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Abstract: Pheromones are chemical signals secreted by one individual that can affect the behaviors
of other individuals within the same species. Ascaroside is an evolutionarily conserved family of
nematode pheromones that play an integral role in the development, lifespan, propagation, and
stress response of nematodes. Their general structure comprises the dideoxysugar ascarylose and
fatty-acid-like side chains. Ascarosides can vary structurally and functionally according to the lengths
of their side chains and how they are derivatized with different moieties. In this review, we mainly
describe the chemical structures of ascarosides and their different effects on the development, mating,
and aggregation of nematodes, as well as how they are synthesized and regulated. In addition, we
discuss their influences on other species in various aspects. This review provides a reference for the
functions and structures of ascarosides and enables their better application.
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1. Introduction

Nematodes are the most abundant animals on Earth, and they can be found virtually
everywhere on land and in water [1]. Nematodes have a variety of lifestyles; some nema-
todes live freely, such as Caenorhabditis elegans, whereas some nematodes show parasitic
lifestyles, such as root-knot nematodes (RKINs) and cyst nematodes (CNs). The impacts of
nematodes extend to various domains of life. Plant parasitic nematodes cause a destructive
loss in crop productivity, and, on the contrary, entomopathogenic nematodes can be used
to kill insect pests in agriculture [2,3]. There are numerous chemicals that are involved in
all aspects of nematode communication and life, mainly pheromones.

Pheromones are chemicals or mixtures of chemicals that can function as communica-
tion agents. The use of pheromones is very widespread in nature, for example, in protozoan
ciliates, pheromones have functions in self/nonself recognition, vegetative reproduction,
and mating interactions [4,5]. The fall armyworm Spodoptera frugiperda can accurately
monitor its field population dynamics using sex pheromones [6]. In the locusts Locusta
migratoria, only the existence of gregarious male adults can stimulate the synchronization
of the sexual maturity of female adults. Among a large number of volatiles released by
gregarious male adults, the aggregation pheromone 4-vinyl anisole is considered to play a
key role in inducing the synchronization of female sexual maturity [7]. Using this function
allows for better control of insect population densities, which also helps to protect crop
yields. Pheromones also play a very important role in vertebrates. For example, adult sea
lampreys Petromyzon marinus release large quantities of bile acid pheromones that attract
mature females [8]. The pheromones (Z)-7-dodecenyl acetate and frontalin have been found
in Asian elephants and have specific effects on elephant sexual behavior [9].

Moreover, pheromones also influence nematodes in various ways [10,11]. Unlike
other animal species, ascarosides are the main type of pheromone produced by nematodes.
These ascarosides comprise fatty-acid-derived side chains attached to the 3,6-dideoxysugar
L-ascarylose, and their C-terminus or four loci can be modified [12]. Interestingly, these
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glycolipids are found almost exclusively in nematodes, including free-living nematodes
and nematode species that parasitize insects, vertebrates, and plants [13]. In addition, a
few other small molecules function as pheromones in nematodes, but there are relatively
few reports on these molecules. Nematode pheromones are capable of regulating many
aspects, including their development, mating, aggregation, and many others.

To date, several different nomenclatures have been used for ascarosides. First, one
nomenclature system combines the functions of the compounds. For instance, the dauer-
inducing ascr#1, ascr#2, and ascr#3 have been referred to as “daumone-1”, “daumone-2”,
and “daumone-3”. Second, there is a nomenclature based on chemical structure. For
example, according to the length of the carbon side chains on ascarylose sugar, the seven-
carbon ascr#1 was named “C7” and the three-carbon ascr#5 was named “C3” [14]. However,
as an increasing number of ascaroside structures have been identified, a third nomenclature
(small molecule identifiers, SMIDs) has been adopted to name nematode metabolites. The
overall structural class of a compound is denoted by four lowercase, non-italic letters
in SMIDs, and a pound sign and a number are included, e.g., ascr#l and icas#9. All
assigned SMIDs can be found in the SMID database (www.smid-db.org) [15]. This third
nomenclature no longer refers to the function or molecular structure of ascarosides, but to
the order of their discovery, for example, ascr#1, 2,3 ... n, and then distinct abbreviations
are used for ascarylose-containing molecules that contain additional moieties, such as when
the sugar is decorated with an indol (icas#), octopamine succinate (osas#), hydroxybenzoyl
(hbas#), or methyl-butenoyl (mbas#) [16].

The pheromones secreted by nematodes play an integral role in their communication
and social behaviors. The research on nematode pheromones not only facilitates the use of
pheromones for biological control but also serves as a useful reference for understanding the
structures and functions of pheromones in the future. The current research has focused on
model organisms such as C. elegans, and comparatively little research has been conducted
on other species of nematodes. In this paper, we review the structures and functions of
different nematode pheromones.

