predict the model. For example, in supervised
learning for classification, when the evaluation data are classified by the prediction model
built from the training data, the degree of correctness among the total data is evaluated.
Thus, we consider a model, i.e., line of separation, that is too strict for some training data;
however, the accuracy of prediction for different data decreases. Therefore, it is a good
idea to balance the goodness of fit with the simplicity of the model. In statistical analysis,
information content criteria are set to judge the balance. If the dimensionality or number of
variables of the data used to build the model is very large, the combination of variables
increases exponentially and the amount of calculations increases tremendously. Then, a
sufficient learning performance may not be obtained with the data on hand. This problem
is called the “curse of dimensionality”; that is, the ML efficiency decreases because of too
many data dimensions [10]. To avoid this problem, multiple variables can be combined
into one feature amount (feature amount creation) or the combination of effective feature
amounts can be narrowed down (feature amount selection). Thus, overfitting occurs when
the dimensionality of the polynomial is too large for the number of training data; that is,
the coefficient w tends to take a large value. Therefore, if the coefficient can be restricted to
a small value, overfitting can be suppressed. Regularization is a technique based on this
idea [11]. A regularization term, namely a penalty term, is added to the sum-of-squares
error given in Equation (1) that penalizes the coefficients for growing large (2). Here, λ is
the regularization factor and it is an arbitrary value.

E(w) = 1/2 ‖Xw − t‖2 (1)

E(w) = 1/2 ‖Xw − t‖2 + λ/2‖w‖2 (2)

The larger the value of w, the larger is the error function. To find a w that minimizes
Equation (2), we expand and differentiate with respect to w to obtain the following formula.

W = (XTX + λI)
−1XT t

(3)

In Equation (2), λ/2‖w‖2 was added to the sum of squared errors, but the regulariza-
tion factor can generally be expressed as shown in Equation (5):

1
2

λ
M

∑
j=1

(|wj|)q ≤ η (4)

Equation (2) corresponds to q = 2. Adding a regularization term means limiting the
coefficient wj to the range of Equation (5).

M

∑
j=1

(|wj|)q ≤ η (5)

In supervised learning for regression, when performing regression of evaluation data
with a model created with training data, the target of evaluation is the difference between
the predicted value of the training data and the actual value of the evaluation data. Taking
into account the evaluation value of the prediction result, such as the correct answer rate of
the output classification and the regression value, we examine whether the model has actual
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versatility. Typical cross validation methods include the holdout method and the k-fold
method [12,13]. The k-fold method is a cross validation method that divides the training
data into several (k) pieces and repeats model construction and verification for the number
of divided data (i.e., k times). One of the divided data groups is used for validation and the
remaining data are used for model building. First, one data group is used for validation,
and the first result is checked from the fit of the model built on the rest of the data. In the
second round, another data group is used for validation, the rest of the data are used for
model building, etc. Model construction and verification are performed for the number
of divided data, and the average value of verification that is repeated k times is taken
as the result. This prevents models from fitting only to specific data increases by testing
different data multiple times for verification. The holdout method is a method adopted for
confirming model accuracy and is performed by dividing one dataset into training data
and evaluation data. Training data and evaluation data must be separated because they
affect the accuracy of the model. In the holdout method, the data used as training data are
never used as evaluation data. Similarly, the data used as evaluation data will not be used
as training data. In this method, it is necessary to be careful not to confuse the data. Linear
regression is a type of regression analysis that predicts the value of a target variable based
on the values of another explanatory variable [14,15]. Predicting one target variable with
one explanatory variable is called single regression analysis [16]. The relationship between
the two datasets that make the prediction can be expressed in the form of a linear equation
(Equation (6)), which is the most basic model used in regression [17,18]. If a (slope) and
b (Y intercept) are known, y can be predicted from x. The accuracy of the prediction is
expressed by the correlation coefficient, i.e., the coefficient of determination [19]. Analysis
with two or more explanatory variables, i.e., two or more dimensions, is called multiple
regression analysis [20,21]. Multiple selection of appropriate variables makes it possible to
set up a prediction formula, i.e., Equation (7), that is easy to calculate and has few errors.

y = ax + b (6)

y = a1 × 1 + a2 × 2 + a3 × 3 + a4 × 4 · · · · · · + b0 (7)

