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Abstract: Recently, polyolefin thermoplastic elastomers can be obtained directly using ethylene as
a single feedstock via α-diimine nickel-catalyzed ethylene chain walking polymerization. Here,
a new range of bulky acenaphthene-based α-diimine nickel complexes with hybrid o-phenyl and
-diarylmethyl anilines were constructed and applied to ethylene polymerization. All the nickel com-
plexes under the activation of excess Et2AlCl exhibited good activity (level of 106 g mol−1 h−1) and
produced polyethylene with high molecular weight (75.6–352.4 kg/mol) as well as proper branching
densities (55–77/1000C). All the branched polyethylenes obtained exhibited high strain (704–1097%)
and moderate to high stress (7–25 MPa) at break values. Most interestingly, the polyethylene pro-
duced by the methoxy-substituted nickel complex exhibited significantly lower molecular weights
and branching densities, as well as significantly poorer strain recovery values (48% vs. 78–80%) than
those by the other two complexes under the same conditions.

Keywords: α-diimine nickel complexes; branched polyethylenes; ethylene polymerization; polyethylene
thermoplastic elastomers

1. Introduction

As a kind of high-performance polyolefin material, polyolefin thermoplastic elastomers
(TPE) can be processed at high temperatures and exhibit rubbery properties at room tem-
perature. Such polyolefin materials thus have the advantages of both rubber and plastic.
They are widely used in the automotive industry as high-performance accessory materials
and photovoltaic film fields [1,2]. Most polyolefin TPEs in the industry today are available
through metallocene-catalyzed copolymerization of ethylene with α-olefins [3,4]. Recently, it
is possible to prepare polyolefin TPEs directly by using ethylene as a single raw material via
α-diimine nickel-catalyzed ethylene chain walking polymerization [5–21]. The direct prepara-
tion of polyolefin TPEs with only ethylene feedstock is extremely attractive and shows great
application potential. For example, recently, Chen, Jian, Sun and our group have designed
a series of novel unsymmetrical nickel α-diimine catalysts (Scheme 1A–D) to catalyze the
polymerization of ethylene to obtain high-performance polyethylene TPEs [5,6,8,11,15,20,21].
Controlling the ratio of chain walking to chain growth by the reaction temperature and
ethylene pressure to obtain polyethylene of a certain crystallinity is the key to preparing
high-performance polyolefin TPEs. High molecular weight is one of the necessary require-
ments [17]. Moreover, some symmetrical bulky nickel α-diimine catalysts (Scheme 1E–G) have
also been shown to catalyze the polymerization of ethylene to obtain polyethylene material
with high elastic recovery [7,9,10]. The carbon spectrum analysis of the obtained polyethylene
shows that the distribution of branching in these branched polyethylenes is random and
methyl branching dominates. Different from α-diimine nickel catalysts, the corresponding
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α-diimine palladium catalysts tend to possess excessive chain-walking ability, producing
fully amorphous polyethylene [22–33]. We have recently succeeded in suppressing chain
walking in palladium-catalyzed ethylene polymerization using a bulky o-aryl substitution
strategy [34,35]. By selecting suitable o-aryl substituents, the α-diimine palladium catalysts
(Scheme 1H) can also catalyze the polymerization of ethylene to obtain the corresponding
polyethylene TPEs [36]. What is more, polar functionalized polyethylene TPEs can also be
prepared by co-polymerization of ethylene with polar monomers [36]. In this study, a series
of new hybrid bulky acenaphthene-based α-diimine Ni(II) catalysts were synthesized and
applied to prepare polyethylene TPEs with excellent recovery performance.
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Scheme 1. Bulky α-diimine Ni(II) and Pd(II) catalysts for the preparation of polyethylene TPEs in 
previous works (A–H) and our current work (I). 

  

Scheme 1. Bulky α-diimine Ni(II) and Pd(II) catalysts for the preparation of polyethylene TPEs in
previous works (A–H) and our current work (I).

2. Results and Discussion
2.1. Synthesis and Characterization of α-Diimine Ni(II) Complexes

The hybrid bulky acenaphthene-based α-diimine ligands (L1-L3) were obtained
based on previously reported literature [37]. The target nickel complexes (Ni1-Ni3) were
yielded by reacting the ligands with equivalent (1,2-dimethoxyethane)nickel dibromide
(DMENiBr2) in dichloromethane (DCM) at an ambient temperature (Scheme 2). Ideal yields
(63–82%) could be achieved and all the nickel complexes were characterized by elemental
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analysis and Infrared Spectrum (Figures S13–S15). As shown in Figure 1, the single crystal
of Ni2 was fortunately obtained by layering its DCM solution with diethyl ether in the
glove box at room temperature. The nickel center adopts a slightly distorted square planar
geometry, which is inconsistent with the classical tetrahedral conformation adopted by
most previous α-diimine nickel complexes [38–42]. This may be caused by the squeezing
of the surrounding bulky o-aryl substituents. Moreover, the Ni(II) complex adopts the
anti-configuration with ortho-phenyl groups located on the opposite side.
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2.2. Ethylene Polymerization

