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Abstract: A small library of 1H-benzo[4,5]imidazo[1,2-c][1,3]oxazin-1-one derivatives was prepared
in good to excellent yields, involving a Ag2CO3/TFA-catalyzed intramolecular oxacyclization of
N-Boc-2-alkynylbenzimidazole substrates. In all experiments, the 6-endo-dig cyclization was ex-
clusively achieved since the possible 5-exo-dig heterocycle was not observed, indicating the high
regioselectivity of this process. The scope and limitations of the silver catalyzed 6-endo-dig cyclization
of N-Boc-2-alkynylbenzimidazoles as substrates, bearing various substituents, were investigated.
While ZnCl2 has shown limits for alkynes with an aromatic substituent, Ag2CO3/TFA demon-
strated its effectiveness and compatibility regardless of the nature of the starting alkyne (aliphatic,
aromatic or heteroaromatic), providing a practical regioselective access to structurally diverse
1H-benzo[4,5]imidazo[1,2-c][1,3]oxazin-1-ones in good yields. Moreover, the rationalization of ox-
acyclization selectivity in favor of 6-endo-dig over 5-exo-dig was explained by a complementary
computational study.

Keywords: 6-endo-dig cyclization; silver; oxacyclization; catalytic process; 1H-benzo[4,5]imidazo
[1,3]oxazin-1-ones; computational study; DFT

1. Introduction

Fused heteropolycycles containing nitrogen and oxygen in the skeleton constitute an
important class of heterocyclic compounds that can be found in numerous biologically
active compounds [1–3] and natural products [4,5]. Among them, the structural motif
1H-benzo[4,5]imidazo[1,2-c][1,3]oxazin-1-one is present in pharmacologically interesting
molecules, which display fungicidal activity (compound A, Figure 1) [6]. In addition,
compound B (Figure 1) has been known as a potent recognition site for the detection of the
highly toxic phosgene gas [7].

Functionalized alkynes at the ortho position of the carboalkoxy group are among the
most common substrates used by organic chemists to generate new polycyclic heterocy-
cles [8–20]. Thus, the electrophilic activation of a triple bond under acidic conditions or in
the presence of a transition metal triggers heterocyclization by intramolecular nucleophilic
attack. In most cases, these processes involve the regioselective 6-endo-dig cyclization,
as opposed to 5-exo-dig, providing, for example, the total synthesis of several natural
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products such as Scoparine A and B [21], Thunberginol A [22], (−)-Citreoisocoumarinol,
(−)-Citreoisocoumarin, (−)-12-epi-Citreoisocoumarinol and (−)-Mucorisocoumarins A
and B [23].

Molecules 2023, 28, x FOR PEER REVIEW 2 of 18 
 

 

 
Figure 1. Several fused active heterocycles containing the 
1H-benzo[4,5]imidazo[1,2-c][1,3]oxazin-1-one core. 

Functionalized alkynes at the ortho position of the carboalkoxy group are among the 
most common substrates used by organic chemists to generate new polycyclic heterocy-
cles [8–20]. Thus, the electrophilic activation of a triple bond under acidic conditions or in 
the presence of a transition metal triggers heterocyclization by intramolecular nucleo-
philic attack. In most cases, these processes involve the regioselective 6-endo-dig cycliza-
tion, as opposed to 5-exo-dig, providing, for example, the total synthesis of several natural 
products such as Scoparine A and B [21], Thunberginol A [22], (−)-Citreoisocoumarinol, 
(−)-Citreoisocoumarin, (−)-12-epi-Citreoisocoumarinol and (−)-Mucorisocoumarins A and 
B [23]. 

Although the activation of 2-alkynylbenzoates has been extensively studied using a 
series of metal species including Au [23–26], Ag [17,27,28], Pt [29,30], In [31], B [15,32], Cu 
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O-alkylcarbamates have been reported in the literature, which have been promoted with 
only three transition metal catalysts: gold [19,37–39], silver [40] and zinc [41,42]. 

Recently, we have developed Ag2CO3/TFA as a new tandem catalyst for intramo-
lecular oxacyclization of N-Boc-2-alkynyl-4-bromo(alkynyl)-5-methylimidazole produc-
ing 3-methylimidazo[1,2-c][1,3]oxazin-5-one derivatives (Figure 2a) [40]. In order to 
study the efficiency of Ag2CO3/TFA as a catalytic system to promote heterocyclization 
from other substrates, herein we report the extension of our approach to 
N-Boc-2-alkynylbenzimidazoles, giving access to 
1H-benzo[4,5]imidazo[1,2-c][1,3]oxazin-1-one derivatives (Figure 2c). It is noteworthy 
that the synthesis of benzimidazoxazinone derivatives has been already described in the 
literature using ZnCl2-mediated deprotective annulation (Figure 2b) [41]. However, this 
methodology was limited to aliphatic alkyne since alkynes with an aromatic substituent 
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Figure 2. Known procedures for the cyclization of N-Boc-2-alkynylimidazoles and 
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During the preparation of the desired 1H-benzo[4,5]imidazo[1,2-c][1,3]oxazin-1-one 
5, the byproduct AgTFA may be recycled from the Ag2CO3/TFA system catalyst for other 

Figure 1. Several fused active heterocycles containing the 1H-benzo[4,5]imidazo[1,2-c][1,3]oxazin-1-
one core.

Although the activation of 2-alkynylbenzoates has been extensively studied using
a series of metal species including Au [23–26], Ag [17,27,28], Pt [29,30], In [31], B [15,32],
Cu [33–35] and Fe [20,36], a limited number of heterocyclizations starting from alkynyl
O-alkylcarbamates have been reported in the literature, which have been promoted with
only three transition metal catalysts: gold [19,37–39], silver [40] and zinc [41,42].

Recently, we have developed Ag2CO3/TFA as a new tandem catalyst for intramolec-
ular oxacyclization of N-Boc-2-alkynyl-4-bromo(alkynyl)-5-methylimidazole producing
3-methylimidazo[1,2-c][1,3]oxazin-5-one derivatives (Figure 2a) [40]. In order to study the
efficiency of Ag2CO3/TFA as a catalytic system to promote heterocyclization from other sub-
strates, herein we report the extension of our approach to N-Boc-2-alkynylbenzimidazoles,
giving access to 1H-benzo[4,5]imidazo[1,2-c][1,3]oxazin-1-one derivatives (Figure 2c). It
is noteworthy that the synthesis of benzimidazoxazinone derivatives has been already
described in the literature using ZnCl2-mediated deprotective annulation (Figure 2b) [41].
However, this methodology was limited to aliphatic alkyne since alkynes with an aromatic
substituent were not cyclized in this study.
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Figure 2. Known procedures for the cyclization of N-Boc-2-alkynylimidazoles and N-Boc-2-
alkynylbenzimidazoles. (a) [40]; (b) [41]; (c) This work.

During the preparation of the desired 1H-benzo[4,5]imidazo[1,2-c][1,3]oxazin-1-one 5,
the byproduct AgTFA may be recycled from the Ag2CO3/TFA system catalyst for other ap-
plications. Considering the environmental impact, the Ag2CO3/TFA is an environmentally
benign system catalyst.

2. Results and Discussion

Our synthesis begins with the generation of 2-brominated benzimidazole 2, starting
from 2-mercaptobenzimidazole 1, following the known reported procedure [18]. Selective



Molecules 2023, 28, 2403 3 of 17

bromination of 1 was performed with bromine and hydrogen bromide in acetic acid at room
temperature according to a literature procedure [19], providing 85% yield. Compound 2
was subsequently protected by a tert-butoxycarbonyl group using (Boc)2O as the reagent
in the presence of triethylamine in a mixture of MeCN/DMF (1:1) at room temperature
leading to compound 3 in 76% yield (Scheme 1). The N-Boc-2-bromobenzimidazole 3
served as a building block to introduce substituted alkynes at the C-2 position via the
Sonogashira cross-coupling reaction.
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Scheme 1. Synthesis of N-Boc-2-bromobenzimidazole 3.

