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Abstract: Four eco-friendly, cost-effective, and fast stability-indicating UV-VIS spectrophotometric
methods were validated for cefotaxime sodium (CFX) determination either in the presence of its
acidic or alkaline degradation products. The applied methods used multivariate chemometry, namely,
classical least square (CLS), principal component regression (PCR), partial least square (PLS), and
genetic algorithm-partial least square (GA-PLS), to resolve the analytes’ spectral overlap. The spectral
zone for the studied mixtures was within the range from 220 to 320 nm at a 1 nm interval. The selected
region showed severe overlap in the UV spectra of cefotaxime sodium and its acidic or alkaline
degradation products. Seventeen mixtures were used for the models’ construction, and eight were
used as an external validation set. For the PLS and GA-PLS models, a number of latent factors were
determined as a pre-step before the models’ construction and found to be three for the (CFX/acidic
degradants) mixture and two for the (CFX/alkaline degradants) mixture. For GA-PLS, spectral points
were minimized to around 45% of the PLS models. The root mean square errors of prediction were
found to be (0.19, 0.29, 0.47, and 0.20) for the (CFX/acidic degradants) mixture and (0.21, 0.21, 0.21,
and 0.22) for the (CFX/alkaline degradants) mixture for CLS, PCR, PLS, and GA-PLS, respectively,
indicating the excellent accuracy and precision of the developed models. The linear concentration
range was studied within 12-20 ug mL™! for CFX in both mixtures. The validity of the developed
models was also judged using other different calculated tools such as root mean square error of cross
validation, percentage recoveries, standard deviations, and correlation coefficients, which indicated
excellent results. The developed methods were also applied to the determination of cefotaxime
sodium in marketed vials, with satisfactory results. The results were statistically compared to the
reported method, revealing no significant differences. Furthermore, the greenness profiles of the
proposed methods were assessed using the GAPI and AGREE metrics.

Keywords: cefotaxime; chemometry; multilevel experimental design; stability-indicating; greenness
assessment

1. Introduction

Drug stability is a critical issue during the screening of pharmaceutical dosage forms.
Stability testing and impurity profiling are important steps in the quality control of drug
products to ensure accurate and appropriate delivery of drug dose therapy to patients. The
source of drug impurities may originate during the synthesis procedure or as degradation
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products during the transportation and shelf-life of pharmaceutical products [1]. Such
chemical impurities may cause changes in the pharmacological and toxicological properties
of the active drug form and subsequently affect its safety and efficacy [2].

Meanwhile, the parenteral antibiotic dosage form accounts for about 50% of the total
worldwide antibiotic sales [3]. The total defined daily antibiotic dose consumption has
increased substantially during the past few years [4,5], among which third-generation
cephalosporins represent about 20% of antibiotic consumption [3]. Cephalosporins are a
key antimicrobial class for the treatment of infectious diseases in both humans and animal
species [6], of which the third generation could account for about 50% of total cephalosporin
sales [3]. These figures can give an abrupt estimation of the huge size of the production of
cephalosporins” pharmaceutical products. Cefotaxime (CFX) is a semi-synthetic antibiotic
belonging to the third generation cephalosporin class (the chemical structure is shown in
Figure 1). It is a broad-spectrum antimicrobial agent [7] that has been listed and classified
as a critically important antimicrobial agent [8,9].

Figure 1. CFX chemical structure.

The literature review showed some published methods that were applied for the
simultaneous determination of CFX in a mixture of similarly structured cephalosporins
using either a spectrophotometric method [10,11] or Raman spectroscopy [12]. Being
parentally administered, CEX must show good stability in solutions with a pH between
4.5 and 6.5 with no degradation products observed [13]. On the other hand, at pH values
of 2 and 10, higher degradation rates are observed due to hydrogen or hydroxide ion
catalysis [14]. Therefore, it is of great importance to establish methods for the assay
of CFX in the presence of either its acidic or alkaline degradation products. Several
chromatographic methods have been reported for the quantitative determination of CFX in
the presence of its degradation products, including HPTLC [2,15,16] and HPLC [14,17,18].
The British Pharmacopoeia [19] describes a time-consuming gradient HPLC method for
the impurity profiling of CFX that involves more than 60 min of run time. Only a few
spectrophotometric methods were reported for CFX determination in the presence of its
degradation impurities [14,20,21].