2. Synthesis and Regulation of Ascarosides

Many primary metabolic pathways participate in the synthesis of ascarosides, includ-
ing the tricarboxylic acid cycle, amino acid catabolism, the peroxisomal (3-oxidation of
long-chain fatty acids, etc. There are four genes (dhs-28, acox-1, daf-22, and maoc-1) and
complex signaling pathways (steroid hormones, serotonin, cGMP, TGF-f3, insulin/IGF
signaling, etc.) that are involved in ascaroside synthesis in C. elegans [11,14,17,18]. It has
been shown that acyl coenzyme A oxidase ACOX-1, enoyl coenzyme A hydratase MAOC-1,
B-hydroxyacyl-CoA dehydrogenase DHS-28, and (3-ketoacyl -CoA thiolase DAF-22 pri-
marily act in each step of the 3-oxidation cycle [19]. The ACOX-1 encoded by the acox-1
gene is the main enzyme for the synthesis of ascarosides in C. elegans [20]. It has fatty acid
oxidation activity and interacts with the peroxide PEX-5 in peroxidase bodies [21]. The
MAOC-1 is necessary for the biosynthesis of ascarosides’ fatty-acid-derived side chains via
peroxisomal 3-oxidation, and maoc-1 is the gene related to the regulation of this process [22].
Meanwhile, thiolase DAF-22, a down-regulating factor for the beta-oxidation of the C. ele-
gans peroxidase body, represents a single gene in C. elegans and two genes (Ppa-daf-22.1 and
Ppa-daf-22.2) with different domains in the free-living nematode Pristionchus pacificus [23].
Under conditions of adequate nutrition, the biosynthesis of ascarosides is carried out only
by Ppa-daf-22.1. In contrast, Ppa-daf-22.2 is induced in the absence of food, leading to the
production of specific ascarosides [23]. Dhs-28 encodes a homolog of human D-bifunctional
protein that functions upstream of SCPx and is also necessary for pheromone produc-
tion [24]. Finally, the related reactions regulated by these four genes greatly affect the
synthetic process of ascaroside pheromones in C. elegans.

Ascaroside pheromones can perform their biological functions by modulating sig-
naling pathways participating in neuronal transmission. The main pathways for metab-
olizing ascarosides are as follows: the GPCR-Gqu [25], DAF-7/TGF-f [26], MAPK [27],


www.smid-db.org

Molecules 2023, 28, 2409

30f19

DAEF-2/Insulin pathways, etc. [28]. These pathways also participate in the adjustment of
many neurons, mainly including the neurons AWA, ASH, ASI, and ADL and male-specific
CEM neurons [11,14,17,18,29,30]. These neurons mainly regulate physiological activities
together with related receptor genes. For example, C. elegans hermaphroditism, which
acts mainly through self-fertilization, increases the mating rate in males after pathogen
exposure, and this increase requires str-44 in AWA neurons [31]. During the induction
of ascr#10, C. elegans triggers the ADL sensory neuron process for signal transduction;
this process triggers the main mod-1 receptor to respond [32]. When ascarosides act on
adults, they attenuate the expression of the insulin peptide INS-6 in ASI chemosensory
neurons, resulting in a decrease in neuroendocrine insulin signals, which in turn prolongs
reproductive duration [33]. The crh-1 gene of C. elegans autonomously functions in ascr#5-
sensing ASI neurons and inhibiting the formation of L2d [26]. In C. elegans, the tyra-2
receptor (a neurotransmitter-sensitive G-protein-coupled receptor) in ASH cells of nocicep-
tive neurons is involved in the induction of osas#9 avoidance expression [34]. Ascarosides
reversibly inhibit the expression of the str-3 chemoreceptor gene in ASI neurons. At the
same time, the suppression of str-3 requires the involvement of the pheromone receptors
SRBC-64/66 and SRG-36/37 [35]. However, more work is needed to clarify the specific
mechanisms of these processes in nematodes.

3. Pheromones Secreted by Nematodes

Ascarosides (ASCRs) represent the majority of the pheromones secreted by nematodes.
The molecular formula for an ascaroside, C33HggOy4, was first proposed by Schulz and
Becker in 1933. In 1957, Fairbairn et al. determined the structural formula for ascarosides.
Through more in-depth studies on nematode pheromones, it was found that ascaroside
derivatives, such as indole ascarosides (ICASs) and the w-1 oxidation isomers of ASCRs,
named OSCRs, can also act as pheromone components. Different phenotypes of nematode
species are produced by different ascarosides or combinations of ascarosides; even slight
changes in the chemical structure tend to produce drastically different patterns of activity.
As arule, the patterns of the biosynthesis of ascarosides are linked to the phylogeny, lifestyle,
and ecological niche of the organism [14,36,37]. In addition, different concentrations of the
same ascarosides can have different effects on nematodes. Other chemicals such as vanillic
acid function as pheromones in some nematodes, but there have been comparatively few
studies and discoveries in this area [38].

3.1. Development-Related Pheromones Secreted by Nematodes

The ability of nematodes to be so widely distributed in nature is closely related to their
special developmental patterns. C. elegans lives freely in soil; it has a small, transparent
body and serves as a model nematode species [39]. When the environment is suitable, an
individual C. elegans starts to develop from a fertilized egg and progresses to adulthood
through four stages of development. However, it stops feeding and developing if it
encounters extreme conditions, such as a lack of food, elevated temperatures, or an increase
in population density, and then the larva may enter a highly stress-resistant state called
dauer diapause. This stage can last for several months. The nematodes eventually resume
development and molt into the reproductive cycle under suitable conditions [40—44]. Much
research shows that chemical pheromones can control dauer entry and exit [45,46].