In order to prepare a series of N-Boc-2-alkynylbenzimidazoles 4 as substrates which
could undergo intramolecular cyclization, compound 3 was engaged in Sonogashira cross-
coupling with several alkynes.

After screening the various conditions, the use of phenylacetylene (1.5 equiv.), Pd(OAc)2
(10 mol%), PPh3 (20 mol%) and CuI (15 mol%) in triethylamine at room temperature proved
to be the most appropriate choice conditions for obtaining alkynylated product 4b in excel-
lent yield (Scheme 2).
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The scope and limitation of the Sonogashira cross-coupling were investigated start-
ing from N-Boc-2-bromobenzimidazole 3 with various terminal alkynes (Scheme 2). As
illustrated in Scheme 2, it was found that the nature of terminal alkynes (aliphatic, aro-
matic or heteroaromatic) did not dramatically affect the efficiency of this cross-coupling,
since, in all cases, the expected compounds were obtained in moderate to good yields.
Thus, this procedure is compatible with several substituents (electron-donating or electron-
withdrawing groups) on the aryl rings (methoxy, methyl, chlorine, nitro, ester and fluorine
groups). Moreover, under the same conditions, alkynes bearing an heteroaryl groups, such
as 2-thienyl or 2-pyridyl, were also able to be introduced in satisfactory yields [4k (54%)
and 4l (63%)].

Initially, the treatment of N-Boc-2-hexynylbenzimidazole 4a with ZnCl2 (1.5 equiv.) in
dichloromethane at 40 ◦C gave successfully and exclusively the tricyclic core 5a in 80% iso-
lated yield. However, the reaction starting from N-Boc-2-phenylethynylbenzimidazole 4b
required a longer time and gave a mixture of the expected product 5b along with the start-
ing material 4b in a 60/40 ratio, respectively (Table 1, entry 2). Increasing the temperature
to 60 ◦C slightly improved the 4b/5b ratio from (60:40) to (50:50) (Table 1, entry 3). These
results clearly indicate the inefficiency of ZnCl2 to promote intramolecular cyclization from
N-Boc-2-alkynylbenzimidazole derivatives when the substituent of alkyne is an aromatic
ring, such as phenyl.

Table 1. Optimization of oxacyclization reaction conditions.
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4/5

1 n-Bu DCM ZnCl2 (1.5) [41] - 40 3 0/100 b

2 Ph DCM ZnCl2 (1.5) - 40 48 60/40
3 Ph DCM ZnCl2 (1.5) - 60 48 50/50
4 Ph DCM Ag2CO3 (0.1) TFA (2) 60 24 15/85
5 Ph DCE Ag2CO3 (0.1) [40] TFA (2) 60 6 0/100 c

6 Ph DCE Ag2CO3 (0.1) TFA (2) 40 24 5/95
a The ratio of mixture (4/5) was calculated from the crude 1H NMR spectrum. b Compound 5a was isolated in
80% yield after purification by silica-gel column chromatography. c Compound 5b was isolated in 90% yield after
purification by silica-gel column chromatography.

To our delight, the combination of a catalytic amount of Ag2CO3 (0.1 equiv.) and
TFA (2 equiv.) significantly improved the conversion of the starting material to 85%
while the reaction time decreased to 24 h (Table 1, entry 4). Performing the reaction with
dichloroethane as a solvent, instead of dichloromethane, resulted in a complete conversion
of the starting material 4b to the target heterocycle 5b, which was isolated in an excellent
yield of 90% after purification by silica-gel column chromatography (Table 1, entry 5).
Otherwise, dichloroethane has a greater impact on the conversion rate of the reaction,
which could be related to its higher boiling point compared to dichloromethane. A suitable
solvent is crucial to this reaction. Under the same conditions, decreasing the temperature
to 40 ◦C significantly affected the formation of the desired product 5b, since the conversion
of substrate 4b remained incomplete, despite a longer reaction time of 24 h, proving the
importance of heating at 60 ◦C to obtain a full conversion (Table 1, entry 6).

The best results in terms of the time and yields were obtained with Ag2CO3/TFA
as a catalytic system. Having established the required conditions for efficient annulation,
various N-Boc-2-alkynyl(arylethynyl)benzimidazoles 4a–o, which are suitable substrates to
undergo intramolecular cyclization, were subjected to these optimized reaction conditions
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in order to study the scope and limitations of our process (Scheme 3). All reaction mixtures
were stirred at 60 ◦C until the starting material was completely consumed, monitored
by thin-layer chromatography (TLC) using a mixture of petroleum ether/ethyl acetate
(v/v = 8/2) as the eluent. The oxacyclization conditions were found to be compatible with a
variety of R groups in starting materials 4a–o, such as alkyl, cycloalkyl, aryl and heteroaryl,
bearing electron-withdrawing or -donating substituents.
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The nature of the substituents on the phenyl ring slightly affected the outcome of
the cyclization. As given in Scheme 3, the reactions with the substrates having electron-
donating groups, such as methoxy and methyl, were performed efficiently, affording the
expected compounds 5c–e in good yields. Benzimidazoles containing chlorine atom as
an electron-withdrawing group at the ortho, meta or para position 4f–h were successfully
cyclized, giving access to the desired products 5f (51%), 5g (80%) and 5h (92%). As
observed, the steric hindrance of the ortho-position seems to substantially influence the
cyclization efficiency.

The presence of a strong electron-withdrawing group, such as nitro or carbomethoxy
function on the phenylethynyl group, promote the 6-endo-dig cyclization, leading to new
fused benzimidazoles in excellent yields [5i (84%) and 5j (95%)]. Encouraged by the good re-
sults obtained with different aryl R groups, benzimidazoles bearing ethynylheteroaryl were
exposed under the same silver-catalyzed oxacyclization conditions. Interestingly, substrates
having an heteroaromatic ring on the triple bond, such as 3-thienyl and 2-pyridyl, were
found to also be compatible and exclusively provided the corresponding heterocycles 5k
and 5l in 78% and 71% yields, respectively. The intramolecular cyclization of substrates
bearing a fluorine atom on the phenyl ring, R = 2-fluorophenyl and R = 4-fluorophenyl,
works well, giving the desired compounds in good yields [5m (88%) and 5n (68%)]. When
the alkyne substituent is a bulky cyclohexyl group, the cyclization proceeded smoothly and
provided the desired heterocycle 5o in excellent 90% yield. It is noteworthy that among the
two possible oxacyclization products 5 and 6, only the 6-endo-dig cyclization heterocycle 5
was formed in all experiments, with variations mainly in the isolated yields.

Theoretical Calculation (Computational Studies)

To investigate the reaction pathway, and in particular, to understand the mechanism
and stereoselectivity of the annulation reaction catalyzed by Ag2CO3 and TFA, a series of
computational experiments were performed by density functional theory (DFT) calculations.
The proposed mechanism for the competing intramolecular cyclization pathways of the
target benzimidazoxazinone 5b is outlined in Scheme 4.
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Scheme 4. Projected computational reaction mechanism.

In order to justify the expected 6-endo annulation, the intermediates and the transition
states (TS) of both cyclization pathways [6-endo-dig (path a, blue) or 5-exo-dig (path b, red)]
were computed. All the structures were optimized at the B3LYP level in the gas phase and
then in DCE (see the Supplementary Materials for details). The energy profiles of different
reaction pathways are depicted in Figure 3.
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As shown in Figure 3, the energy barriers of the transition states TSIIaendo–TSII’aendo,
the intermediate Iaendo and the product 5b for 6-endo-dig oxacyclization (path a, blue)
are much lower than those of 5-exo-dig (path b, red). This suggests that the preferential
6-endo-dig lactonization of compound 4b is favored both kinetically and thermodynamically.