Several analytical techniques are currently being used to determine the stability of
different chemical drug molecules. UV-VIS spectrometry is one of the most widely used
techniques for stability-indicating methods, as it can achieve the best compromise between
ecological safety and maintaining the method’s efficiency and quality, especially when
compared to the other chromatographic techniques. This advantage could be attributed
to the low solvent consumption and a reduction in the amount of waste generated [22].
Additionally, the spectrophotometric technique does not require expensive instrumenta-
tion, which makes it an economic and cost-effective technique. However, the strongly
overlapping analytes” spectra are the main problem facing research analysts while us-
ing a UV-VIS spectroscopic technique in multicomponent analysis [23]. Therefore, the
multivariate methods were an excellent solution to this problem, as they represented a
mathematical resolution of severely overlapped spectra, unlike the conventional univariate
spectrophotometric techniques, which suffer from a lack of resolution [24,25]. Accordingly,
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multivariate chemometric methods were applied for the simultaneous determination of
several multicomponent mixtures [26-28]. Moreover, the stability-indicating multivariate
chemometric methods could be applied for the determination of several analytes in the
presence of their degradation products [29-31]. In CLS, a multiple linear regression is
applied to Beer’s law to construct the K-matrix. CLS is a direct method requiring full
identification of the components in the training matrix. However, PLS is an indirect model
that requires only knowing the concentration of the substance of interest [32]. On the other
hand, PCR and PLS have excellent capabilities to analyze the highly overlapping spectra.
Moreover, they can be highly tolerant to noise and interfering issues. Hence, PCR and
PLS are the most frequently utilized multivariate chemometric methods [33]. A GA-PLS
approach is also used for wavelength selection to properly minimize the number of selected
wavelengths, leading to fitness maximization and error reduction [34].

Hence, the main aim of the present work was to develop four simple green chemo-
metric methods that are stability-indicating for the determination of CEX in the presence
of its acidic or alkaline degradation products. The developed methods are green, simple,
cost-effective, sensitive, and accurate, and they can be used for routine analysis of CEX in
pharmaceutical research and quality control laboratories.

2. Materials and Methods
2.1. Materials and Reagents

Pure cefotaxime sodium was kindly supplied by the Egyptian International Pharma-
ceutical Industries Co. (EIPICo., Tenth of Ramadan city, Egypt). Hydrochloric acid (HCl)
and sodium hydroxide (NaOH) were of analytical grades and were purchased from El-Nasr
Chemicals Co. (Cairo, Egypt). Pharmaceutical dosage form, Cefotax® vials (EIPICo., Tenth
of Ramadan city, Egypt), containing cefotaxime sodium equivalent to 1000.0 mg CEFX per
vial were purchased from a local Egyptian market (produced by EIPICo., Egypt). Water
was prepared in-house by double distillation.

2.2. Instrumentation

All spectrophotometric measurements were carried out using a Schimadzu double-
beam spectrophotometer, model UV-1201 (Schimadzu, Koyoto, Japan), equipped with 1 cm
quartz cells and connected to a PC computer, programmed with UV probe software version
2.43. All chemometric models were implemented in MATLAB 8.2.0.701 (R2013b) software
from (MathWorks, Natick, MA, USA). PLS-toolbox software version 2.1 was utilized for
PLS and GA-PLS.

2.3. Preparation of Standard Solutions

A stock standard solution of CFX was prepared by dissolving the pure drug in double-
distilled water (final concentration, CFX 2.0 mg mL~!). A working standard solution of
CFX (200 pg mL~!) was prepared from the stock solution by dilution with double-distilled
water. Calibration standards were then prepared from the working solution in the same
manner. All stock, working, and prepared calibration standards were refrigerated at 2-8 °C.

2.4. Acidic and Alkaline Degradation

For acidic degradation, 25 mL of 0.5 N HCl were added to 25 mL of stock standard
solution (2 mg mL~1). For alkaline degradation, 25 mL of 0.5 N NaOH was added to 25 mL
stock standard solution (2 mg mL~!). Both mixtures were heated in a boiling water bath
under reflux for 1 h. The solutions were then left to cool and then neutralized to pH 7 using
either 25 mL of 0.5 N NaOH or HCI, respectively. The two final solutions were combined
to make 100 mL with double-distilled water and labeled to contain acidic and alkaline
degradation products derived from 500 pg mL~! as CFX.

Complete degradation was confirmed by HPTLC experiments [2], through the dis-
appearance of a spot corresponding to intact CFX and the appearance of one new spot
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corresponding to the degradation products using a mobile phase mixture composed of
ethyl acetate:acetone:water:acetic acid (10:5:3:2, v/v, respectively).