The first dauer-inducing pheromone (daumone) was identified by means of the
ethyl acetate extraction of a C. elegans liquid medium. The molecular structure of dau-
mone was thereby determined to be (2)-(6R)-(3,5-dihydroxy-6-methyltetrahydropyran-2-
yloxy) heptanoic acid, abbreviated to ascr#1 (also called daumone-1/ascaroside C7/asc-C7)
(Table 1) [47]. Subsequently, ascr#2 (also called daumone-2/ascaroside C6) (Table 1) and
ascr#3 (also called daumone-3/asc-AC9/ascaroside C9) (Table 1) were also isolated and
identified. Ascr#2 and ascr#3 induce dauer formation about 100 times more potently than
ascr#1 does [48]. The pheromones that induce dauer formation may be single ascarosides
or mixtures of different ascarosides, and these pheromones often act synergistically when
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mixed together. The dauer pheromone of C. elegans is mainly composed of ascr#2, ascr#3,
and several other components, while in Caenorhabditis briggsae, the main component of the
dauer pheromone is ascr#2 [49]. A derivative of ascr#2 has a 3-glucosyl substituent linked
to C2 of the ascarylose in ascr#2 and is named ascr#4 (also called daumone-4) (Table 1).
The activity of ascr#4 is low [50]. Ascr#5 (also called daumone-5/ascaroside C3/asc-wC3)
(Table 1) is a potent dauer pheromone. The main function of ascr#5 is the activation of the
axon regeneration pathway via SRG-36/SRG-37 GPCRs and EGL-30, indicating ascaroside
signaling promotes axon regeneration by activating the GPCR-Gqux pathway [25]. In addi-
tion, the crh-1 gene plays an autonomous role in ascr#5, sensing ASI neurons in order to
inhibit the dauer formation of C. elegans L2d [26]. Ascr#5 also produces synergistic effects
with ascr#2 and ascr#3 [51]. In ASI neurons, ascaroside pheromones (compounds composed
of ascr#2, ascr#3, and ascr#5) reversibly inhibit the expression of the str-3 chemical receptor
gene, and when ascarosides are removed, its expression resumes. This process mainly
occurs through the GPCR receptors SRBC-64/66 and SRG-36/37, which are required for
str-3 repression [35]. Ascr#8 (Table 1) uniquely possesses a p-aminobenzoate group in its
terminus; this group is a folate precursor that is derived from bacteria and is not synthesized
by C. elegans [52].

Furthermore, Butcher et al. [53] used activity-guided fractionation and NMR to dis-
cover a structurally novel indole-3-carboxylic acid-modified ascaroside in C. elegans named
icas#9 (also called indolecarboxyl ascaroside C5/ascaroside C5/IC-asc-C5) (Table 1). It can
induce dauer development at low (nanomolar) concentrations yet is inhibited at higher
concentrations. Nacg#1 (Table 1) also acts antagonistically with respect to dauer-inducing
ascarosides. The N-acylated glutamine derivative nacq#1 is mainly found in the excretions
of males and contains an uncommon triply unsaturated ten-carbon fatty acid. Nacq#1 sig-
nals that enough resources are available to finish the dauer stage and resume reproductive
growth. Although it reduces lifespan, nacq#1 can antagonize diapause and accelerate devel-
opment, hastening sexual maturation [54]. It also has a trans-isomer, nacq#2 (Table 1) [54],
but its function is unknown.

P. pacificus is a model species that has been extensively studied in biology [55]. This
nematode can enter the dauer stage or other stages if food is enough for growth [56,57].
Typically, the mouth of an adult that preys on other nematodes is more complex than
that of a bacterivorous nematode. Pheromones can regulate the mouth dimorphism of
P. pacificus [58]. Neelanjan et al. [59] analyzed fractions of the P. pacificus exo-metabolome
and found that it has rich signaling molecules controlling adult phenotypic plasticity,
including ascarosides ascr#1, 9, and 12. Pasc#9 (Table 1) was the most abundant derivative
after pasc#1 and pasc#12. Pasc#9 comprises an N-succinyl 1-phenylethanolamide connected
to ascarylose with a 4-hydroxypentanoic acid chain. Dasc#1 (Table 1) consists of two
ascr#l units; one ascr#1 unit is connected to carbon 4 of the other ascr#1 unit. A 3-ureido
isobutyrate moiety is also present on carbon 4 of ubas#1 (Table 1), and ubas#1 also contains
ascr#9 with the (w)-oxygenated ascaroside oscr#9 connected at position 2 [59]. Recent
studies revealed that the formation of ubas#1 and related metabolites specifically requires
the putative carboxylesterase Ppa-uar-1 [60]. Additionally, dimeric ascarosides and ureido
isobutyrate-substituted metabolites were first reported in P. pacificus. L-paratose forms the
basis of part#9 (Table 1). Part#9 only differs from ascr#9 in terms of the stereochemistry
of one hydroxyl group. Part#9 is also one of the components of npar#1. Npar#1 (Table 1)
contains a derivative of the nucleoside adenosine. Although part#9, npar#l, ubas#l,
and pasc#9 can induce dauer formation, npar#1 has a more intense effect than the others.
Pasc#9, ascr#1, dasc#1, and npar#1 can induce eurystomatous mouth formation, a predatory
morphology in the final larval and juvenile stages, in which P. pacificus-specific dasc#1 plays
an important role [61,62].