To confirm our mechanistic hypothesis, we extended the earlier studies to the calcu-
lated natural population analysis (NPA) of each carbon in the alkyne group for all starting
materials 4a–o (Table 2).

The calculated NPA revealed that the positive charge is located on the carbon atom
denoted β leading to the 6-endo-dig cyclization, while the Cα leading to the undesired
annulation (5-exo-dig) product 6b is negatively charged, which is in excellent agreement
with the experiment, regardless of the nature of the alkyne substituent.
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Table 2. NPA charges for the alkyne carbons Cα and Cβ of compounds 4a–o.
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3. Materials and Methods
3.1. General Information

All reactions were performed under an inert atmosphere of argon in oven-dried glass-
ware equipped with a magnetic stir bar. Solvents for reactions were obtained from Thermo
Fisher Scientific in extra dry quality and stored under argon over activated 3 Å sieves.
All reagents were purchased from Fluorochem and used as received without additional
purification. Reactions were monitored by thin-layer chromatography (TLC) analysis using
silica gel 60 F254 plates. All products were visualized by exposure to UV light (longwave
at 365 nm or shortwave at 254 nm). Column chromatography was performed using silica
gel 60 (230–400.13 mesh, 0.040–0.063 mm). Eluents were distilled by the standard methods
before each use. All new compounds were characterized by NMR spectroscopy (1H, 19F
and 13C), high-resolution mass spectroscopy (HRMS) and melting point (if solids). NMR
spectra were recorded at 300 MHz for 1H, 282 MHz for 19F, and 75 MHz for 13C with a
Bruker® 300 MHz NMR spectrometer. Proton and carbon magnetic resonance spectra
(1H NMR and 13C NMR) were recorded using tetramethylsilane (TMS) as an external
standard and CDCl3 (7.28 ppm for 1H NMR and 77.04 ppm for 13C NMR) or DMSO-d6
(2.50 ppm for 1H NMR and 40.0 ppm for 13C NMR) as internal standards. 19F spectra
were unreferenced. Data for NMR are reported as follows: chemical shift (δ ppm), mul-
tiplicity (s = singlet, d = doublet, t = triplet, q = quartet, sep = septet, m = multiplet and
br = broad resonance) and coupling constants J are reported in Hertz (Hz). All NMR spectra
were processed in MestReNova. HRMS experiments were performed on a hybrid tandem
quadrupole/time-of-flight (Q-TOF) instrument, equipped with a pneumatically assisted
electrospray (Z-spray) ion source (Micromass, Manchester, UK) operated in the positive
mode. The melting points (Mp [◦C]) of samples were measured using open capillary tubes
and recorded on a StuartTM melting point apparatus SMP3.

2-Bromobenzimidazole (2).
Compound 2 was prepared from 2-mercaptobenzimidazole according to a reported

procedure [43]. Mp 195−196 ◦C (lit. [44] 191−193 ◦C, lit. [45] 190–192 ◦C). 1H NMR
(300 MHz, Methanol-d4): δ = 7.52 (dd, J = 6.0, 3.3 Hz, 2H), 7.29−7.23 (m, 2H).

The experimental data are in accordance with the previously reported data [44,45].
2-Bromo-1-tertbutoxycarbonylbenzimidazole (3).
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Compound 3 was prepared according to a literature procedure [46]. Mp 64−65 ◦C.
1H NMR (300 MHz, CDCl3): δ = 7.96−7.92 (m, 1H), 7.72−7.69 (m, 1H), 7.39−7.34 (m, 2H),
1.75 (s, 9H). 13C NMR (75 MHz, CDCl3): δ = 147.3, 142.7, 133.8, 126.9, 125.1, 124.5, 119.4,
114.7, 86.8, 28.0 (3C).

Spectroscopic data are in accordance with the previously reported data [46].

3.2. General Procedure for the Synthesis of Tert-butyl 2-alkynyl-1H-benzimidazole-1-carboxylate (4a–o)

An oven dried 25 mL Schlenk tube equipped with a magnetic stir bar was charged
with tert-butyl 2-bromobenzimidazole-1-carboxylate 3 (300 mg, 1.01 mmol), PPh3 (53 mg,
0.2 mmol), Pd(OAc)2 (23 mg, 0.1 mmol), CuI (29 mg, 0.15 mmol) and triethylamine (8 mL).
The vial was sealed with a septum-lined pierceable cap, evacuated and backfilled with argon
(×3). Then, a solution of alkyne (1.5 mmol, 1.5 equiv.) in 2 mL of Et3N was added dropwise
to the reaction mixture via a syringe. The reaction mixture was stirred at room temperature
for 20 h under an argon atmosphere. After completion of the reaction (monitored by
TLC), the solution was filtered through a plug of celite eluting with ethyl acetate (25 mL)
and the combined filtrate was dried with MgSO4 and concentrated under vacuum. The
crude product was directly purified by column chromatography using a mixture petroleum
ether/EtOAc as an eluent to give the pure desired products 4a–o.

2-Hexynyl-1-tertbutoxycarbonylbenzimidazole (4a).
The crude product was purified by column chromatography on silica gel (PE/EtOAC,

9.8:0.2), followed by recrystallization from Et2O to afford compound 4a as a grey solid
(270.7 mg, 90%). Mp 58−59 ◦C. 1H NMR (300 MHz, CDCl3): δ = 7.99 (dd, J = 6.0, 2.1 Hz,
1H), 7.75 (dd, J = 6.0, 2.1 Hz, 1H), 7.40 (td, J = 7.2, 1.8 Hz, 1H), 7.37 (td, J = 7.2, 1.8 Hz,
1H), 2.55 (t, J = 7.2, 3H), 1.73 (s, 9H), 1.73−1.65 (m, 2H), 1.54 (sext, J = 7.5 Hz, 2H), 0.97 (t,
J = 7.2 Hz, 3H). 13C NMR (75 MHz, CDCl3): δ = 147.9, 142.5, 136.3, 132.0, 125.6, 124.6, 120.0,
114.8, 98.0, 85.6, 72.3, 30.0, 28.1 (3C), 22.1, 19.5, 13.6. HRMS (ESI): m/z [M+H]+ calcd for
C18H23N2O2: 299.1760; found: 299.1755.

2-Phenylethynyl-1-tertbutoxycarbonylbenzimidazole (4b).
The crude product was purified by column chromatography on silica gel (PE/EtOAC,

9.8:0.2), followed by recrystallization from Et2O to afford compound 4b as a beige solid
(296 mg, 92%). Mp 108−109 ◦C. 1H NMR (300 MHz, CDCl3): δ = 8.04 (dd, J = 7.2, 1.8 Hz,
1H), 7.78 (dd, J = 7.2, 1.8 Hz, 1H), 7.70−7.67 (m, 2H), 7.57−7.51 (m, 5H), 1.75(s, 9H). 13C
NMR (75 MHz, CDCl3): δ = 147.8, 142.9, 136.1, 132.3, 132.2 (2C), 129.7, 128.5 (2C), 125.9,
124.8, 121.6, 120.3, 114.9, 95.0, 85.9, 80.7, 28.2 (3C). HRMS (ESI): m/z [M+H]+ calcd for
C20H19N2O2,: 319.1447; found: 319.1442.

Spectroscopic data are in accordance with the previously reported data [47].
2-(4-Methoxyphenylethynyl)-1-tertbutoxycarbonylbenzimidazole (4c).
The crude product was purified by column chromatography on silica gel (PE/EtOAC,

9:1) followed by recrystallization from Et2O afforded compound 4c as a yellow solid
(275.08 mg, 78%). Mp 93−94 ◦C. 1H NMR (300 MHz, CDCl3): δ = 8.01 (dd, J = 6.9, 2.1 Hz,
1H), 7.79 (dd, J = 6.9, 2.1 Hz, 1H), 7.64−7.60 (m, 2H), 7.41 (td, J = 7.5, 1.8 Hz, 1H), 7.38 (td,
J = 7.5, 1.8 Hz, 1H), 7.47 (dt, J = 9.0, 2.1 Hz, 2H), 3.87 (s, 3H), 1.75 (s, 9H). 13C NMR (75 MHz,
CDCl3): δ = 160.7, 147.9, 142.9, 136.4, 133.9 (2C), 132.2, 125.7, 124.7, 120.1, 114.9, 114.2 (2C),
113.5, 95.6, 85.8, 79.8, 55.4, 28.2 (3C). HRMS (ESI): m/z [M+H]+ calcd for C21H21N2O3:
349.1552; found: 349.1547.

