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Abstract: Luminescent, heterometallic terbium(III)–lutetium(III) terephthalate metal-organic frame-
works (MOFs) were synthesized via direct reaction between aqueous solutions of disodium tereph-
thalate and nitrates of corresponding lanthanides by using two methods: synthesis from diluted
and concentrated solutions. For (TbxLu1−x)2bdc3·nH2O MOFs (bdc = 1,4-benzenedicarboxylate)
containing more than 30 at. % of Tb3+, only one crystalline phase was formed: Ln2bdc3·4H2O. At
lower Tb3+ concentrations, MOFs crystallized as the mixture of Ln2bdc3·4H2O and Ln2bdc3·10H2O
(diluted solutions) or Ln2bdc3 (concentrated solutions). All synthesized samples that contained
Tb3+ ions demonstrated bright green luminescence upon excitation into the 1ππ* excited state of
terephthalate ions. The photoluminescence quantum yields (PLQY) of the compounds corresponding
to the Ln2bdc3 crystalline phase were significantly larger than for Ln2bdc3·4H2O and Ln2bdc3·10H2O
phases due to absence of quenching from water molecules possessing high-energy O-H vibrational
modes. One of the synthesized materials, namely, (Tb0.1Lu0.9)2bdc3·1.4H2O, had one of the highest
PLQY among Tb-based MOFs, 95%.

Keywords: metal–organic framework; luminescence; rare earth; terbium; lutetium; antenna effect

1. Introduction

Rare earth elements (REE)-based compounds are promising materials for applications
in medicine [1,2], sensors [3,4], catalysis [5], anticounterfeiting [6,7], bioimaging [8,9],
photovoltaic systems [10–12], etc. due to their unique optical and magnetic properties. The
positions of the narrow emission bands of REE ions attributed to f–f transitions strongly
depend only on the type of lanthanide ions. This property allows photoluminescence
color tuning of the REE-containing materials [13]. Usually, purely inorganic compounds
of lanthanides demonstrate relatively weak photoluminescence intensity because they
possess extremely low extinction coefficients due to the forbidden nature of f–f transitions,
which makes the direct excitation of ions inefficient. This issue can be overcome using the
so-called “antenna effect”. The antenna effect is realized in some metal–organic compounds
in which the light is absorbed by the chromophore group of the organic ligand followed by
the energy transfer to the lanthanide ion, which then emits the light corresponding to the
characteristic f–f transitions [14–16]. The typical ligands used in REE antenna complexes
are calixarenes [17], dipicolinic acid [18], tris-bipyridines [19], and carboxylates including
terephthalates [20–22]. Lanthanide-based metal–organic frameworks (MOFs) combine the
optical properties of REE-based materials with the topological features of MOFs, which
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makes them exceptional materials for chemical sensors [23], optical thermometers [24,25],
and OLED components [26,27]. Eu3+ and Tb3+ ions are often used as activators in such
materials because of their strong red and green emissions, respectively [21,28–30]. The
simultaneous presence of several lanthanide ions in one compound provides the possibility
to gain the properties of multimodal imaging agents and allows one to discover the energy
transfer mechanisms in such compounds [31–33]. Moreover, some studies showed the
enhancement of luminescence of Eu3+, Tb3+, and Sm3+ containing antenna MOFs upon
dilution with paramagnetic Gd3+ ions, whereas the substitution of luminescent REE ions
by diamagnetic La3+, Y3+, and Lu3+ ions does not lead to the luminescence intensity
increase [20]. It is important to note that the doping by the aforementioned ions does not
result in the crystalline phase change in the majority of studies of heterometallic REE MOFs.
At the same time, the number of studies of luminescent antenna MOFs containing both
luminescent and non-luminescent REE ions is still insignificant in contrast with those of
solid solutions of purely inorganic compounds [34–38]. Recently, we studied the optical
properties of heterometallic europium–lutetium terephthalates [39]. The luminescence
quantum yields of the terephthalate ions were found to be increased with a decrease in the
europium concentrations in these compounds. We also observed that the substitution of a
large amount of Eu3+ for Lu3+ resulted in a crystalline phase change from Ln2bdc3·4H2O
to Ln2bdc3 (bdc = 1,4-benzenedicarboxylate). The lifetimes of europium (III)’s 5D0 excited
state were found to be larger by 4–4.8 times in an anhydrous phase with low Eu3+ content.