2.5. Procedure
2.5.1. Construction of the Chemometric Models

A multilevel, multifactor design was utilized to construct the calibration and validation
sets [35]. Seventeen samples were selected for the calibration set and eight samples for
the validation set. A CFX working standard solution (200 ug mL~!) and each degradant
solution were used to prepare a series of mixed dilutions with double distilled water
composed of CFX/degradant mix separately in two sets, one set containing CFX/alkaline
degradants and the other composed of a CFX/acidic degradant. The sample mixtures’
definite concentrations were selected according to analytes’ linearity ranges, as illustrated
in Table 1. Then, UV-probe software was used to scan the absorption spectra of the sample
mixtures from 220 nm to 320 nm against a blank of distilled water. The intervals were
selected to be 1 nm. The concentrations and absorbance values were inputted into MATLAB
software in order to build the optimal CLS, PCR, PLS, and GA-PLS models.

Table 1. Concentrations of laboratory-prepared mixtures of CFX with its acidic and alkaline
degradants used in the calibration and validation sets.

CFX/Acidic Degradants Mixture CFX/Alkaline Degradants Mixture
CFX Acidic Degradant CFX Alkaline Degradant
Sample No. (ug mL-1) (ug mL-1) Sample No. (ug mL-1) (g mL-1)
1 16 25 1* 16 15
2* 16 15 2 16 5
3 12 15 3 12 5
4* 12 35 4 12 25
5 20 20 5 20 10
6 14 35 6 14 25
7 20 25 7 20 15
8 16 20 8 16 10
9 14 20 9 14 10
10 14 30 10 14 20
11* 18 35 11 18 25
12 20 30 12 20 20
13 * 18 25 13 * 18 15
14 % 16 35 14 16 25
15 * 20 35 15 20 25
16 * 20 15 16 20 5
17 12 30 17 12 20
18 18 15 18 * 18 5
19 * 12 25 19 * 12 15
20 16 30 20* 16 20
21 18 30 21 % 18 20
22 18 20 22 18 10
23 14 15 23 % 14 5
24 12 20 24 % 12 10
25 14 25 25 14 15

* Concentrations of mixtures used in the validation set.

2.5.2. Pharmaceutical Dosage Form Analysis

The contents of 3 different Cefotax® vials were transferred into separate 500 mL vol-
umetric flasks and dissolved in distilled water up to the mark to obtain a stock solution
(2 mg mL~!). Working solutions (200 ug mL~!) were prepared by dilution from the previ-
ous stock solution using distilled water. Each Cefotax® working solution (200 ug mL~!)
was diluted into 10 mL volumetric flasks to a concentration of 10 ug mL~! with distilled
water (within the analytical working range). UV-probe software was used to scan the
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absorption spectra of the prepared solutions from 220 nm to 320 nm against a blank of
distilled water at an interval of 1 nm.

3. Results

The UV-VIS scan revealed severe overlapping between the spectra of CFX and its
acidic and alkaline degradants (Figure 2). Therefore, the direct imitation spectrophotometric
methods did not succeed in resolving this overlap. Hence, four chemometric methods,
namely, CLS, PCR, PLS, and GA-PLS, were developed for the simultaneous determination
of CFX in the presence of its acidic degradants and its alkaline degradants, separately.

1.400 T T T T

1.000

ao.o00 1 1 1 1
22000 Z80.00 2000 20,00 200,00 220,
rm.

1.400 T T T T

1.000

o000 1 1 1 1
22000 24000 280 00 Z50.00 200,00 22200
M.

Figure 2. Absorption spectra of CFX together with its (I) acidic and (II) alkaline degradants for
(A) 20 ug mL~! CFX, (B) 20 ug mL ! acidic degradants, and (C) both drug and degradants in the
same mixture.

3.1. Spectral Zone Selection and Construction of a Calibration Matrix

For (CFX/acidic degradants) and (CFX/alkaline degradants), twenty-five sample
mixtures were prepared, where seventeen samples were used for calibration and the
remaining eight samples were used for validation. The spectral zone for both mixtures was
selected in the range from 220 to 320 nm, with 1 nm intervals to obtain 101 spectral points.
This spectral range was selected since the spectral points after 320 nm had low absorbance
values close to zero, while those before 220 nm were noisy.
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The absorbance calibration set matrix for each mixture was (17 x 101), and its corre-
sponding concentration matrix was (17 x 2) (Table 1). The data was introduced into the
MATLARB software, which was then used to construct the developed chemometric models.

A pre-step for latent variable optimal number selection was performed for the PCR,
PLS, and GA-PLS models. This selection was performed, leaving out one sample at a time
from the seventeen spectra in the calibration set [36]. Three latent factors were found to
be the optimum number for all methods in (CFX/acidic degradants), while two factors
were the optimum number for all methods in (CFX/alkaline degradants) due to having the
smallest prediction error value (Figure 3).

i
Q N
7] =
s 14
14
]
10
Latent Variable Latent Variable
Figure 3. RMSEC plot of the cross-validation results of the calibration set as a function of the principal
components number used to construct the PLS model for (A) the CFX/acidic degradants mixture
and (B) the CFX/alkaline degradants mixture.