2-(3-Methylphenylethynyl)-1-tertbutoxycarbonylbenzimidazole (4d).
The crude product was purified by column chromatography on silica gel (PE/EtOAC,

9.8:0.2), followed by recrystallization from Et2O to afford compound 4d as a yellow oil
(282.63 mg, 84%). 1H NMR (300 MHz, CDCl3): δ = 8.02 (dd, J = 7.8, 1.8 Hz, 1H), 7.78 (dd,
J = 7.8, 1.8 Hz, 1H), 7.50−7.47 (m, 2H), 7.43 (td, J = 7.2, 1.5 Hz, 1H), 7.33−7.24 (m, 2H), 2.40
(s, 3H), 1.75 (s, 9H). 13C NMR (75 MHz, CDCl3): δ = 147.8, 142.9, 138.2, 136.1, 132.7, 132.2,
130.6, 129.3, 128.4, 125.9, 124.8, 121.3, 120.2, 114.9, 95.3, 85.9, 80.4, 28.2 (3C), 21.3. HRMS
(ESI): m/z [M+H]+ calcd for C21H21N2O2: 333.1603; found: 333.1597.

2-(4-Methylphenylethynyl)-1-tertbutoxycarbonylbenzimidazoe (4e).
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The crude product was purified by column chromatography on silica gel (PE/EtOAC,
9.6:0.4), followed by recrystallization from Et2O to afford compound 4e as a white solid
(283 mg, 84%). Mp 61−62 ◦C. 1H NMR (300 MHz, CDCl3): δ = 8.02 (dd, J = 6.9, 2.1 Hz, 1H),
7.76 (dd, J = 6.9, 2.1 Hz, 1H), 7.57 (d, J = 8.1 Hz, 2H), 7.43−7.37 (m, 2H), 7.22 (d, J = 8.1 Hz,
1H), 2.42 (s, 3H), 1.74 (s, 9H). 13C NMR (75 MHz, CDCl3): δ = 147.9, 142.9, 140.1, 136.2,
132.3, 132.1 (2C), 129.3 (2C), 125.8, 124.3, 102.2, 118.5, 114.9, 95.4, 85.8, 80.2, 28.2 (3C), 21.7.
HRMS (ESI): m/z [M+H]+ calcd for C21H21N2O2: 333.1603; found: 333.1602.

2-(2-Chlorophenylethynyl)-1-tertbutoxycarbonylbenzimidazole (4f).
The crude product was purified by column chromatography on silica gel (PE/EtOAC,

9.8:0.2) followed by recrystallization from Et2O afforded compound 4f as a white solid
(270 mg, 76%). Mp 110−111 ◦C. 1H NMR (300 MHz, CDCl3): δ = 8.02 (dd, J = 7.2, 1.8 Hz,
1H), 7.80 (dd, J = 7.2, 1.8 Hz, 1H), 7.70 (dd, J = 7.5, 1.8 Hz, 1H), 7.50−7.29 (m, 5H), 1.73 (s,
9H). 13C NMR (75 MHz, CDCl3): δ = 147.1, 142.9, 136.6, 135.6, 133.9, 132.2, 130.6, 129.6,
126.6, 126.1, 124.9, 121.7, 120.4, 114.9, 91.4, 86.1, 85.0, 28.1 (3C). HRMS (ESI): m/z [M+H]+

calcd for C20H18ClN2O2: 353.1057; found: 353.1053.
2-(3-Chlorophenylethynyl)-1-tertbutoxycarbonylbenzimidazole (4g).
The crude product was purified by column chromatography on silica gel (PE/EtOAC,

9.8:0.2), followed by recrystallization from Et2O to afford compound 4g as a white solid
(211 mg, 59%). Mp 102−103 ◦C. 1H NMR (300 MHz, CDCl3): δ = 8.01 (dd, J = 7.2, 1.5 Hz,
1H), 7.47−7.33 (m, 4H), 7.56 (dt, J = 7.5, 1.5 Hz, 1H), 1.75 (s, 9H). 13C NMR (75 MHz, CDCl3):
δ = 147.7, 142.9, 135.6, 134.4, 132.2, 131.9, 130.3, 130.0, 129.8, 126.3, 124.9, 123.3, 120.4, 114.9,
93.2, 86.2, 81.7, 28.2 (3C). HRMS (ESI): m/z [M+H]+ calcd for C20H18ClN2O2: 353.1057;
found: 353.1053.

2-(4-Chlorophenylethynyl)-1-tertbutoxycarbonylbenzimidazole (4h).
The crude product was purified by column chromatography on silica gel (PE/EtOAC,

9.8:0.2), followed by recrystallization from Et2O to afford compound 4h as a white solid
(340 mg, 95%). Mp 130−131 ◦C. 1H NMR (300 MHz, CDCl3): δ = 8.02 (dd, J = 7.2, 1.8 Hz,
1H), 7.78 (dd, J = 7.2, 1.8 Hz, 1H), 7.61 (d, J = 8.4 Hz, 2H), 7.49−7.39 (m, 2H), 7.34 (d,
J = 8.4 Hz, 2H), 1.74 (s, 9H). 13C NMR (75 MHz, CDCl3): δ = 147.8, 142.9, 135.9, 133.7, 133.4
(2C), 132.2, 129.0 (2C), 126.0, 124.9, 120.3, 120.1, 114.9, 93.7, 86.0, 81.6, 28.2 (3C). HRMS (ESI):
m/z [M+H]+ calcd for C20H18ClN2O2: 353.1057; found: 353.1053.

2-(3-Nitrophenylethynyl)-1-tertbutoxycarbonylbenzimidazole (4i).
The crude product was purified by column chromatography on silica gel (PE/EtOAC,

9.6:0.4), followed by recrystallization from Et2O to afford compound 4i as a yellow solid
(221 mg, 60%). Mp 152−153 ◦C. 1H NMR (300 MHz, CDCl3): δ = 8.53 (t, J = 1.8 Hz, 1H), 8.30
(ddd, J = 8.1, 2.4, 1.2 Hz, 1H), 8.03−7.95 (m, 2H), 7.81 (d, J = 7.2 Hz, 1H), 7.63 (t, J = 8.1 Hz,
1H), 7.49−7.41 (m, 2H), 1.77 (s, 9H). 13C NMR (75 MHz, CDCl3): δ = 148.2, 147.7, 142.9,
137.7, 135.2, 132.2, 129.7, 126.9, 126.4, 125.1, 124.3, 123.4, 120.6, 115.0, 91.8, 86.3, 82.8, 28.2
(3C). HRMS (ESI): m/z [M+H]+ calcd for C20H18N3O4: 364.1297; found: 364.1298.

2-(4-Methoxycarbonyl-phenylethynyl)-1-tertbutoxycarbonylbenzimidazole (4j).
The crude product was purified by column chromatography on silica gel (PE/EtOAC,

9.6:0.4), followed by recrystallization from Et2O to afford compound 4j as a white solid
(190.6 mg, 50%). Mp 157−158 ◦C. 1H NMR (300 MHz, CDCl3): δ = 8.09 (d, J = 8.7, 2H),
8.04−8.01 (m, 1H), 7.80−7.77 (m, 1H), 7.74 (d, J = 8.7 Hz, 2H), 7.48−7.38 (m, 2H), 3.96 (s,
3H), 1.75 (s, 9H). 13C NMR (75 MHz, CDCl3): δ = 166.3, 147.7, 142.9, 135.5, 132.2, 132.1 (2C),
130.8, 129.6 (2C), 126.2, 126.1, 124.9, 120.4, 114.9, 93.7, 86.1, 83.2, 52.3, 28.1 (3C). HRMS (ESI):
m/z [M+H]+ calcd for C22H21N2O4: 377.1501; found: 377.1503.