In order to further reveal the doping effect of Lu3+ ions on the structural and optical
properties of antenna luminescent MOFs, in the current work, we studied bimetallic
terbium(III)–lutetium(III) terephthalates as obtained by using two methods.

2. Results and Discussion
2.1. PXRD Results and Analysis

All of the syntheses, whatever the chosen method, yielded crystalline samples. In
Figure 1a,b, the PXRD patterns of the (TbxLu1−x)2bdc3·nH2O (x = 0–1) MOFs synthesized
from diluted and concentrated solutions are shown. We found that all compounds with
concentration of terbium (III) ions 30 at. % and more were isostructural to the Ln2bdc3·4H2O
crystalline phase (Ln = Ce − Yb) [40], and additional peaks were not observed. At low
Tb3+ concentrations between 0 and 5 at. %, the positions of the reflexes in the PXRD pat-
terns were different from those of the Ln2bdc3·4H2O and depended on the concentration of
the initial reagents (Na2bdc, TbCl3, and LuCl3). Thus, diffraction patterns corresponded to
Ln2bdc3·10H2O [41] and Ln2bdc3 [42] for compounds synthesized from diluted and concen-
trated solutions, respectively (see Section 3). At intermediate Tb3+ concentrations between
10 and 25 at. %, the binary mixtures of the aforementioned crystalline phases were pre-
cipitated, namely, Ln2bdc3·4H2O + Ln2bdc3·10H2O and Ln2bdc3·4H2O + Ln2bdc3 for the
(TbxLu1−x)2bdc3·nH2O MOFs obtained from diluted and concentrated solutions, respectively.
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Figure 1. The PXRD patterns of (TbxLu1−x)2bdc3·nH2O (x = 0–1) MOFs synthesized from the
diluted (a) and concentrated (b) solutions as well as the PXRD patterns of Tb2bdc3·4H2O [40],
Lu2bdc3·10H2O [41], and Tb2bdc3 [42] simulated from the single-crystal structures.
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The effect of molar ratio of reagents taken for synthesis on MOFs structure was ob-
served previously (see, for example, [43,44]), but was not explained properly. It is generally
accepted that MOFs are formed stepwise from the secondary building units (SBUs), metal–
ligand oligomers that replicates themselves to form MOF-like structures [45]. Therefore,
the final structure of coordination polymer allows us to assume the possible reasons behind
the differences between compounds of two synthesized series. The crystal structures of
Ln2bdc3·4H2O, Ln2bdc3, and Ln2bdc3·10H2O are shown in Figure 2. In Ln2bdc3·4H2O
lanthanide (III), ions were bound to two water molecules and six terephthalate ions through
oxygen atoms, where Ln3+ coordination number (CN) is equal to 8. In Ln2bdc3 struc-
tures, Ln3+ ions with CN = 7 coordinated solely to oxygens of terephthalate ions. In
the Ln2bdc3·10H2O structure, the metal center coordination number was also equal to 7,
but four coordination sites were occupied by water molecules. Two water molecules per
one formula unit in the Ln2bdc3·10H2O structure were located in interplanar channels.
Commonly, Tb3+ ions have relatively larger coordination numbers than Lu3+ ions. For
example, in aqueous solutions, Tb3+ dominantly exists in a nonacoordinated form as the
[Tb(H2O)9]3+ complex [46], but smaller Yb3+ and Lu3+ ions possess lower coordination
numbers and exist as [Ln(H2O)8]3+ [47,48]. Therefore, we expected that terbium ions will
reveal larger coordination numbers than lutetium ion in our MOFs. Indeed, the analysis of
the aforementioned structures (Figure 2) revealed that lanthanide ions have coordination
numbers of seven in Ln2bdc3 and Ln2bdc3·10H2O, which are formed in pure lutetium
terephthalate, and in (TbxLu1−x)2bdc3·nH2O at high Lu3+ content levels. In Ln2bdc3·4H2O,
which is formed in pure terbium terephthalate and in mixed Tb–Lu terephthalates at high
Tb3+ content levels, the coordination number of Ln3+ ions is equal to eight. The reasons that
can explain the difference between structures of lutetium terephthalates synthesized from
diluted (Lu2bdc3·10H2O) and concentrated (Lu2bdc3) solutions are unclear. We assume
the key factor that affects the structure of precipitated MOF is the fractional distribution of
initially formed metastable complexes [Ln(H2O)x(bdc)y]3−2y [49]. These complexes then
aggregate into SBUs, which further form MOFs. Apparently, in concentrated solutions,
complexes have higher Lu3+:bdc2− ratios (1:2 or 1:3) than in diluted solution (1:1). There-
fore, further formed SBUs and MOFs of Lu2bdc3 had larger number of coordinated oxygens
of terephthalate ligands than Lu2bdc3·10H2O.
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Figure 2. The crystal structures of Tb2bdc3·4H2O (a), Tb2bdc3 (b), and Lu2bdc3·10H2O (c) generated
from the single-crystal diffraction data [40–42].