Heterorhabditis bacteriophora is parasitic toward insects and has a developmental pro-
cess similar to that of C. elegans. In the soil, the infective juveniles (IJs) survive as the
only state of entomopathogenic nematodes. After IJs infect the host insects, they recover
and lay eggs in their adults, which develop through four larval stages (J1-J4) to form
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the next generation [63—65]. In this process, H. bacteriophora secretes the ascaroside C11
ethanolamine (asc C11 EA) (Table 1), which prevents IJs from recovering to the J4 stage.
Asc C11 EA comprises an ascarylose sugar, an ethanolamine fragment, and a carbon side
chain containing w-1 alcohol; the fatty-acid-derived portion of the side chain is 11 carbons
long. Asc C11 EA and the dauer pheromone of C. elegans show structural similarity [66].

Figure 1 illustrates the schematic structure of the pheromones secreted by nematodes
during their development. The figure presents a schematic diagram showing ascarylose
sugars, variable-length fatty acids, and other moieties modifying them, which form different
species of development-related ascaroside species.
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Figure 1. Overview of the chemical structure of development-related pheromones secreted by

nematodes. Nacg#1 does not have an ascaroside structure, so it is not shown here, and its detailed
structure is shown in Table 1.

3.2. Sex Pheromones Secreted by Nematodes

Mate selection is universal in sexually reproducing organisms, and pheromones
provide individuals with advantageous mating information that helps them to select
high-quality mates. In the twentieth century, the first sex pheromone was named bom-
bykol, which is released from female silk moths (Bombyx mori) [67]. Sex pheromones
have since been researched in more depth; they are defined as chemical substances pro-
duced by individuals that cause innate and rigid sexual behavior [68]. These pheromones
have both sex- and species-specific effects. Nematode mating behavior is also regu-
lated by pheromones [69]. Generally, the nematode mating response can be induced
when the pheromone concentration is much lower than the concentration required for
dauer formation.

C. elegans mainly reproduces as a hermaphrodite. However, most Caenorhabditis worm
species achieve this by means of cross-fertilization. These hermaphrodites are essentially
females with the ability to self-fertilize, and they can also mate with males, but their
numbers are typically relatively low. Hermaphrodites do not appear to be attracted to
male C. elegans, but males are attracted to them [70]. The ascarosides ascr#2, 3, 4, and 8
(Table 1) not only play roles in regulating nematode development but also function as sex
pheromones that are known to attract males [71,72]. They show synergistic effects, whereby
a mixture of ascr#2, 3, and 4 is an effective male attractant at low concentrations. Ascr#3
attracts C. elegans males but repels hermaphrodites and can increase the lifespan of C. elegans.
Ascr#8 is a strong male-specific attractant and shows synergy with ascr#2 and ascr#3. A
mixture composed of ascr#3 and ascr#8 strongly attracts males at ultra-low concentrations,
but at higher concentrations, it is repulsive to hermaphrodites [36,50,71]. The other two
ascarosides with sex pheromone functions, ascr#6.1 (Table 1) and ascr#6.2 (Table 1), were
identified by Paul as diastereomeric side-chain-hydroxylated ascarosides [71]. Ascr#10
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(also called asc-C9) (Table 1) makes up the majority of the sex-specific milieu of ascarosides
produced by male C. elegans. Ascr#3 has an «, 3-unsaturated fatty acid moiety, whereas
ascr#10 has the corresponding dihydro-derivative; such minor structural modifications
deeply influence their signaling properties. The male pheromone ascr#10 strongly attracts
hermaphrodite nematodes and shortens their lifespan [73-75]. It also can increase germline
proliferation and physiological cell death [76] and change the reproductive physiology
of hermaphroditism, such as by improving sperm orientation and increasing the number
of reproductive precursor cells in adults [77-79]. Furthermore, Dong et al. conducted a
comparative analysis of indole ascaroside signaling for 14 Caenorhabditis species. Icas#2
and icas#6.2 (Table 1) were isolated from hermaphrodites of C. briggsae and were found to
synergistically attract conspecific males [80].

Panagrellus redivivus has an ecological niche similar to that of C. elegans; it has a free-
living lifestyle but belongs to a different clade. In contrast with C. elegans, the virgin females
of P. redivivus attract and are attracted by the males, but they do not attract the same sex [81].
The ascaroside biosynthesis in P. redivivus is highly sex-specific. The females of P. redivivus
can excrete ascri#l, ascr#10, and bhas#10 (Table 1) [74]. The males of P. redivivus can excrete
dhas#18 (Table 1) [74]. Ascr#1 can strongly attract males, but high concentrations of ascr#1
repel the females of P. redivivus. At high concentrations, bhas#10 and ascr#10 attract males
rather than females. Dhas#18, which is a known dihydroxy derivative of ascr#18 secreted
by males as well as an ascaroside with extensive functionality as a characteristic of its
lipid-derived side chain, can strongly attract the females of P. redivivus. Bhas#18 (Table 1) is
a precursor for dhas#18 synthesis, but its exact function is unclear [74].