2-Thiophen-3-ylethynyl-1-tertbutoxycarbonylbenzimidazole (4k).
The crude product was purified by column chromatography on silica gel (PE/EtOAC,

9.8:0.2), followed by recrystallization from Et2O to afford compound 4k as a white solid
(178 mg, 54%). Mp 137−138 ◦C. 1H NMR (300 MHz, CDCl3): δ = 8.05−8.02 (m, 1H),
7.78−7.74 (m, 2H), 7.43−7.31 (m, 4H), 1.75 (s, 9H). 13C NMR (75 MHz, CDCl3): δ = 147.8,
142.9, 136.0, 132.2, 131.4, 129.9, 125.9, 125.8, 124.8, 120.7, 120.2, 114.9, 90.4, 85.9, 80.5, 28.2
(3C). HRMS (ESI): m/z [M+H]+ calcd for C18H17N2O2S: 325.1011; found: 325.1005.



Molecules 2023, 28, 2403 11 of 17

2-(Pyridin-2-ylethynyl)-1-tertbutoxycarbonylbenzimidazole (4l).
The crude product was purified by column chromatography on silica gel (PE/EtOAC,

8:2), followed by recrystallization from Et2O to afford compound 4l as a white solid (204 mg,
63%). Mp 142−143 ◦C. 1H NMR (300 MHz, CDCl3): δ = 8.69 (d, J = 4.5 Hz, 1H), 8.05 (dd,
J = 6.9, 1.5 Hz, 1H), 7.81−7.68 (m, 3H), 7.48−7.31 (m, 3H), 1.75 (s, 9H). 13C NMR (75 MHz,
CDCl3): δ = 150.4, 147.7, 142.9, 142.1, 136.1, 135.3, 132.3, 128.2, 126.3, 124.9, 123.8, 120.5,
115.0, 93.2, 86.4, 79.7, 28.1 (3C). HRMS (ESI): m/z [M+H]+ calcd for C19H18N3O2: 320.1399;
found: 320.1398.

2-(2-Fluorophenylethynyl)-1-tertbutoxycarbonylbenzimidazole (4m).
The crude product was purified by column chromatography on silica gel (PE/EtOAC,

9.8:0.2), followed by recrystallization from Et2O to afford compound 4m as a yellow solid
(283 mg, 84%). Mp 107−108 ◦C. 1H NMR (300 MHz, CDCl3): δ = 8.06−8.02 (m, 1H), 7.79
(dd, J = 6.9, 1.8 Hz, 1H), 7.67 (td, J = 7.5, 1.8 Hz, 1H), 7.47−7.38 (m, 3H), 7.23−7.14 (m,
2H), 1.73 (s, 9H). 13C NMR (75 MHz, CDCl3): δ = 163.0 (d, J = 252.0 Hz), 147.8, 142.9,
135.6, 134.0, 132.3, 131.5 (d, J = 7.5 Hz), 126.1, 124.9, 124.2 (d, J = 3.5 Hz), 120.4, 115.8
(d, J = 20.2 Hz), 114.9, 110.4 (d, J = 15.7 Hz), 88.4, 86.2, 85.2 (d, J = 3 Hz), 28.0 (3C). 19F
NMR (282 MHz, CDCl3): δ = −107.57. HRMS (ESI): m/z [M+H]+ calcd for C20H18FN2O2:
337.1352; found: 337.1346.

2-(4-Fluorophenylethynyl)-1-tertbutoxycarbonylbenzimidazole (4n).
The crude product was purified by column chromatography on silica gel (PE/EtOAC,

9.8:0.2), followed by recrystallization from Et2O to afford compound 4n as a beige solid
(262 mg, 77%). Mp 99−100 ◦C. 1H NMR (300 MHz, CDCl3): δ = 8.01 (dd, J = 6.9, 2.1 Hz,
1H), 7.78 (dd, J = 6.9, 2.1 Hz, 1H), 7.70−7.65 (m, 2H), 7.46−7.37 (m, 2H), 7.15−7.09 (m, 2H),
1.75 (s, 9H). 13C NMR (75 MHz, CDCl3): δ = 163.4 (d, J = 250.5 Hz), 147.8, 142.9, 135.9, 134.3
(d, J = 8.2 Hz, 2C), 132.2, 126.0, 124.9, 120.3, 117.7 (d, J = 3 Hz), 116.0 (d, J = 22.5 Hz, 2C),
114.9, 93.9, 85.9, 80.5 (d, J = 1.5 Hz), 28.15 (3C). 19F NMR (282 MHz, CDCl3): δ = −108.15.
HRMS (ESI): m/z [M+H]+ calcd for C20H18FN2O2: 337.1352; found: 337.1346.

2-Cyclohexylethynyl-1-tertbutoxycarbonylbenzimidazole (4o).
The crude product was purified by column chromatography on silica gel (PE/EtOAC,

9.8:0.2), followed by recrystallization from Et2O to afford compound 4o as a beige solid
(243 mg, 74%). Mp 79−80 ◦C. 1H NMR (300 MHz, CDCl3): δ = 7.96 (dd, J = 6.9, 3.3 Hz, 1H),
7.71 (dd, J = 6.9, 2.4 Hz, 1H), 7.41−7.32 (m, 2H), 2.70 (quint, J = 5.7 Hz, 1H), 1.99−1.94 (m, 2H),
1.83−1.77 (m, 2H), 1.73 (s, 9H), 1.71−1.59 (m, 3H), 1.45−1.34 (m, 3H). 13C NMR (75 MHz,
CDCl3): δ = 147.9, 142.6, 136.4, 132.1, 125.5, 124.6, 120.0, 114.8, 101.5, 85.6, 72.3, 31.9 (2C),
30.0, 28.1 (3C), 25.7, 24.9 (2C). HRMS (ESI): m/z [M+H]+ calcd for C20H25N2O2: 325.1916;
found: 325.1911.

3.3. General Procedure for the Synthesis of Benzo[1′,2′:4,5]imidazo[1,2-c][1,3]oxazin-1-one (5a–o)

To an oven-dried Schlenk tube containing the appropriate N-Boc-2-alkynyl benzimi-
dazole (4a–o) (100 mg, 1 equiv.) in dichloroethane DCE (6 mL), silver carbonate Ag2CO3
(0.1 equiv.) and trifluoroacetic acid TFA (2 equiv.) were added. The reaction mixture
was stirred at 60 ◦C for 6 h under an argon atmosphere. The progress of the reaction
was monitored by TLC. After cooling to room temperature, the mixture was concentrated
under vacuum. Then, the residue was dissolved in ethyl acetate and washed with water
(2 × 30 mL). The combined organic layers were dried with MgSO4 and concentrated under
reduced pressure. The crude was purified by column chromatography to give the pure
desired benzo[1′,2′: 4,5]imidazo[1,2-c][1,3]oxazin-1-one (5a–o).