In our previous work, we reported the similar behavior of the (EuxLu1−x)2bdc3·nH2O
MOFs obtained from concentrated solutions [39]. We found that phase transition occurred
at significantly lower Eu3+ concentrations (6 at. % of Eu3+ vs. 30 at. % of Tb3+). This
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observation can be explained by the lower ionic radius of Tb3+ (1.040Å) than that of Eu3+

(1.066Å) [50]. The structure with CN = 7 (Ln2bdc3) is more advantageous for Tb3+ than for
Eu3+, which forms a structure Ln2bdc3·4H2O with larger CN = 8 beginning at 6 at. % of
Eu3+ ions.

2.2. Thermogravimetric Analysis (TGA)

The thermal behavior of the selected compounds (TbxLu1−x)2bdc3·nH2O (x = 0–1)
was studied by using the thermogravimetric method (TGA). The TGA curves of the MOFs
obtained from diluted and concentrated solutions were recorded in the temperature range
of 35–200 ◦C (Figure 3). When heated, the lanthanide terephthalates decomposed in two
common steps: (i) dehydration of the compounds, resulting in formation of Ln2bdc3 at
about 100–200 ◦C, and (ii) the structural decomposition of coordination polymers [42].
The observed weight loss at 100–190 ◦C for all measured samples corresponded to the
dehydration step; therefore, the analysis of the TGA curves allowed us to calculate the
average numbers of water molecules in the coordination polymers (TbxLu1−x)2bdc3·nH2O.
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Figure 3. Thermogravimetric analysis (TGA) curves showing the weight loss profile of
(TbxLu1−x)2bdc3·nH2O materials synthesized from the diluted (a) and concentrated (b) solutions
during thermal decomposition.

The number of water molecules per one formula unit N(H2O) for all selected com-
pounds as function of Tb3+ concentration is shown in Figure 4a,b for samples synthesized
from diluted and concentrated solutions, respectively. The number of water molecules per
one formula unit is equal to four for pure terbium terephthalate (100 at. % Tb3+) in both
series. The N(H2O) value increases from 4 to 10 upon the substitution of Tb3+ by Lu3+ ions
(decreasing of Tb3+ content) in (TbxLu1−x)2bdc3·nH2O MOFs obtained from the diluted
solutions (Figure 4a). However, for MOFs synthesized from the diluted solutions, the
number of water molecules decreases from four to zero upon Tb3+ concentration decrease
(Figure 4b). These facts are in agreement with the XRD data, in which we observed phase
transitions from Ln2bdc3·4H2O either to Ln2bdc3·10H2O or Ln2bdc3 upon the decrease of
Tb3+ content. Summarizing the TGA and XRD data, we estimated the molar fraction of each
coexisting crystalline phase (Figure 4c,d). The molar fraction of Ln2bdc3·4H2O increased
from 0 to 30 at. % Tb3+ for two synthesized series of MOFs (TbxLu1−x)2bdc3·nH2O, and
simultaneously, the molar fraction of the second coexisting phase decreased. In the Tb3+

concentration range of 30–100 at. %, only Ln2bdc3·4H2O was present in both series.