Furthermore, to improve the prediction performance of a model, it is necessary to
minimize its generalization error, which can be divided into three parts, namely bias and
variance, which are minimizable errors, and noise, which is an irreducible error. This
division is called bias–variance decomposition [22,23]. Minimizing bias requires learning
more from the training data. However, if the bias is too small, the variance will become
large. In contrast, if the variance is reduced too much, the bias will increase. It is necessary
to find an optimal solution that balances both. When minimizing two prediction errors,
bias and variance, we simultaneously need to consider the tradeoff. Hence, this situation is
called the bias–variance dilemma [24]. The relationship between bias and variance follows
the relationship that if one side wins, the other side will not win, i.e., the bias–variance
tradeoff [25]. Bias in ML and statistics model prediction refers to the difference between the
predicted and true values, that is the bias error, arising from incorrect model assumptions,
where bias is the error due to the simplification of the actual problem [26]. For example,
linear regression simplifies the problem.

Variance refers to the spread of predicted values, that is the variance error, which
arises from fluctuations in the training data [27]. If the model prediction has a lot of bias,
the model cannot accurately represent the relationship between inputs and outputs. In
other words, even training data cannot be predicted accurately; this phenomenon is called
underfitting [28]. Additionally, if the variance in the model prediction is too large, the
model has learned noise in the training data; in this case, unknown data such as test data
cannot be accurately predicted and overfitting occurs [29]. For high accuracy, the variance
must be kept low.
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4. Ensemble Learning

Ensemble learning (EL) is a method of taking a majority vote and learning to improve
the prediction ability for unlearned data by combining the data trained as individual
learners [30,31]. It refers to training multiple models and outputting a predicted value by
a majority vote or average. Two concepts, namely the bias and variance, are important
in EL, which is learning to collect information with low accuracy and increase accuracy.
However, if the accuracy does not improve enough, the balance between bias and variance
may be poor. The bias is simply the difference between the actual and predictive values.
The smaller the difference, the higher the accuracy and the more accurate is the prediction,
i.e., low bias results in accurate values, resulting from inadequate training. Variance, on the
other hand, simply means the degree to which the predicted values are scattered. A state in
which the degree of dispersion is high is called a high variance state, and the accuracy is low
in this case. The high variance is due to overfitting, which is caused by overtraining [32].

The model used for EL should be a weak learner, that is a learner with low accuracy
when used alone, as the name suggests. In terms of the bias–variance tradeoff (there
exists a tradeoff relationship between model complexity and simplification), although the
bias–variance tradeoff will fall, if the model is too simple, the generalization performance
of the training data cannot be improved, and often the bias is high and the variance is low.
That is, a simple model that is not overfitted is obtained. In addition, the characteristics of
EL are not only used simply for ML algorithms, such as regression and classification, but
also as an auxiliary method when obtaining learning coefficients for other ML algorithms.
The effectiveness of EL is that it can take a majority vote using weak learners. In the case of
simple binary classification, when classification is performed with a normal classifier, if the
classifier misclassifies, an incorrect result will be returned. However, since EL employs a
majority decision, if there are m learners, the answer is corrected as long as (m + 1)/2 or
more learners do not misjudge. For classification problems that are prone to mistakes, EL is
very useful because it allows the results of multiple classifiers, such as neural networks,
SVM, and naïve Bayes, to be true [33]. Furthermore, assuming that each weak learner
is statistically independent, and assuming that the error judgment probability of each
weak learner is uniformly θ, out of m weak learners, the probability of k false positives is
as follows:

P(k) = mCkθk(1− θ)m−k (8)

To simplify the explanation, consider that if k of m weak learners make mistakes, the
smaller the value of m, the lower the mislearning rate [34]. One of the main EL methods,
bagging is a method of training that uses some of the information in the training data
rather than all of it and then combines all the training results [35]. Each training can be
computed independently, thereby allowing parallel processing. Bagging involves selecting
weak learners and merging them into the final learner using the bootstrap method. The
basic bagging method is quite simple:

1. Repeat the following steps B times.

a. Create a new dataset by m-time split sampling from the training data.
b. Build a weak learner h based on the divided dataset.