For GA-PLS construction, the genetic algorithms technique was used to make the
wavelength selection in the PLS regression model in order to minimize the number of
spectral points used [34]. GA-PLS minimized the spectral points to 46.53% for (CFX/acidic
degradants) for the PLS model and to 44.55% for (CFX/alkaline degradants) for the PLS
model. All selected GA parameters are indicated in Table 2 and Figure 4.

Table 2. Parameters of the genetic algorithm.
Parameter (CFX/Acidic Degradants) (CFX/Alkaline Degradants)
GA-PLS Model GA-PLS Model
Population size 36 36
Maximum generations 34 34
Mutation rate 0.005 0.005

The number of variables in a window (window width) 2 2
Percent of population the same at convergence 80 80
Percent wavelengths used at initiation 50 50

Crossover type Double Double
Maximum number of latent variables 3 2

Cross validation Random Random
Number of subsets to divide data into for 4 4

cross validation
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Figure 4. The parameters involved in the application of GA on the PLS model for the CFX/acidic
degradant mixture.

3.2. Validation of Chemometric Models

The predictive capabilities of the chemometric models were evaluated by several
methods. RMSEP values were found to be (0.19, 0.29, 0.47, and 0.20) for the (CFX/acidic
degradants) mixture and (0.21, 0.21, 0.21, and 0.22) for the (CFX/alkaline degradants)
mixture for the CLS, PCR, PLS, and GA-PLS models, respectively, indicating the excellent
accuracy and precision of the developed models (see Tables 3 and 4). The prediction of
CFX concentrations in samples, the calculation of their percentage recoveries, the standard
deviation, and the RMSECV were also other tools to check the validity of the models (see
Tables 3 and 4). The curve plots that related the actual concentrations and the predicted
concentrations in the validation samples were constructed, indicating good values of
correlation coefficients (r) (Figure 5). Residual plots were also constructed between the
concentration residuals and the expected ones, indicating a random allocation of residuals
around zero (Figure 6).
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Table 3. The prediction recoveries of the validation set samples by the four proposed multivariate
methods for (CFX/alkaline degradants).

Mix. CFX Actual Conc. CFX/Acidic Degradants Mixture Mix. CFX Actual Conc. CFX/Alkaline Degradants Mixture
No. (ug mL-1) CLS PCR PLS GA-PLS No. (ug mL-1) CLS PCR PLS GA-PLS
2 16 99.15 98.46 98.95 99.03 1 16 98.31 98.31 98.31 98.16
4 12 101.39 101.60 101.62 102.23 13 18 102.14 102.12 102.12 101.77
11 18 101.29 99.52 96.44 98.97 18 18 100.87 100.80 100.80 101.16
13 18 100.86 98.47 97.86 99.21 19 12 97.78 97.80 97.80 97.99
14 16 100.30 99.66 97.37 101.94 20 16 99.40 99.44 99.43 99.07
15 20 101.90 98.95 95.95 99.32 21 18 99.33 99.37 99.36 98.59
16 20 100.76 98.10 98.58 98.79 23 14 100.41 100.37 100.37 100.99
18 18 99.53 96.96 97.53 99.57 24 12 99.00 98.98 98.98 99.52
Mean 100.65 98.97 98.04 99.88 99.65 99.65 99.65 99.66
SD 0.94 1.36 1.76 1.38 1.42 1.40 1.40 1.46
RSD 0.93 1.38 1.79 1.38 1.43 1.40 1.41 1.45
RMSEP 0.19 0.29 0.47 0.20 0.21 0.21 0.21 0.22

Table 4. Statistical parameters for the four developed multivariate models for the CFX/alkaline

degradant mixture.

Parameter CLS PCR PLS GA-PLS
Wavelength range (nm) * 220-320
Linear range (1g mL1) 12-20
RMSECV 0.146 0.146 0.146 0.162
LV number - - 2 2
Mean (%) 99.65 99.64 99.64 99.62
RSD (%) 1.42 1.39 1.41 1.47
R** 0.9951 0.9953 0.9952 0.9929
Slope ** 1.046 1.046 1.046 1.028
Intercept ** —0.754 0.751 0.750 —0.479

* Trial-and-error method based on RMSECYV selection. ** Calculated for the actual and predicted values of the
validation set.