3-Butylbenzo[1′,2′:4,5]imidazo[1,2-c][1,3]oxazin-1-one (5a).
Compound 5a was prepared according to the general procedure using 4a (100 mg,

0.34 mmol), Ag2CO3 (9.2 mg, 0.034 mmol) and TFA (76.50 mg, 0.67 mmol). The crude
reaction mixture was purified by column chromatography silica gel (PE/EtOAC, 9:1) to
provide the product as a white solid (65.77 mg, 81%). Mp 97−98 ◦C. (lit.17a 92–94 ◦C). IR
(ATR): υ 3056, 2932, 2863, 1755, 1663, 1550, 1447, 1369, 1176, 1094 cm–1. 1H NMR (300 MHz,
CDCl3): δ = 8.25 (dd, J = 7.2, 1.5 Hz, 1H), 7.81 (dd, J = 7.2, 1.8 Hz, 1H), 7.51 (td, J = 7.5 Hz,



Molecules 2023, 28, 2403 12 of 17

1.8 Hz, 1H), 7.46 (td, J = 7.5, 1.5 Hz, 1H), 6.54 (s, 1H), 2.65 (t, J = 7.5 Hz, 2H), 1.76 (quint,
J = 7.5 Hz, 2H), 1.47 (sext, J = 7.2 Hz, 2H), 1 (t, J = 7.2 Hz, 3H). 13C NMR (75 MHz, CDCl3):
δ = 162.9, 147.4, 144.1, 129.4, 126.3, 124.9 (2C), 119.7, 114.6, 96.6, 32.8, 28.5, 22.0, 13.7. HRMS
(ESI): m/z [M+H]+ calcd for C14H15N2O2: 243.1134; found: 243.1128. The experimental
data are in accordance with the previously reported data [41].

3-Phenylbenzo[1′,2′:4,5]imidazo[1,2-c][1,3]oxazin-1-one (5b).
Compound 5b was prepared according to the general procedure using 4b (100 mg,

0.31 mmol), Ag2CO3 (8.67 mg, 0.03 mmol) and TFA (71.83 mg, 0.63 mmol). The crude
reaction mixture was purified by column chromatography silica gel (PE/EtOAC, 9:1) to
provide the product as a white solid (75.78 mg, 92%). Mp 244−245 ◦C. IR (ATR): υ 3079,
1760, 1635, 1606, 1543, 1447, 1368, 1171, 1101 cm–1. 1H NMR (300 MHz, CDCl3): δ = 8.30
(dd, J = 6.3, 2.1 Hz, 1H), 7.96−7.94 (m, 2H), 7.86 (dd, J = 6.3, 2.1 Hz, 1H), 7.57−7.51 (m, 5H),
7.21 (s, 1H). 13C NMR (75 MHz, CDCl3): δ = 157.5, 147.6, 144.4, 143.5, 131.7, 129.7, 129.5,
129.2 (2C), 126.5, 125.8 (2C), 125.3, 119.8, 114.7, 94.5. HRMS (ESI): m/z [M+H]+ calcd for
C16H11N2O2: 263.0821; found: 263.0816.

3-(4-Methoxyphenyl)benzo[1′,2′:4,5]imidazo[1,2-c][1,3]oxazin-1-one (5c).
Compound 5c was prepared according to the general procedure using 4c (100 mg,

0.29 mmol), Ag2CO3 (7.92 mg, 0.029 mmol) and TFA (65.50 mg, 0.57 mmol). The crude
reaction mixture was purified by column chromatography silica gel (PE/EtOAC, 8:2) to
provide the product as a yellow solid (80 mg, 95%). Mp 225−226 ◦C. IR (ATR): υ 3041,
2960, 2839, 1751, 1634, 1602, 1506, 1370, 1241, 1181, 1107 cm–1. 1H NMR (300 MHz, CDCl3):
δ = 8.29 (dd, J = 7.2, 1.5 Hz, 1H), 7.91−7.87 (m, 2H), 7.84 (d, J = 9.0 Hz, 1H), 7.54 (td, J = 7.2,
1.5 Hz, 1H), 7.49 (t, J = 7.2 Hz, 1H), 7.08 (s, 1H), 7.07−7.03 (m, 2H), 3.91 (s, 3H). 13C NMR
(75 MHz, CDCl3): δ = 162.4, 157.4, 148.0, 144.6, 143.7, 134.1, 127.5 (2C), 126.4, 125.0, 122.0,
119.7, 114.6 (3C), 92.6, 55.5. HRMS (ESI): m/z [M+H]+ calcd for C17H13N2O3: 293.0926;
found: 293.0921.

3-(3-Methylphenyl)benzo[1′,2′:4,5]imidazo[1,2-c][1,3]oxazin-1-one (5d).
Compound 5d was prepared according to the general procedure using 4d (100 mg,

0.30 mmol), Ag2CO3 (8.3 mg, 0.03 mmol) and TFA (68.7 mg, 0.60 mmol). The crude reaction
mixture was purified by column chromatography silica gel (PE/EtOAC, 9:1) to provide
the product as a white solid (57.07 mg, 79%). Mp 222−223 ◦C. IR (ATR): υ 3056, 2922, 1755,
1644, 1549, 1447, 1372, 1278, 1174, 1101 cm–1. 1H NMR (300 MHz, CDCl3): δ = 8.32 (dd,
J = 6.9, 1.8 Hz, 1H), 7.88 (dd, J = 6.9, 1.8 Hz, 1H), 7.75 (d, J = 9.3 Hz, 2H), 7.57 (td, J = 7.5,
1.5 Hz, 1H), 7.53 (td, J = 7.5, 1.5 Hz, 1H), 7.47−7.37 (m, 2H), 7.25 (s, 1H), 2.49 (s, 3H). 13C
NMR (75 MHz, CDCl3): δ = 157.7, 147.7, 144.2, 143.6, 139.1, 132.5, 129.6, 129.4, 129.1, 126.5,
126.3, 125.3, 123.0, 119.8, 114.7, 94.3, 21.5. HRMS (ESI): m/z [M+H]+ calcd for C17H13N2O2:
277.0977; found: 277.0971.

3-(4-Methylphenyl)benzo[1′,2′:4,5]imidazo[1,2-c][1,3]oxazin-1-one (5e).
Compound 5e was prepared according to the general procedure using 4e (100 mg,

0.30 mmol), Ag2CO3 (8.30 mg, 0.03 mmol) and TFA (68.65 mg, 0.60 mmol). The crude
reaction mixture was purified by column chromatography silica gel (PE/EtOAC, 9:1) to
provide the product as a white solid (58 mg, 70%). Mp 246−247 ◦C. IR (ATR): υ 3075, 3023,
2969, 2921, 1766, 1639, 1606, 1547, 1371, 1100 cm–1. 1H NMR (300 MHz, CDCl3): δ = 8.30
(dd, J = 6.9, 1.8 Hz, 1H), 7.86−7.85 (m, 1H), 7.82 (d, J = 8.1 Hz, 2H), 7.57−7.47 (m, 2H), 7.35
(d, J = 8.1 Hz, 2H), 7.14 (s, 1H), 2.46 (s, 3H). 13C NMR (75 MHz, CDCl3): δ = 157.7, 147.8,
144.4, 143.6, 142.4, 129.9 (2C), 129.4, 126.9, 126.4, 125.7 (2C), 125.1, 119.7, 114.6, 96.6, 21.5.
HRMS (ESI): m/z [M+H]+ calcd for C17H13N2O2: 277.0977; found: 277.0976.

3-(2-Chlorophenyl)benzo[1′,2′:4,5]imidazo[1,2-c][1,3]oxazin-1-one (5f).
Compound 5f was prepared according to the general procedure using 4f (100 mg,

0.28 mmol), Ag2CO3 (7.8 mg, 0.028 mmol) and TFA (64.80 mg, 0.57 mmol). The crude
reaction mixture was purified by column chromatography silica gel (PE/EtOAC, 9:1) to
provide the product as a white solid (43 mg, 51%). Mp 179−180 ◦C. IR (ATR): υ 3054,
1770, 1642, 1548, 1435, 1367, 1173, 1097 cm–1. 1H NMR (300 MHz, CDCl3): δ = 8.32 (dd,
J = 6.6, 2.4 Hz, 1H), 7.88 (dd, J = 6.9, 1.8 Hz, 1H), 7.82−7.79 (m, 1H), 7.60−7.45 (m, 5H),
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7.33 (s, 1H). 13C NMR (75 MHz, CDCl3): δ = 155.1, 143.7 (2C), 132.8, 132.0, 131.9, 131.2,
130.5, 129.4, 127.4, 127.3, 126.6, 125.6, 120.1, 114.9, 100.8. HRMS (ESI): m/z [M+H]+ calcd
for C16H10ClN2O2: 297.0431; found: 297.0427.