2.3. Luminescent Properties

Aromatic carboxylate ions, especially benzene dicarboxylates, are typical linkers for
the luminescent antenna MOF design [15,20] due to the efficient sensitization of lanthanide
luminescence. The sensitization mechanism consists of several steps. Upon UV-photon
absorption, the linker is promoted into the Sn(1ππ*) exited electronic state, which is followed
by the fast internal conversion to S1(1ππ*). Due to the heavy atom effect, the S1 state of the
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linker efficiently undergoes intersystem crossing to the T1(3ππ*) triplet electronic excited
state [32]. If the T1 state of organic linker lies slightly higher in energy than one of the levels
of activator lanthanide ion, then the energy is efficiently transferred to the lanthanide ion
and followed by the photon emission corresponding to the f–f transition. Thus, terbium
terephthalate, Tb2bdc3·4H2O, demonstrates a relatively high Tb3+ photoluminescence
quantum yield (43–55% [32,42,51]) upon UV-excitation into terephthalate ions due to the
fact that the T1 state of the terephthalate ion (E(T1) ≈ 20,400–20,650 cm−1 [32] for bdc2-)
lies only 50—300 cm−1 above the 5D4 level of the Tb3+ ion (E(5D4) ≈ 20,350 cm−1 [52]).
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Figure 4. The number of water molecules per one formula unit calculated from TGA data for
(TbxLu1−x)2bdc3·nH2O materials synthesized from the diluted (a) and concentrated (b) solutions; the
molar fractions of Ln2bdc3·4H2O and Ln2bdc3·10H2O (c) and the molar fractions of Ln2bdc3·4H2O
and Ln2bdc3 (d) as functions of Tb3+ concentration for (TbxLu1−x)2bdc3·nH2O materials synthesized
from the diluted and concentrated solutions, respectively.

The emission spectra of the synthesized compounds, which were measured upon
280-nm excitation into the Sn(1ππ*) excited electronic state of terephthalate ions, are shown
in Figure 5. The observed emission spectra are typical for compounds containing Tb3+

ions [53] and consist of narrow bands corresponding to 5D4→7FJ (J = 3–6) transitions of Tb3+:
5D4→7F6 (≈491 nm), 5D4→7F5 (≈543 nm), 5D4→7F4 (≈585 nm), and 5D4→7F3 (≈620 nm).
One can observe that the fine structure of Tb3+ emission spectra of (TbxLu1−x)2bdc3·nH2O
significantly changes at Tb3+ concentration of about 20 at. % in both studied series. It is well-
known, that the fine structure of lanthanide (III) ions strictly depends on the local symmetry
of emitting lanthanide ions [54–57]. Indeed, one can notice three different types of fine
structure of the spectra: (i) compounds with terbium (III) content of 25 at. % and more in
both series (corresponding to the (TbxLu1−x)2bdc3·4H2O structure that dominates in this
range of concentrations); (ii) MOFs with Tb3+ concentrations less than 25 at. % in series
obtained from diluted solutions ((TbxLu1−x)2bdc3·10H2O as the dominating structure);
(iii) compounds with terbium (III) concentrations less than 25 at. % in series obtained from
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concentrated solutions ((TbxLu1−x)2bdc3 as the dominating structure). The difference is
that the fine structure of the emission bands is attributed to the different symmetry of the
first coordination sphere of the Tb3+ ion in these three types of crystalline structures.
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Figure 5. Emission spectra of (TbxLu1−x)2bdc3·nH2O materials synthesized from the diluted (a) and
concentrated (b) solutions upon 280-nm excitation at the selected Tb3+ concentrations.

Figure 6 displays the photoluminescence decay curves measured upon UV-excitation
of (TbxLu1−x)2bdc3·nH2O MOFs synthesized via the two methods mentioned as monitored
at 543 nm (5D4→7F5 transition). At terbium (III) ion concentrations of 60 and 100 at. %,
photoluminescence decay curves were well-fitted with the single exponential functions
(Equation (1)) with time constants τ of about 0.7–1.1 ms. At low levels of Tb3+ content (1,
5, and 10 at. %), the photoluminescence decay curves of the compounds obtained from
concentrated solutions fit the double exponential functions (Equation (2)). The biexponen-
tial behavior of the photoluminescence decay indicates the presence of different relaxation
pathways of Tb3+ ions corresponding to two terbium ions with different coordination
environments. We believe that the larger time constant τ2, which is about 2.6–3 ms (Table 1),
corresponds to lifetime of 5D4 state Tb3+ ions in the (TbxLu1−x)2bdc3 structure. The smaller
time constant τ1 value (1.0–1.5 ms) can be assigned to the lifetime of the 5D4 state of terbium
(III) ions in the (TbxLu1−x)2bdc3·4H2O structure. The photoluminescence decay curves of
the (TbxLu1−x)2bdc3·nH2O compounds with x = 0.01, 0.05, and 0.10, which were obtained
from diluted solutions, fit the single exponential functions (eq. 1) with time constants of
about 1.1 ms. As the XRD and TGA data shows the coexistence of Ln2bdc3·4H2O and
Ln2bdc3·10H2O phases in these compounds, one would expect the presence of two different
exponential components of photoluminescence decay curves. Most likely, the values of the
5D4 energy level lifetime of Tb3+ ions in Ln2bdc3·4H2O and Ln2bdc3·10H2O structures are
close to each other, as pseudo-single-exponential decay was observed.