Rhabditis sp. SB347 is a unique free-living dioecious species that is often used in the
laboratory [82]. The females of SB347 produce ascr#1 and ascr#9 (Table 1), which function
as sex pheromones. At femtomolar levels, ascr#1 and ascr#9 are strongly attracted to males,
but not to hermaphrodites and female nematodes [83].

In addition to the ascaroside pheromones, a different type of pheromone is secreted by
Heterodera glycines, a plant nematode that is parasitic toward soybeans. The females secrete
vanillic acid (Table 1), which also functions as a sex pheromone [38,84]. However, there are
very few reports on non-ascarosides acting as pheromones in nematodes.

The female beet cyst nematode Heterodera schachtii can excrete a sex pheromone. The
pheromone consists of at least two components, and the pheromone component is soluble
in aqueous solutions with diethyl ether. These components may show superposition rather
than synergy. However, their exact structure is unclear [85].

Bursaphelenchus xylophilus is a pine wood nematode (PWN). It has been shown that
both sexes of B. xylophilus produce sex pheromones: unmated females attract conspecific
males, and males attract both mated and unmated females through volatile chemical
compounds. Additionally, Bursaphelenchus okinawaensis, which is associated with insect
vectors and host plants, produces a pheromone that attracts males [86,87]. However, the
exact composition of the compound is unknown.

The dimorphism of the adults is an important feature of the life history of Globodera
rostochiensis. Hermaphrodites attract males for mating by producing pheromones. Four
fractions of the homospecific sex pheromone produced by virgin females, which were
isolated using chromatography technology, were tested for their ability to attract male
G. rostochiensis; only two of the fractions showed sex pheromone activity. Several weakly
basic polar compounds constitute the sex pheromone of G. rostochiensis. The exact structure
of its components is unclear [88].

The chemical structure diagram for sex pheromones secreted by nematodes is shown
in Figure 2. This diagram shows ascaroside building blocks associated with the mating of
different species of nematodes, including ascarylose sugars, variable-length fatty acids, and
other modification groups.
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Figure 2. Overview of the chemical structures of sex pheromones secreted by nematodes. Vanillic
acid does not have an ascaroside structure, so it is not shown here, and its detailed structure is
presented in Table 1.

3.3. Aggregation of Pheromones Secreted by Nematodes

C. elegans uses specifically modified forms of the ascarosides that contain indole units
as highly effective aggregation pheromones. The indole ascarosides (ICASs) incorporate an
L-tryptophan-derived indole-3-carboxylic acid group, which is linked to the four-position
of the ascarylose moiety. An indole carboxy unit forms one indole derivative, and it is
connected to an ascarylose bearing a nine-carbon unsaturated side chain identical to that
found in the known ascr#3; this indole carboxy ascaroside is called “icas#3” (Table 1). The
icas#3 occurs primarily by means of an expression protein in C. elegans, CEST-3, adding an
IC group to the corresponding unmodified ascr#3 [15,89]. Icas#3 and icas#9 are relatively
good attractants [15]. The 4-hydroxybenzoyl derivative of ascr#3 is called hbas#3 (Table 1).
Hbas#3 was the first ascaroside with a 4-hydroxybenzoyl structure to be discovered. Hbas#3
strongly attracts C. elegans at low concentrations (10 M), more effectively so than icas#3
and icas#9 [19]. Ascr#5 in combination with ascr#2 or ascr#3 may influence the aggregation
of C. elegans adults; however, more in-depth research is needed on this topic [90].

See Figure 3 for a schematic overview of nematode pheromones related to their
aggregation. It illustrates ascarylose sugars, fatty acids with variable lengths, and other
modifications that form aggregation-related ascaroside species.

H (0]

X 0 (CH S om

OH

Figure 3. Overview of the chemical structure of the aggregation of pheromones secreted by nematodes.

3.4. Pheromones with Other Functions Secreted by Nematodes

The L1 larvae of C. elegans can specifically produce certain octopamine ascarosides, in
which the ascarylose four-position is linked to a side chain derived from the succinylation
of the neurotransmitter octopamine. The octopamine ascarosides osas#2 (Table 1), osas#9
(Table 1), and osas#10 (Table 1) play roles in dispersal [72]. Osas#9 is a pheromone that acts
as a dispersal signal, especially in the case of a lack of food. Avoidance reactions to osas#9
require the G-protein-coupled receptor TYRA-2 [34]. With a continuous decrease in food,
ascr#10 and osas#10 are converted to ascr#9, osas#9, and icas#9 [72].

Ascr#3 was found to regulate metabolism and avoidance behavior, it was defined as a
population density pheromone. When food is scarce, ascr#3 causes hermaphrodites to have
an avoidance effect [91-93]. When the ADF of a single sensory neuron is removed, both
sexes are weakly rejected by the ascaroside ascr#3. Although ADF has functions in both
sexes, ascr#3 is only detected in males, which is the result of the main sex regulator tra-1 [94].
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A derivative of ascr#3 called mbas#3 (Table 1) was the first ascaroside discovered to have
an (E)-2-methyl-2-butenoyl structure [19], and it acts as a dispersal signal in C. elegans, as
well as having an antagonistic effect on the attractant characteristics of indole ascarides
such as icas#3 and icas#9 [95].