2. Construct the final learning result using B times weak learners h.

Classification: H(x) = arg max |{i|hi = y}| (9)

Regression : H(x) =
1

2B ∑B
i=1 hi (10)

The formula for the part that finalizes the final learning result is given above in
(10) and (11); in the case of classification problems, each weak learner is sorted so that the
overall accuracy is the highest [36]. On the other hand, for regression, each weak learner
is normalized by the overall value. An example of a well-known ML algorithm that uses
bagging is the random forest algorithm. Using a part of the training data and merging it
at the end is a common feature in bagging; boosting is the process of reusing previously
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used data to literally provide a boost. Hence, parallelism is not possible as with bagging.
Boosting is an EL algorithm that sequentially builds weak learners.

In EL, high accuracy is also achieved by using many weak learners (e.g., decision trees)
that do not have high accuracy alone. Bagging uses both the weak learners in parallel and
the overall results of each model. In random forest, which combines bagging and decision
trees, variance can possibly be suppressed by creating a number of decision tree models for
the data and aggregating each result to output the final result.

5. DeepSNAP: DL and EL

QSAR is a method for in silico prediction of chemical substances with physiological
activity. In particular, it is one of the key components of integrated toxicology assess-
ment systems, which are highly likely to cause adverse effects to chemical structures and
are useful in prioritizing and narrowing down chemicals requiring safety assessment. It
can also contribute to alternatives to or minimization of animal testing. In QSAR, the
correlation between the structure and activity of compounds such as pharmaceuticals is
determined quantitively as numerical values. These values are handled via supervised
learning that calculates feature values using chemical information for compounds and
builds prediction models [37]. Molecular descriptors, which are the characteristic quantities
that reflect the structure of a compound in QSAR, include fingerprints that determine
the presence or absence of partial structures and the measured and estimated values of
the physicochemical properties of compounds [38]. Using the descriptors, QSAR models
are constructed by several algorithms, including random forest, support vector machine,
extreme Gradient Boosting (XGBoost), Bayesian networks, multiple linear regression, poly-
nomial regression (PLR), decision tree regression, and neural networks [39,40]. However,
modeling in QSAR has some limitations related to the prediction performance, feature
selections, calculation cost, etc. Therefore, Prof. Uesawa developed a new deep learning-
based QSAR system, DeepSNAP, which generates an omnidirectional snapshot depicting
the three-dimensional (3D) structure of chemical compounds (Figure 1) [41]. In DeepSNAP,
each chemical structure is optimized for steric conformation and portrayed to depict a
ball-and-stick model with different colors representing different atoms. Using datasets
of approximately 9000 chemical structures in the simplified molecular input line entry
system (SMILES) format and the corresponding activity scores, which represent the agonist
or antagonist levels of nuclear receptors and stress response proteins, from a database
composed of high-throughput quantitative screening results, two datasets were prepared
by defining “active” or “inactive” agonist or antagonist activities. The aforementioned
database was derived from the Toxicology in the 21st Century (Tox21) 10k library com-
posed of chemicals from commercial sources, such as pesticides, industrial chemicals, food
additives, and drugs [42–49]. Then, the SMILES format was applied to a 3D conformational
import to generate the SDF files of the chemical database. In this database, the 3D chemical
structures of compounds were depicted as 3D ball-and-stick models and captured continu-
ously and automatically as snapshots with user-defined angle increments on the x-, y-, and
z-axes. This was done to extract the spatial and temporal features in the images. Finally,
256 × 256 pixel resolution PNG files (RGB) were saved and automatically split into three
datasets, namely the training, validation, and test datasets. Prediction models were created
by using training and validation datasets, and the performance with the test dataset was
examined. In addition, by optimizing DeepSNAP parameters such as zoom factor, atom
size, and molecular bond radius, the performance of the prediction models can be improved
because of the powerful feature discrimination capability of DeepSNAP without the need
for extracting and selecting features. Furthermore, a combined system of DeepSNAP–DL
with molecular descriptor-based methods was reported to construct regression models
of rat clearance (CL), i.e., in vivo pharmacokinetic parameters among the parameters of
absorption, distribution, metabolism, and excretion. These models outperformed models
based on molecular descriptor-based methods (Figure 2) [50,51]. DeepSNAP–DL predicted
compound performance from correlations based on large experimental datasets of com-
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pounds. ML can perform a correct action in response to input data, collect feedback on how
well it performed, and improve it. Despite the significance of CL prediction in the field
of drug discovery, few in silico prediction systems with sufficient performance have been
established to date. Therefore, this novel system using a combination of DeepSNAP and
DL and the molecular descriptor-based methods will be a useful tool for CL prediction. In
the ensemble method, a molecular descriptor is selected by DataRobot, in which the feature
importance of the descriptors calculated by the permutation importance of the prediction
models is more than 0.5 times the highest average effect [50]. Some available EL methods
in QSAR that help improve the ML performance have also been reported [52,53].
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6. Application of DL in New Drug Development and Medicine