I = I1·e−
t
τ (1)

I = I1·e
− t

τ1 + I2·e
− t

τ2 (2)

We have found that the 5D4 excited state lifetimes in the (TbxLu1−x)2bdc3·nH2O MOFs
obtained from diluted solutions decreased from 1.122 to 0.696 ms with the increase of ter-
bium concentration due to the increased probability of energy transfer between neighboring
Tb3+ ions with subsequent quenching of impurities. At the same time, the photolumines-
cent quantum yields (PLQY) of these compounds had maxima at about 60 at. % of Tb3+,
where PLQY is equal to 60% (Table 1). Typically, emission intensity and PLQY nonlinearly
depend on the concentration of Tb3+ ions [58,59]. This type of concentration dependence
can be explained by the two competitive effects in REE-containing phosphors [60,61]. Thus,
the rise of the numbers of luminescent sites results in radiative emission probability in-
creased and, as a result, the emission intensity and PLQY increased. At the same time,
upon the Tb3+ concentration’s rise, the distance between Tb3+ ions decreased, resulting
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in the nonradiative processes probability increase that led to the emission quenching [62],
resulting in lower PLQY values of pure terbium terephthalate (100 at.% of Tb3+) relative
to the MOFs containing 60 at.% of Tb3+. The PLQY of the (TbxLu1−x)2bdc3·nH2O MOFs
obtained from concentrated solutions are equal to the ones obtained from the diluted
solutions at the Tb3+ concentration of 60 and 100 at. %, where the MOFs formed in the
same crystalline phase, namely, Ln2bdc3·4H2O. A further decrease of Tb3+ content in the
MOFs obtained from the diluted solutions resulted in a significant PLQY rise, reaching
maxima of 95% for the (Tb0.1Lu0.9)2bdc3·1.4H2O sample. The higher values of PLQY and
excited state lifetimes of these materials are attributed to the formation of the anhydrous
Ln2bdc3 crystalline phase. The PLQY of the Ln2bdc3 MOFs were significantly higher than
that of the Ln2bdc3·4H2O and Ln2bdc3·10H2O MOFs due to the absence of water molecules
coordinated to Tb3+ ions, which efficiently quenches luminescence due to energy transfer
from the 5D4 excited state of Tb3+ ions to the high-energy O-H stretching vibrational modes
of H2O molecules [63].
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Figure 6. The photoluminescence decay curves of (TbxLu1−x)2bdc3·nH2O materials synthesized from
the diluted (a) and concentrated (b) solutions upon UV-excitation at the selected Tb3+ concentrations.

Table 1. Lifetimes (τ) and photoluminescence quantum yields (ΦPL) of (TbxLu1−x)2bdc3·nH2O
materials at the selected Tb3+ concentrations synthesized from the diluted (Series 1) and concentrated
(Series 2) solutions.

Series 1 (From Diluted Solutions) Series 2 (From Concentrated Solutions)

XTb (at. %) τ, ms ΦPL, % XTb (at. %) τ1, ms τ2, ms ΦPL, %

1 1.12 ± 0.02 38 1 1.17 ± 0.04 2.63 ± 0.10 77
5 1.12 ± 0.02 56 5 1.53 ± 0.05 3.00 ± 0.24 88

10 1.08 ± 0.01 58 10 1.02 ± 0.03 2.61 ± 0.08 95
60 0.92 ± 0.02 60 60 0.94 ± 0.02 60
100 0.70 ± 0.01 49 100 0.69 ± 0.01 49