C. elegans exist in two states (roaming and dwelling) when searching for bacterial
food [96]. At physiological levels, some ascarosides regulate foraging by inhibiting roaming
behavior. Ascr#2, 3, 5, and 8 and icas#9 have some effects on the foraging behavior
of C. elegans. Different strains of C. elegans have different sensitivities to icas#9 due to
differences in the expression of the srx-43 gene, which encodes the icas#9 receptor [97].
C. elegans can also develop certain memory behaviors in response to pheromones such as
ascr#3, ascr#b, and icas#9 [98-100].

Research has shown that abundant ascr#18 (Table 1) could be isolated from Meloidogyne
incognita, Meloidogyne javanica, and Meloidogyne hapla, as well as from cyst (H. glycines)
and lesion (Pratylenchus brachyurus) nematodes [101]. This compound is also present in
C. elegans [19] and entomopathogenic nematodes [36,66]. Ascr#18 can be sensed by a wide
range of plant species, which in turn mount defense responses against nematodes.

Entomopathogenic nematode IJs can sense ascaroside mixtures including ascr#2, 3,
and 8 and icas#9 from C. elegans, which causes the dispersal of nematodes. The pheromone
mixture of ascr#9 and ascr#11 (Table 1) from consumed insect host corpses contributes to
IJ dispersal [102,103]. Ascr#9 and ascr#11 are structural analogs, and they can be inter-
changed in the mixture of dispersal pheromones. Ascr#9 was detected in some species of
Steinernema spp. (S. feltiae, S. carpocapsae, S. riobrave, and S. diaprepesi) and Heterorhabditis
spp- (H. zealandica, H. floridensis, and H. bacteriophora), which indicated that ascr#9 may
be widely present in dispersal mixtures from entomopathogenic nematodes. However, it
was found that ascr#11 is present in some species of Steinernema, but not in Heterorhabditis,
indicating that ascr#11 may be specific to Steinernema [103,104]. Ascr#12 (Table 1) can
induce the IJs recovery of H. bacteriophora H06 [105], while ascr#11 can enhance the IJ yields
of Steinernema carpocapsae All and H. bacteriophora H06 in the liquid medium [106].

The pinewood nematode, B. xylophilus, the causal agent for pine wilt disease and a
global quarantine pest, usually displaces Bursaphelenchus mucronatus, a native sympatric
sibling species. Similar to what occurs in C. elegans, in B. xylophilus, the pheromones com-
prise the hydrophilic ascarosides family, which are derivatives of 3,6-dideoxy-L-saccharose
linked to fatty-acid-derived side chains; they regulate the transmission of B. xylophilus
and its vector beetle, and they regulate the lifecycle of B. xylophilus [107]. Ascr#9 is the
major component of the ascarosides of the two nematodes; it not only increases the number
of invasive strains but also reduces the number of native strains [108]. Moreover, ascr#9
plays a leading role in pheromone-regulated reproductive plasticity. At the molecular level,
two genes, Bxydaf-38 and Bxysrd-10, participate in the perception of ascr#9 [108]. When
mixed with ascr#12, it acts synergistically and also increases body length in the females of
B. xylophilus, though it reduces body length in B. mucronatus [109].

C. elegans has shown a tendency to be attracted to a series of odorous substances, and
with the passage of time, this tendency changes from attraction to dispersal [98,99]. This
varied pheromone-mediated behavior is called olfactory plasticity, which depends on the
population density [110]. However, the pheromone component that plays a major role
in this process has not been identified. In addition, the pheromones released by injured
conspecific nematodes are repellent to nematodes, and they may contain alarm pheromones.
These alarm pheromones may not belong to the ascaroside class of pheromones [111].
However, their exact structure has not been identified.

The following Figure 4 displays the chemical structure diagram of function pheromones
secreted by nematodes. This diagram shows the ascaroside building blocks associated with
the functions of different species of nematodes, including ascarylose sugars, variable-length
fatty acids, and other modification groups.
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Figure 4. Overview of the chemical structures of pheromones with other functions secreted by nematodes.

Table 1. Pheromones are secreted by nematodes.