By using EL consisting of DeepSNAP–DL with molecular descriptor-based methods, a
prediction model system for CL, which can be regarded as the blood cleaning speed by the
processed organ, with regard to pharmacokinetics (PK) parameters in absorption, distribu-
tion, metabolism, and excretion, indicated a high prediction performance [50]. Furthermore,
a highly accurate regression analysis was achieved by incorporating DeepSNAP–DL proba-
bility as an explanatory variable into the descriptors of the conventional ML methods [51].
In building a CL prediction model using the DeepSNAP–DL method, conditions including
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four angles (65◦, 85◦, 105◦, and 145◦), five learning rates (0.0000001 to 0.001), and five maxi-
mum epochs (15 to 300) were considered. As a result, the receiver operating characteristic
area under the curve (ROC AUC) with the highest prediction performance was calculated
(0.8974) under the conditions of a learning rate of 0.000001, a maximum epoch of 300, and
a 145◦ angle. In addition, the ROC AUC was calculated to be 0.943 in predictive model
construction by the ensemble model method, in which the average value of the predicted
probabilities obtained by the DeepSNAP–DL method and the descriptor-based random
forest method was used as the predicted probability of a new combination of prediction
models. Balanced accuracy (0.868), F-measure (0.845), and Matthew’s correlation coeffi-
cient (0.739) were used as the other evaluation indices. Prediction models are constructed
by QSAR analysis for various prediction targets such as toxicity and pharmacokinetic
parameters, but the problem is that the prediction accuracy is insufficient. This research
focused on rat CL and developed a new prediction accuracy improvement method using
the DeepSNAP–DL method with descriptors of conventional ML.

In addition, the application of artificial intelligence technology to the drug discovery
field is expected to accelerate new drug development and realize innovative new drugs.
However, because drugs and their target proteins have different types of structures, it is
difficult to predict drug–protein combinations that are effective in treating diseases with
high-throughput and high-performance. Therefore, based on the knowledge of chemistry
and biology, molecular interaction prediction methods for drug development are being
advanced by combining DL methods. In addition, because conventional methods that
do not use the 3D structure of drugs or proteins cannot specify the interaction site from
prediction results, there is a problem in interpreting the results. However, new technologies
that can identify and visualize interaction sites are expected to accelerate the task of
narrowing down new drugs from a large number of candidates. In addition, large-scale
searches for drugs candidates by computers are expected to lead to the development of
innovative new drugs that cannot be reached with human knowledge and experience
alone. In general, drugs can be expressed as atoms and bonds as graph structure data, and
proteins can be expressed as amino acid sequences as sequence structure data. Therefore,
graph neural networks and CNNs, which are DL methods suitable for each drug data and
protein data, respectively, are applied to each data point, by which feature vectors that
appropriately capture the properties of the drug and protein are calculated. By learning
this feature vector using large-scale data of drugs and proteins, it is possible to predict the
presence or absence of interactions [54].

While DL can make fast and highly accurate predictions, it is difficult to interpret
the prediction results. When dealing with chemical and biological data, it is necessary
to judge the validity of results by comparing the results of automatic predictions made
by computers with the chemical and biological knowledge already possessed by humans.
Therefore, ML techniques with easy-to-interpret results are important.

7. Conclusions

A deep learning-based QSAR analysis, DeepSNAP, outperformed molecular descriptor-
based conventional ML using 3D chemical structures and automatic extraction of features
from image data. This system is mainly constructed of a neural network with multilayers,
and it is characterized by a high performance of classification and object detection. Further-
more, by combining DeepSNAP–DL and conventional ML (such as EL), regression models
can be constructed. The final prediction model obtained by combining multiple weak
learning models is constructed. However, EL is not always a versatile learning method. It
is important to consider that classifiers are diverse and accurate when bagging is used.
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