With the activator of 300 eq. Et2AlCl, all the nickel complexes exhibited high catalytic
activities in ethylene polymerization in the level of 106 g mol−1 h−1, over a wide temperature
range from 30 ◦C to 70 ◦C (Table 1). The polymerization activity gradually decreased with
raising temperature in most trials, where the highest activity was obtained by Ni1 at 30 ◦C
(Figure 2a). High-molecular-weight (Figures S10–S12) polyethylene with moderate to high
branching density (Figures S1–S3 and S16) were yielded and the molecular weight gradually
decreased with raising temperatures in most trials, where the highest molecular weight was
obtained by Ni3 at 30 ◦C (Figure 2b). The above phenomena could be explained that higher
temperatures promote more chain transfer than chain growth in polymerization process.
Most interestingly, the polyethylene generated by the methoxy-substituted Ni1 exhibited
significantly lower molecular weights and branching densities than those by the other two
complexes. This may be caused by electron-rich aryl-metal weak neighbor–group interactions,
which are described in many known reports [43–47]. The weak neighbor–group interactions
between p-methoxyphenyl and nickel center promote the chain transfer and retard the chain
walking by suppressing β-H elimination in ethylene polymerization (Figure 3).

Table 1. Ethylene Polymerization a.

Entry Complex T (◦C) Yield (g) Act. b Mn (104) c Mw/Mn
c Brs d Tm

e

1 Ni1 30 2.45 2.45 19.59 1.82 55 58, 119
2 Ni1 50 1.46 1.46 17.45 1.37 56 66, 114
3 Ni1 70 1.30 1.30 7.56 2.12 63 48, 119
4 Ni2 30 2.04 2.04 33.53 1.86 75 28
5 Ni2 50 1.56 1.56 33.54 1.76 76 26
6 Ni2 70 1.20 1.20 25.22 1.65 77 23
7 Ni3 30 1.17 1.17 35.24 2.00 68 44
8 Ni3 50 1.80 1.80 33.79 1.78 75 27
9 Ni3 70 1.63 1.63 24.46 1.38 76 22

a Reaction conditions: Ni complexes = 2 µmol, 300 eq. Et2AlCl, toluene = 40 mL, ethylene = 6 atm, polymerization
time = 0.5 h, b Activity is in unit of 106 g mol−1 h−1, c Determined by size exclusion chromatography (SEC) in
1,2,4-trichlorobenzene at 150 ◦C vs. polystyrene standards, d Brs = Number of branches per 1000C, as determined
by 1H NMR spectroscopy, e Determined by DSC (second heating).
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We further analyzed the mechanical properties of all the branched polyethylenes
generated by Ni1-3. The polyethylene products generated by Ni1 showed both high stress
(18–25 MPa) and high strain (943–1019%) at break values while those yielded by Ni2-3
displayed moderate stress (7–15 MPa) and high strain (704–1097%) at break values (Table 2,
Figure 4). The lower branching density and a higher melting point (Figures S4–S9) of
polyethylene produced by Ni1 are conducive to having higher tensile strength. Similar
phenomena have also been reported in other literature [17,36]. A deeper reason may
be that a higher melting point and lower branching density are conducive to increasing
the crystallinity of the polymer and thus enhancing its physical crosslinking strength.
These polyethylene mechanical parameters are susceptible to variations in polymerization
temperature. Typically, polyethylene obtained at high temperatures tends to have a lower
Young’s modulus and a higher strain at break values (Table 2, Figure 4). This is primarily
because high temperatures facilitate the chain walking of the catalyst and result in higher-
branched polyethylene with correspondingly lower polyethylene crystallinity. Hysteresis
experiments were carried out to investigate strain recovery (SR) values of the polyethylene
samples obtained at 70 ◦C by Ni1-3. As shown in Figure 5, the polyethylene produced by
Ni1 at 70 ◦C presented a moderate recovery performance (SR = 48%) while those yielded by
Ni2-3 displayed better ones (SR = 78–80%). This is also the result of the higher melting point
and lower branching density of the polyethylene obtained by Ni1 than those by Ni2-3. The
above results indicate that we can obtain polyethylene TPEs with an excellent performance
by Ni2-3-catalyzed ethylene polymerization. The 13C analysis of the sample from entry
9, Table 1 indicates that the polyethylene contains a variety of branching, with methyl
branching dominating and more than 11% of the branching above C3+. The presence of
significantly more proportional long-chain branching may help improve elastic recovery.

Table 2. Mechanical Properties for Different Polyethylene Samples a.