Name Chemical Constitution Function Organism Reference
: H
: N
O/\/\/\M( AN OH
Asc C11 EA o] Development C. elegans [66]
HO Q
OH
O/\/\/\[f OH C. elegans, P. pacificus
Development; L€ ! l. [47,48,59,61,62,
Ascr#l 0 o) matin P. redivivus, and Rhabditis 74,83]
HO & sp. SB347 '
OH
o/\/\[l/ Development,
Ascr#2 o o) mating, foraging, C. elegans; C. briggsae [48,49,71,72,97]
HO and dispersal
OH
o/\/\/\/\[]/ OH Development, [36,48-
Ascr#3 o o) mating, foraging, C. elegans 50,71,72,90—
HO and dispersal 93,95,97-100]
OH
OW
=y °
HO
Development;
Ascr#4 ] ' C. elegans [50,71,72]
mating
%OfOH
HO
HOo OH
M
(6] OH .
Ascr#5 @# Development, C. elegans [25,26,51,97]
HO foraging
OH
Ascri#6.1 /\/\é? Mating C. elegans [71]
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O/W
Ascri#6.2 Ho $07 OH Mating C. elegans [71]
OH
OM/Y Development,
Ascr#8 0 0 OH mating, foraging, C. elegans [36,50,52,71,72,97]
HO and dispersal
OH 0
C. elegans, P. pacificus,
- Rhabditis sp. SB347,
: OH B. xylophilus,
(0]
Ascri9 /\/\g/ Matine: dispersal B. mucronatus [36,59,83,102—
HO Q & d1sp H. bacteriophora, 104,108,109]
H.zealandica, H. floridensis,
OH .
S. carpocapsae, S. riobrave,
S. diaprepesi, and S. feltine
: OH
O/\/\/\/\[(
Ascr#10 o 0 Mating C. elegans; P. redivivus [73-79,101]
HO
OH
B (0]
O/\)J\OH C. elegans, S. carpocapsae,
Ascr#l11 1) Dispersal S. riobrave, S. diaprepesi, [102-104,106]
HO and S. feltiae
OH
z (0]
O/\/\)J\OH 3
Ascr#]2 HO \m? Development C. elegans; P. pacificus [36,59,105,109]
OH
: OH , , .
0NN M. incognita, M. javanica,
Ascr#18 o 0 Avoidance M. hapla, H. glycines, and [19,101]
HO P. brachyurus
OH
O/\/\/\;/\CO OH
Bhas#10 OH Mating C. elegans; P. redivivus [74]
HO Q
OH
O/\/\/\/\;/\[(OH
Bhas#18 $27 OH O Unknown P. redivivus [74]
HO
OH
0NV N"CoH
: 0
Dasc#l O/\/\/\WO Development P. pacificus [59,61,62]

OH
0 0
HO
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- OH

Dhas#18 OH O Mating P. redivivus [74]
HO- /=2

OH
HO OWCOZH
Hbas#3 \@ro ﬂ? Aggregation C. elegans [19]
S OH

O/\/\ﬂ/
0 0 o
Icas#2 © Mating C. briggsae [80]
OH
\;
N
H
o0 o ©
Icas#3 Aggregation C. elegans [15,89]
N
N
H

o $07 OH
Icas#6.2 © Mating C. briggsae [80]
o
N

OH
O/\/\n/ Development,

0 (0] .
Icas#9 0 oﬁ# aggrggahon, C. elegans [15,19,53,72,97]
OH foraging, and
X dispersal
NH

o}
Mbas#3 o 0@7 Dispersal C. elegans [19,95]

Nacg#l Development C. elegans [54]

Nacq#2 M Unknown C. elegans [54]
LN OH
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HO
(6]
z H NH
Npar#1 w O NoA N Development P. pacificus [59,61,62]
HO OH <A
O. NN
/@H
HOHO
Osas#2 : R=(C=0)CHj; Dispersal C. elegans [72]
o/\/\
R
(0]
O O
OH
R=(CH,)4 Dispersal C. elegans [72]
Osas#10 o ,\\:/Q/OH COOH
OH :
0" "co,m
O
o o@?
OH .
Osas#9 Dispersal C. elegans [34,72]
OH
Part#9 0"""coH Development P. pacificus [59,61,62]
oL on
: o}
(o)
O/\/\ff Nk/\cozH »
Pasc#9 Ho w o H Development P. pacificus [59,61,62]
OH
0" CcoH
Ubas#1 y j OY\/( Development P. pacificus [59,61,62]
N I 0
o=( o OH
NH,
HO
CO,H
Vanillic acid Mating H. glycines [38,84]
OCHs
OH

4. Nematode Pheromone Communication with Other Species

Nematode pheromones mainly function in an intraspecies manner, but further research
has shown that they also function between different species [16,112], such as fungi, plants,

and insects.
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Manosalva et al. [101] found that nematode pheromones trigger defense responses
in different organs of plants. Moreover, plants can metabolize nematode pheromones via
peroxisomal (3-oxidation and thus alter their chemical information, and they can produce
a blend of ascarosides to control plant nematodes and reduce harm to themselves [13].
Interestingly, increased callose buildup was seen in Arabidopsis leaves after treatment
with ascr#l and ascr#18. AOS, PR1, PDF1.2, LOX2, and other defense-related genes
also increased their expression as a result of ascr#18, which may have contributed to the
improved plant defensive responses [113].

The typical pine wilt disease encompasses complex associations between PWN, sym-
biotic fungi, and vector beetles. In this system, nematode pheromones not only increase
the number of mycelia, and improve the spread of fungi and nematode efficiency [114],
but they also promote the pupation of beetles by inducing them to produce the molting
hormone and upregulating the expression of genes related to the molting hormone [107].
Interestingly, PWN vector beetles can also produce ascarosides that promote the aggrega-
tion of their symbiotic plant-parasitic nematode species [107]. This indicates that nematode
pheromones can regulate interspecific interactions.

Nematode-trapping fungi are predators that can consume nematodes and are widespread
in soils of distinct ecological provenances [115]. Nematode-trapping fungi can detect and
respond to nematode pheromones for the generation of trapping devices to catch and
consume nematodes. For instance, the model Arthrobotrys oligospora can form traps of
adhesive nets via the stimulation of ascaroside pheromones [27,116,117].