3-(3-Chlorophenyl)benzo[1′,2′:4,5]imidazo[1,2-c][1,3]oxazin-1-one (5g).
Compound 5g was prepared according to the general procedure using 4g (100 mg,

0.28 mmol), Ag2CO3 (7.8 mg, 0.028 mmol) and TFA (64.8 mg, 0.57 mmol). The crude
reaction mixture was purified by column chromatography silica gel (PE/EtOAC, 9:1) to
provide the product as a white solid (66 mg, 80%). Mp 201−202 ◦C. IR (ATR): υ 3070, 1768,
1640, 1569, 1367, 1098 cm–1. 1H NMR (300 MHz, DMSO-d6): δ = 8.18−8.15 (m, 1H), 8.11 (s,
1H), 8.01 (d, J = 6.9 Hz, 1H), 7.91 (s, 1H), 7.86−7.82 (m, 1H), 7.64−7.51 (m, 4H). 13C NMR
(75 MHz, CDCl3): δ = 166.6, 155.8, 135.5, 133.3, 131.6, 131.5, 130.5, 129.4, 126.7, 125.8, 125.6,
123.8, 120.1, 120.0, 114.7, 95.5. HRMS (ESI): m/z [M+H]+ calcd for C16H10ClN2O2: 297.0431;
found: 297.0428.

3-(4-Chlorophenyl)benzo[1′,2′:4,5]imidazo[1,2-c][1,3]oxazin-1-one (5h).
Compound 5h was prepared according to the general procedure using 4h (100 mg,

0.28 mmol), Ag2CO3 (7.8 mg, 0.028 mmol) and TFA (64.8 mg, 0.57 mmol). The crude
reaction mixture was purified by column chromatography silica gel (PE/EtOAC, 9:1) to
provide the product as a white solid (77.34 mg, 92%). Mp 256−257 ◦C. IR (ATR): υ 3080,
1766, 1640, 1540, 1408, 1113 cm–1. 1H NMR (300 MHz, CDCl3): δ = 8.29 (d, J = 7.5 Hz, 1H),
7.87 (d, J = 8.7 Hz, 3H), 7.53 (d, J = 8.7 Hz, 4H), 7.17 (s, 1H). 13C NMR (75 MHz, CDCl3):
δ = 163.3, 156.2, 147.3, 144.6, 143.3, 137.9, 129.6 (2C), 128.2, 127.0 (2C), 126.6, 125.4, 120.0,
114.6, 94.9. HRMS (ESI): m/z [M+H]+ calcd for C16H10ClN2O2: 297.0431; found: 297.0427.

3-(3-Nitrophenyl)benzo[1′,2′:4,5]imidazo[1,2-c][1,3]oxazin-1-one (5i).
Compound 5i was prepared according to the general procedure using 4i (100 mg,

0.28 mmol), Ag2CO3 (7.6 mg, 0.028 mmol) and TFA (62.8 mg, 0.55 mmol). The crude
reaction mixture was purified by column chromatography silica gel (PE/EtOAC, 6:4) to
provide the product as a yellow solid (71 mg, 84%). Mp 284−285 ◦C. IR (ATR): υ 3090,
1749, 1644, 1525, 1367, 1173, 1101 cm–1. 1H NMR (300 MHz, CDCl3): δ = 8.8 (s, 1H), 8.42
(d, J = 8.1 Hz, 1H), 8.35−8.33 (m, 1H), 8.26 (d, J = 8.1 Hz, 1H), 7.92−7.90 (m, 1H), 7.78
(d, J = 7.8 Hz, 1H), 7.58−7.56 (m, 2H), 7.36 (s, 1H). 13C NMR (75 MHz, CDCl3/TFA-d1):
δ = 162.0, 149.0, 147.0, 139.9, 132.6, 131.7, 131.2, 130.2, 129.2, 129.1, 128.5, 126.8, 122.0, 115.8,
115.7, 91.0. HRMS (ESI): m/z [M+H]+ calcd for C16H9N3O4: 308.0666; found: 308.0663.

3-(4-Methoxycarbonylphenyl)benzo[1′,2′:4,5]imidazo[1,2-c][1,3]oxazin-1-one (5j).
Compound 5j was prepared according to the general procedure using 4j (100 mg,

0.27 mmol), Ag2CO3 (7.3 mg, 0.027 mmol) and TFA (60.6 mg, 0.53 mmol). The crude reaction
mixture was purified by column chromatography silica gel (PE/EtOAC, 7:3) to provide
the product as a white solid (81 mg, 95%). Mp 262−263 ◦C.IR (ATR): υ 3080, 2949, 2846,
1763, 1718, 1639, 1542, 1413, 1376, 1270, 1106 cm–1. 1H NMR (300 MHz, CDCl3): δ = 8.31
(d, J = 6.6 Hz, 1H), 8.21(d, J = 8.1 Hz, 2H), 8.01 (d, J = 8.1 Hz, 2H), 7.88 (d, J = 6.6 Hz, 1H),
7.59−7.52 (m, 2H), 7.31 (s, 1H), 3.99 (s, 3H). 13C NMR (75 MHz, CDCl3/ TFA-d1): δ = 166.6,
163.2, 147.2, 140.3, 134.7, 131.4 (2C), 130.8, 130.0, 128.8, 127.2 (2C), 127.0, 126.8, 115.9, 115.7,
90.7, 53.2. HRMS (ESI): m/z [M+H]+ calcd for C16H10ClN2O2: 321.0875; found: 321.0875.

3-(2-Thiophenyl)benzo[1′,2′:4,5]imidazo[1,2-c][1,3]oxazin-1-one (5k).
Compound 5k was prepared according to the general procedure using 4k (100 mg,

0.31 mmol), Ag2CO3 (8.5 mg, 0.031 mmol) and TFA (70.4 mg, 0.62 mmol). The crude
reaction mixture was purified by column chromatography silica gel (PE/EtOAC, 9:1) to
provide the product as a white solid (64.5 mg, 78%). Mp 239−240 ◦C. IR (ATR): υ 3096,
1760, 1637, 1548, 1368, 1246, 1099 cm–1. 1H NMR (300 MHz, CDCl3): δ = 8.28 (d, J = 7.2 Hz,
1H), 8.03 (s, 1H), 7.83 (d, J = 7.8 Hz, 1H), 7.56−7.47 (m, 4H), 7.0 (s, 1H). 13C NMR (75 MHz,
CDCl3): δ = 153.7, 147.8, 144.6, 132.0, 129.6, 127.8, 126.6, 126.4, 125.2, 124.0, 124.4, 119.8,
114.6, 94.0. HRMS (ESI): m/z [M+H]+ calcd for C14H9N2O2S: 269.0385; found: 269.0379.

3-Pyridin-2-ylbenzo[1′,2′:4,5]imidazo[1,2-c][1,3]oxazin-1-one (5l).
Compound 5l was prepared according to the general procedure using 4l (100 mg,

0.31 mmol), Ag2CO3 (8.6 mg, 0.031 mmol) and TFA (71.50 mg, 0.63 mmol). The crude
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reaction mixture was purified by column chromatography silica gel (PE/EtOAC, 6:4) to
provide the product as a white solid (59 mg, 71%). Mp 240−241 ◦C. IR (ATR): υ 3060, 1762,
1644, 1575, 1464, 1364, 1171, 1101 cm–1. 1H NMR (300 MHz, CDCl3): δ = 8.76 (d, J = 3.9 Hz,
1H), 8.31 (dd, J = 6.6, 1.2 Hz, 1H), 8.07 (d, J = 7.8 Hz, 1H), 7.94−7.88 (m, 3H), 7.58−7.51 (m,
1H), 7.54 (s, 1H), 7.44 (ddd, J = 7.8, 4.8, 1.2 Hz). 13C NMR (75 MHz, CDCl3): δ = 155.8, 150.3,
147.6, 147.3, 144.7, 143.4, 137.2, 129.5, 126.5, 125.5, 125.4, 120.5, 120.2, 114.7, 96.7. HRMS
(ESI): m/z [M+H]+ calcd for C15H10N3O2: 264.0773; found: 264.0771.