3. Materials and Methods

Benzene-1,4-dicarboxylic (terephthalic, H2bdc) acid (>98%), sodium hydroxide (>99%),
nickel(II) chloride hexahydrate (>99%), EDTA disodium salt (0.05M aqueous solution), and
murexide were purchased from Sigma-Aldrich Chemie GmbH (Taufkirchen, Germany) and
used without additional purification. Lutetium (III) nitrate pentahydrate and terbium (III)
nitrate pentahydrate were purchased from Chemcraft (Kaliningrad, Russia). The 0.3 M so-
lution of disodium terephthalate (Na2bdc) was prepared by dissolving 0.6 moles of sodium
hydroxide and 0.3 moles of terephthalic acid in 1 L of distilled water. Volumes of 0.2 M of
TbCl3 and LuCl3 solutions were prepared and standardized using back complexometric
titration. Thus, 1 mL of LnCl3 (Ln = Tb, Lu) solution with a concentration of about 0.3 M,
20 mL of 0.05 M EDTA, 10 mL of ammonium buffer solution (pH = 9), and a pinch of
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murexide indicator were taken in a conical flask. The obtained solution was titrated with
0.05 M NiCl2 [64]. Then, standardized LnCl3 solutions were diluted to 0.2 M.

White powders of the (TbxLu1−x)2bdc3·nH2O MOFs were synthesized by the direct
mixing of two aqueous solutions: (1) sodium terephthalate and (2) terbium and lutetium
nitrates taken in various ratios, as shown in Table 2. In order to reveal the effect of the
concentrations of the initial solutions on the properties of the obtained materials, we
synthesized two series of (TbxLu1−x)2bdc3·nH2O MOFs. Series 1 was obtained from the
Na2bdc and LnCl3 diluted solutions, where 8 mL of 0.1 M Na2bdc solution was added
dropwise under vigorous stirring to a solution containing 5 mL of distilled water and 2 mL
of 0.2M TbCl3 and LuCl3 solutions taken in certain ratios (Table 2). Series 2 was obtained
from the Na2bdc and LnCl3 concentrated solutions, where 3 mL 0.3 M Na2bdc solution was
rapidly added to the 2 mL of TbCl3 and LuCl3 solutions taken in various ratios, as shown in
Table 2. Obtained suspensions were kept for one 1 h at room temperature, and then, solid
precipitates of the (TbxLu1−x)2bdc3·nH2O MOFs were separated from the reaction mixture
via centrifugation (2300 g) and washed with deionized water 5 times. The resulting white
powders of terbium-lutetium terephthalates were dried in an air atmosphere at 60 ◦C for
24 h.

Table 2. The volumes of the initial TbCl3 and LuCl3 solutions used for the synthesis of
(TbxLu1−x)2bdc3·nH2O MOFs.

XTb (at. %) V(0.2M TbCl3), mL V(0.2M LuCl3), mL

0 0.00 2.00
1 0.02 1.98
5 0.10 1.90
10 0.20 1.80
15 0.30 1.70
20 0.40 1.60
25 0.50 1.50
30 0.60 1.40
60 1.20 0.80

100 2.00 0.00

The Tb3+/Lu3+ ratios in the synthesized (TbxLu1−x)2bdc3·nH2O compounds were
confirmed with energy-dispersive X-ray spectroscopy (EDX) (EDX spectrometer EDX-
800P, Shimadzu, Japan) (Table 3). We found that the amounts of the elements are consis-
tent with experimental EDX data. The X-ray powder diffraction (XRD) data of obtained
(TbxLu1−x)2bdc3·nH2O samples were taken with a D2 Phaser (Bruker, Billerica, MA, USA)
X-ray diffractometer using Cu Kα radiation (λ = 1.54056 Å). The thermal behavior of the
compounds was studied via thermogravimetry using a Thermo-microbalance TG 209 F1
Libra (Netzsch, Selb, Germany) with a heat-up rate of 10 ◦C/min. To carry out photolumi-
nescence studies, the synthesized samples (20 mg) and potassium bromide (300 mg) were
pressed into pellets (diameter 13 mm). Solid-state luminescence emission spectra were
recorded with a Fluoromax-4 fluorescence spectrometer (Horiba Jobin–Yvon, Kyoto, Japan).
Lifetime measurements were performed with the same spectrometer using a pulsed Xe
lamp (pulse duration 3 µs). The quantum yield measurements were performed by using
the Fluorolog 3 Quanta-phi device (Horiba Jobin–Yvon, Kyoto, Japan).
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Table 3. Tb3+ atomic fractions (relative to the total amount of Tb3+ and Lu3+) in
(TbxLu1−x)2bdc3·nH2O compounds synthesized from the diluted (Series 1) and concentrated (Series
2) solutions. Measurements were taken during synthesis and obtained from EDX data.