Recent studies have revealed that the main components of nematode pheromones,
ascarosides, can be widely metabolized by animals, plants, and microorganisms [112],
which may interact with certain nematodes by manipulating ascaroside signaling. The
responses of other species to nematode pheromones may accelerate the rapid evolution of
pheromones and may provide evidence for the synergistic evolution of species.

5. Conclusions

Pheromones play wide-ranging roles in nematodes, such as in their development, mat-
ing, aggregation, olfactory plasticity, and dispersal. These pheromones are closely related
to a variety of factors such as lifestyle, sex, and developmental stage, and the nematodes
living in various habitats can produce rich and diverse pheromones (Figure 5) [118,119].
C. elegans can secrete many kinds of ascarosides to improve development and induce dauer
formation. Entomopathogenic nematodes can secrete different ascarosides to assist them in
finding hosts and thriving. The pheromones secreted by plant parasitic nematodes are even
closely related to interspecific competition. The latest research has shown that secreted
pheromones can be sensed and even metabolized by organisms in the environment (such
as animals, plants, and microorganisms).

Ascarosides are major components of nematode pheromones; they are highly con-
served and species-specific, and the same ascarosides may play different roles among
nematodes. In chemical terms, they comprise dideoxysugar ascaryloses linked to different
fatty-acid side chains along with derivatives of amino acids, folate, and other primary
metabolites. Structural and functional diversity exists due to differences in the lengths of
the side chains and the derivatives. The effects of ascarosides on nematodes are not only
highly dependent on their chemical structure but are also linked to their concentrations
and the synergistic effects that take place between ascarosides [120,121].

Approximately 200 ascarosides have been discovered and identified from over 20 dif-
ferent nematodes [17,42,113]. The functions of most of them are unknown, whereas a
few have been found to function as pheromones [19,122]. There are large interspecific
differences in the structures and compositions of ascarosides [36]. However, these ascaro-
sides and the C. elegans ascarosides share some structural similarities. For example, the
ascarosides produced by Ascaris suum have long chain structures, similar to those of the
ascarosides produced by C. elegans [71]. Recent research has shown that the nematode
C. briggsae biosynthesizes ascarosides in a manner similar to C. elegans and also has a related
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55

developmental pathway that induces the stress-resistant dauer life stage. Thus, ascarosides
may play similar roles in other nematode species compared with C. elegans. Studying
the functions of ascarosides could provide a new method for controlling the parasitic
nematodes, but they need to be further explored. Moreover, nematode pheromones have
effects on other species, but the current study has revealed only the tip of the iceberg of the
complex multidirectional communication network mediated by ascarosides. Therefore, it is
important to further investigate the responses of other species to ascarosides, particularly
regarding pathways and receptors, in order to explain this process.

The discovery of nematode pheromones provides new experimental channels for
studying pheromone communication and its evolution, which will have significant value in
the biological control of harmful parasitic nematodes and chemical ecology. A systematic
description of the structures and functions of the pheromones of C. elegans and other
nematodes will be helpful in improving our understanding of various biological processes.
Although nematode pheromones are only a small class of compounds to be studied in
depth, they will certainly have a major impact on the study of interspecific and intraspecific
interactions in nematodes.

Steinernema carpocapsae
—34|: pocap insect-parasitic nematodes
20 Steinernema feltiae y S

Steinernema diaprepesi

27

Steinernema riobrave asc C11 EA, ascr#9, ascr#11

Heterorhabditis bacteriophora

79 —|: Heterorhabditis zealandica
45 Heterorhabditis floridensis

Caenorhabditis briggsae free-living nematodes ascritl-5. ascrit6.1. ascrit6.2. ascr#8-12. bhas#10

T Caenorhabditis elegans bhas#18, dasc#1, dhas#18, hbas#3, icas#2, icas#3,
—l: icast6.2, icas#9, mbas#3, nacq#1,npar#1, 0sast2,
44 Rhabditis sp. SB347
Meloidogyne hapla

o~  osas#9, osas#10, part#9, pasc#9, ubas#1

plant-parasitic nematodes

56 —: Meloidogyne incognita —_—
54 Meloidogyne javanica —

Heterodera glycines

58 C Bursaphelenchus mucronatus asor9, ascr18, vanillicacid
Bursaphelenchus xylophilus

Pristionchus pacificus feeVnatemaedes gso041 5 ascrit6.1, ascr#b.2, ascr#8-12, bhas#10, bhas#18, dasc#1,

dhas#18, hbas#3, icas#2, icas#3, icas#6.2, icas#9, mbas#3, nacq#1,

29 —‘: Panagrellus redivivus " npar#1, osas#2, osas#9, osas#10, part#9, pasc#9, ubas#1
44 Pratylenchus brachyurus planiparasticineraiodes

ascr#9, ascr#18, vanillic acid

Figure 5. Pheromones are produced by a wide range of nematode species. The phylogenetic tree was
drawn using Mega 4 software based on the comparison of 28S ribosomal RNA (28S) gene sequences
obtained from GenBank. The nematodes can be classified into three categories including plant-
parasitic nematodes (light green), insect-parasitic nematodes (light grey), and free-living nematodes
(light blue). Diverse pheromones can be found widely among nematode groups (red).
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