3-(2-Fluorophenyl)benzo[1′,2′:4,5]imidazo[1,2-c][1,3]oxazin-1-one (5m).
Compound 5m was prepared according to the general procedure using 4m (100 mg,

0.30 mmol), Ag2CO3 (8.2 mg, 0.030 mmol) and TFA (67.8 mg, 0.6 mmol). The crude reaction
mixture was purified by column chromatography silica gel (PE/EtOAC, 9:1) to provide
the product as a yellow solid (73.32 mg, 88%). Mp 180−181 ◦C. IR (ATR): υ 3090, 1767,
1631, 1539, 1445, 1369, 1217, 1036 cm–1. 1H NMR (300 MHz, CDCl3): δ = 8.30 (dd, J = 6.0,
2.1 Hz, 1H), 8.05 (td, J = 7.8, 1.5 Hz, 1H), 7.87 (dd, J = 6.0, 1.8 Hz, 1H), 7.58−7.52 (m, 3H),
7.49 (s, 1H), 7.36 (td, J = 7.8, 0.9 Hz, 1H), 7.31−7.24 (m, 1H). 13C NMR (75 MHz, CDCl3):
δ = 160.5 (d, J = 253.5 Hz), 151.8, 147.4, 144.6, 143.3, 132.8 (d, J = 9.0 Hz), 129.4, 128.3, 126.5,
125.42, 124.9 (d, J = 3.7 Hz), 120.0, 118.2 (d, J = 9.7 Hz), 116.8 (d, J = 22.5 Hz), 114.7, 99.8 (d,
J = 17.2 Hz). 19F NMR (282 MHz, CDCl3): δ = −110.17. HRMS (ESI): m/z [M+H]+ calcd for
C16H10FN2O2: 281.0726; found: 281.0722.

3-(4-Fluorophenyl)benzo[1′,2′:4,5]imidazo[1,2-c][1,3]oxazin-1-one (5n).
Compound 5n was prepared according to the general procedure using 4n (100 mg,

0.30 mmol), Ag2CO3 (8.2 mg, 0.03 mmol) and TFA (67.80 mg, 0.6 mmol). The crude reaction
mixture was purified by column chromatography silica gel (PE/EtOAC, 9:1) to provide the
product as a white solid (57 mg, 68%). Mp 239−240 ◦C. IR (ATR): υ 3089, 3022, 1770, 1635,
1601, 1508, 1449, 1238, 1101 cm–1. 1H NMR (300 MHz, CDCl3): δ = 8.30 (dd, J = 6.0, 1.8 Hz,
1H), 7.97−7.93 (m, 2H), 7.86 (dd, J = 6.0, 1.8 Hz, 1H), 7.56 (td, J = 7.2, 1.5 Hz, 1H), 7.52 (td,
J = 7.5, 1.5 Hz, 1H), 7.29−7.23 (m, 2H), 7.17 (s, 1H). 13C NMR (75 MHz, CDCl3): δ = 164.2
(d, J = 249.0 Hz), 155.9, 148.8, 144.7, 144.0, 129.8, 128.7 (d, J = 8.2 Hz, 2C), 127.1 (d, J = 3 Hz),
126.4, 125.1, 119.9, 116.8 (d, J = 21.7 Hz, 2C), 114.5, 95.4. 19F NMR (282 MHz, CDCl3):
δ = −106.68. HRMS (ESI): m/z [M+H]+ calcd for C16H10FN2O2: 281.0726; found: 281.0722.

3-Cyclohexylbenzo[1′,2′:4,5]imidazo[1,2-c][1,3]oxazin-1-one (5o).
Compound 5o was prepared according to the general procedure using 4o (100 mg,

0.31 mmol), Ag2CO3 (8.5 mg, 0.031 mmol) and TFA (70.3 mg, 0.62 mmol). The crude
reaction mixture was purified by column chromatography silica gel (PE/EtOAC, 9:1) to
provide the product as a white solid (74.43 mg, 90%). Mp 160−161 ◦C. IR (ATR): υ 3090,
2925, 2855, 1765, 1665, 1554, 1449, 1366, 1155, 1088 cm–1. 1H NMR (300 MHz, CDCl3):
δ = 8.26 (d, J = 7.5 Hz, 1H), 7.82 (d, J = 7.2 Hz, 1H), 7.51 (td, J = 7.5, 1.5 Hz, 1H), 7.46
(t, J = 7.2 Hz, 1H), 6.54 (s, 1H), 2.60−2.51 (m, 1H), 2.12−2.08 (m, 2H), 1.94−1.90 (m, 2H),
1.82−1.78 (m, 1H), 1.57−1.27 (m, 5H). 13C NMR (75 MHz, CDCl3): δ = 166.7, 147.7, 144.2,
129.5, 126.2, 124.9 (2C), 119.7, 114.6, 94.8, 41.5, 30.1 (2C), 25.7 (2C), 25.6. HRMS (ESI): m/z
[M+H]+ calcd for C16H17N2O2: 269.1290; found: 269.1286.

3.4. Details of DFT Calculations

The structure of each studied species was optimized by using the Turbomole 7.4 pro-
gram package [48]. Before their visualization using TmoleX (version 4.5.3), the structure of
each individual species was optimized in the gas phase, with a convergence criterion of
10−8 Hartree, using the hybrid functional B3LYP and the triplet-ζ basis set 6-311 + G* [49]
to collect its more stable 3D conformer. The stability of each structure was then investigated
during further DFT calculations. During this step, the energy of each species was then
minimized again using DFT calculations combining the Resolution of Identity (RI) approxi-
mation [50,51], within the Turbomole 7.4 program package using the B3LYP function with
the def2-TZVP basis set [52–54]. All minimum energy structures were obtained with full
optimization, without constraints. Corrections for long-range non-bonding interactions
were given using the Grimme D3 dispersion model [54,55]. An implicit solvent model was
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additionally undertaken, using the COSMO Model implemented in Turbomole to deter-
mine thermodynamic and charge population properties in DCE. Analytical frequencies
were then run on each structure at 1 atm and 298.15 K to finally calculate each energy.

4. Conclusions

In conclusions, we have reported an efficient and general access to 1H-benzo[4,5]
imidazo[1,2-c][1,3]oxazin-1-ones, involving an intramolecular deprotective heterocycliza-
tion sequence catalyzed by a combination between Ag2CO3 and TFA in dichloroethane
at 60 ◦C. While this procedure is compatible with a wide range of aliphatic, aromatic and
heteroaromatic alkynes, ZnCl2-mediated heterocyclization showed a limitation when the
starting alkyne was aromatic. In all experiments, no trace of 5-exo-dig heterocycles was
observed, since only the 6-endo-dig products were obtained exclusively in good to excellent
yields, proving the high selectivity of this silver-catalyzed oxacyclization. In addition, a
computational study was performed in order to rationalize the mechanism of 6-endo-dig
oxacyclization and it was found that experimental results are in a good agreement with the
theoretical calculation. The synthetic potential of our catalytic system (Ag2CO3/TFA) to
promote intramolecular 6-endo-dig cyclization showed that N-Boc-2-alkynyl-imidazole and
N-Boc-2-alkynyl-benzimidazole substrates are interesting for the synthesis of other new
polycyclic heterocycles.
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