Series 1 (from Diluted Solutions) Series 2 (from Concentrated Solutions)

Xtb (At. %), Taken XTb (%), EDX XTb (at. %), Taken XTb (%), EDX

0 0 0 0
1 0.74 ± 0.07 1 0.70 ± 0.07
5 4.6 ± 0.5 5 4.6 ± 0.5

Table 3. Cont.

Series 1 (from Diluted Solutions) Series 2 (from Concentrated Solutions)

Xtb (At. %), Taken XTb (%), EDX XTb (at. %), Taken XTb (%), EDX

10 9 ± 1 10 10 ± 1
15 15 ± 3 15 14 ± 1
20 19 ± 2 20 20 ± 2
25 26 ± 3 25 23 ± 2
30 29 ± 3 30 27 ± 3
60 57 ± 5 60 57 ± 5

100 100 100 100

4. Conclusions

In this work, we reported the phase composition and the optical properties of lumi-
nescent antenna MOFs: heterometallic terbium(III)–lutetium(III) terephthalates. The series
of (TbxLu1−x)2bdc3·nH2O (x = 0–1) were synthesized via direct reaction between aqueous
solutions of disodium terephthalate and nitrates of corresponding lanthanides with two
methods: using diluted and concentrated solutions. At Tb3+ concentrations more than
25 at. %, synthesized compounds existed in the Ln2bdc3·4H2O crystal structure with the co-
ordination number (CN) of the lanthanide ion equal to eight. Lu3+ ions typically have lower
coordination numbers than Tb3+ ions; hence, at high lutetium (III) content, structures with
CN(Ln3+) < 8 crystallized. Therefore, compounds containing small amounts of terbium (III)
ions formed in crystalline phases different from Ln2bdc3·4H2O. (TbxLu1−x)2bdc3·nH2O
(x = 0–0.01) compounds, synthesized from concentrated solutions, dominantly existed
in the Ln2bdc3 crystal structure with CN(Ln3+) = 7. (TbxLu1−x)2bdc3·nH2O (x = 0–0.01)
MOFs obtained from diluted solutions formed as Ln2bdc3·10H2O crystalline phases with
CN(Ln3+) = 7. At 2–25 at. %, Tb3+ ion binary mixtures of the aforementioned crystalline
phases were observed. All of the synthesized samples containing Tb3+ ions demonstrated
admirable green luminescence upon 280nm excitation due to the 5D4→7FJ (J = 3–6) transi-
tions of the Tb3+ ions. Upon UV-photon absorption, terephthalate ion was promoted into
the Sn(1ππ*) excited electronic state, which was followed by the fast internal conversion to
S1(1ππ*) and then to the T1(3ππ*) triplet electronic excited state via efficient intersystem
crossing due to the presence of the heavy lanthanide ion. The T1 state of the terephthalate
ion lies slightly higher in energy than the 5D4 level of the Tb3+ ion, resulting in the efficient
energy transfer to this level that was followed by radiative 5D4→7FJ (J = 3–6) transitions.
The Tb3+ ions in Ln2bdc3·4H2O, Ln2bdc3·10H2O, and Ln2bdc3·10H2O crystal structures
demonstrated different fine structures in their emission bands due to the different local
symmetry of the Tb3+ ions in these three types of crystalline structures. The 5D4 excited
state lifetimes and photoluminescence quantum yields of (TbxLu1−x)2bdc3 (x = 0.01, 0.5, 0.1)
compounds were significantly larger than for samples of (TbxLu1−x)2bdc3·4H2O (x = 0.6, 1)
and (TbxLu1−x)2bdc3·10H2O (x = 0.01, 0.5, 0.1) due to the absence of the luminescence
quenching of the Tb3+ by coordinated water molecules. Meanwhile, we cannot rule out
effect of the crystalline structure on the relative energies of the T1(3ππ*) triplet’s electronic
excited state and the 5D4 level of Tb3+ ions, which affect the efficiency of the T1-to-5D4 en-
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ergy transfer efficiency, resulting in PLQY changes. As a result of our study, we synthesized
the material, namely (Tb0.1Lu0.9)2bdc3·1.4H2O, which has one of the highest PLQY among
Tb-based MOFs, 95%.
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