Ent. Complex T/◦C Strain at Break (%) b Stress at Break (MPa) b SR (%) c

1 Ni1 30 943 25 - d

2 Ni1 50 978 19 - d

3 Ni1 70 1019 18 48
4 Ni2 30 704 8 - d

5 Ni2 50 738 7 - d

6 Ni2 70 1097 8 78
7 Ni3 30 814 15 - d

8 Ni3 50 895 13 - d

9 Ni3 70 1049 8 80
a Conditions: carried out by Universal Test Machine (UTM2502) with 10 mm/min at 25 ◦C. b Strain and stress at
break values. c The strain recovery (SR) values can be calculated by SR = 100 (εa − εr)/εa, where εa is the applied
strain and εr is the strain in the cycle at zero load after 10th cycle. d Not determined.
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3. Conclusions

A series of bulky unsymmetrical acenaphthene-based α-diimine nickel complexes
were synthesized and employed for the ethylene polymerization in this study. These com-
plexes all showed high catalytic activity (~106 g mol−1 h−1) and the obtained polyethylene
products possessed high molecular weights (75.6–352.4 kg/mol) and proper branching
densities (55–77/1000C). Most interestingly, the polyethylene produced by the methoxy-
substituted Ni1 exhibited much lower molecular weights and branching densities than
those by Ni2-3. All the branched polyethylenes produced by Ni1-3 exhibited moderate to
high stress (7–25 MPa) as well as high strain (704–1097%) at break values, and moderate
to high strain recovery (48–80%) in the tensile tests. Overall, polyethylene TPEs with
ideal performance were successfully prepared by Ni2-3-catalyzed ethylene polymerization,
which has great potential in the automotive industry and photovoltaic film fields.

4. Experiments
4.1. General Considerations

Unless otherwise stated, all the chemicals were purchased commercially. Polymer-
ization reactions in this work were all performed via standard Schlenk techniques or in a
glove box with N2 atmosphere. Deuterated solvents were dried and distilled before being
used for NMR. A JEOL JNM-ECZ600R 600 spectrometer (JEOL, Tokyo, Japan) or JEOL
JNM-ECZ400R 400 spectrometer (JEOL, Tokyo, Japan) was used to get 1H and 13C NMR
spectra at room temperature. The chemical shifts of the 1H and 13C NMR spectra were
referenced to the residual solvent; the coupling constants are in Hz. Elemental analysis
was performed by the Analytical Center of Anhui University. X-ray diffractometer (XRD)
(Bruker Smart CCD) (Bruker, Billerica, MA, USA) was applied to characterize the crystal
structure at 298(2) K with graphite-monochromated Mo Kα radiation (λ = 0.71073 Å). Size
exclusion chromatography (SEC) was used to determine the samples’ molecular weight
and its distribution at 150 ◦C with a PL 210 equipped with three columns one Shodex
AT-803S and two Shodex AT-806MS (Agilent Technologies, Santa Clara, CA, USA). Differ-
ential scanning calorimetry (DSC) analysis was carried out on a TA Instruments Q25 (TA
Instruments, Newcastle, DE, USA).

4.2. Synthesis of Nickel Complexes

Typically, 1 equivalent (DME) NiBr2 and 0.2 mmol ligand were fully dissolved in
DCM by vigorous stirring overnight. Subsequently, the brown powders were collected
after removing the solvent and washed with hexanes (5 mL) for two times. The resultant
product was vacuum dried, finally giving the nickel complexes.

Ni1 (149 mg, 63 %). Anal. Calcd for (C68H56Br2N2NiO4): C, 69.00; H, 4.77; N, 2.37. Found:
C, 69.12; H, 4.67; N, 2.31. IR: C=N (1613, 1646 cm−1).
Ni2 (184 mg, 82 %). Anal. Calcd for (C68H56Br2N2Ni): C, 72.94; H, 5.04; N, 2.50. Found: C,
72.87; H, 5.12; N, 2.63. IR: C=N (1630, 1663 cm−1).
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Ni3 (166 mg, 73 %). Anal. Calcd for (C64H44Br2F4N2Ni): C, 67.69; H, 3.91; N, 2.47. Found:
C, 67.76; H, 3.87; N, 2.53. IR: C=N (1606–1658 cm−1).

4.3. Preparation of Polyethylene TPEs by Nickel Complexes

At first, we dried the glass reactor (350 mL) connected with a high gas pressure line in
a blast oven at 60 ◦C, over 24 h. Then, 300 eq. Et2AlCl and 40 mL toluene were mixed in
the 350 mL flask. 2 µmol Ni catalyst was dissolved in 2 mL DCM and added to the reaction
system by injection. Subsequently, the polymerization was carried out with vigorously
stirring at a proper temperature and ethylene pressure of 6 atm for 30 min. It is worth
noting that all the above procedures were performed in the glove box with N2 atmosphere.
Finally, the polyethylene products were precipitated in ethanol, followed by vacuum drying
at 25 ◦C for about 24 h.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules28052266/s1, Figures S1–S3: 1H NMR spectrum
of the polymer. Figures S4–S9: DSC of the polymer. Figures S10–S12: GPC of the polymer. Figures
S13–S15: IR of the complex. Figure S16: 13C NMR spectrum of the polymer. CCDC number of Ni2 is
2233726. The data can be obtained free of charge from the Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif (accessed on 1 January 2023).
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