CLS- Expected vs Predicted conc. (pug.ml?) CLS- Expected vs Predicted conc. (ng.ml?)
y = 1.0195x - 0.2216
R?=0.9964 y = 1.0464x - 0.7537
20 - 20 A R? = 0.9951
E 15 E 15 ®)
2 2
(A)
.E 10 .E 10
o o
] =]
- -
g g
& 5 & 3
o T T T T 1 o T 1
10 12 i4 16 i8 20 10 12 14 16 18 20
Expected conc. .{ug.ml?) Expected conc. .[ug.mll)

Figure 5. Actual versus predicted concentration plots for CLS models of (A) the CFX/acidic
degradants mixture and (B) the CFX/alkaline degradants mixture.
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Figure 6. Actual versus residual concentration plots for CLS models of (A) the CFX/acidic degradants
mixture and (B) the CFX/alkaline degradants mixture.

The results of all models were satisfactory. With the results compared, the CLS model
for the CFX/acidic degradants mixture and the PCR model for the CFX/alkaline degradants
mixture showed the lowest RMSEP and standard deviation values as well as the highest
correlation coefficients (r). Hence, they were considered to be the best-developed models.

3.3. Pharmaceutical Formulation Application and Statistical Analysis

The developed methods were applied in the Cefotax® vial assay. The results were
satisfactory within acceptable limits and were statistically compared to the results obtained
by another previously reported method [37]. The reported method is a spectrophotometric
method based on the determination of CFX that reduced a silver-gelatin complex and
yielded a yellow silver solution measured at the maximum wavelength of 352 nm [37].
No significant differences were found by applying the Student’s t-test and F-test at a 95%
confidence level (Table 5).

Table 5. Statistical comparison between the results obtained by the developed methods and the
reported method [37] for the assay of CFX in Cefotax® vials.

CFX/Acidic Degradation Method CFX/Alkaline Degradation Method

Parameter

Reported
Method [37]

CLS PCR PLS GA-PLS CLS PCR PLS GA-PLS

Mean
\%

N
Student’s
t-test
(2.201)
F-test
(7.85) 2

99.92
0.13
8

100.11 100.21 99.74 99.58 99.88 99.84
0.07 0.14 0.24 0.25 0.34 0.26
5 5 5 5 5 5

99.77 99.83
0.15 0.16
5 5

0.71 0.42 1.01 1.39 0.77 1.43 0.15 0.33

1.15 1.23 1.86 2.64 1.85 1.92 2.62 2.00

@ Figures in parentheses are the corresponding tabulated values at p = 0.05.

3.4. Greenness Assessment of Analytical Methods

The core idea of green analytical chemistry (GAC) is to minimize the use of energy
and hazardous chemical reagents for enhancing sustainability and lowering the ecological
impacts of such methods [38]. Four main parameters within any analytical methodology
affect their ecological impact. First of all, the procedure needed for sampling the materials
to be tested. This step includes their online/offline sampling, the need for transportation,
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and sample preservation. Another main ecologically important parameter is the sample
preparation steps involved in any new analytical methodology. The scale at which the
analytes can be measured is where micro- and nano-analyses are better than macro-analyses,
regardless of the sample treatment and organic solvents involved [39]. The type of reagents
and the instrumentation used are considered two of the most important parameters. The
amount, including the health and safety hazards of any reagent used within the analytical
method, is considered. Water is the safest green solvent [40], and if possible, avoiding the
use of chemicals is safer. The instrumentation has also received high appreciation in regard
to energy utilization, generation of waste, and occupational hazards [41,42]. In general,
spectroscopic methods, except MS, utilize less energy than HPLC and UHPLC. However,
the waste generated from the UHPLC technique is much lower than HPLC. Therefore, when
considering the proposed method according to the previous main parameters, they can be of
added value for routine quality control of CFX in its marketed pharmaceutical formulations,
especially in the light of the knowledge that their production has been currently growing
with total sales” expenditure of billions of USD [43]. This can give an indication about the
number of analyses required in their QC procedures and their ecological impact.

The recent advances in green analytical chemistry (GAC) concepts have resulted in the
development of a number of tools that are being used for the assessment of the greenness
of newly developed analytical methodologies. Among those tools, the green analytical
procedure index (GAPI) [44] and AGREE [45] have been the most widely applicable met-
rics recently. Both metrics use red-yellow-green color codes for evaluating the ecological
impacts of different methodologies. Their methodologies are well established now and
applied widely [46—49]. The proposed methods were assessed on the GAPI and AGREE
metrics (Figure 7). As shown in Figure 7, the GAPI pictogram shows only two red zones,
which correspond to off-line sampling and transportation, which correspond to zone 3
in the perimeter of the AGREE pictogram. These are obligatory requirements in phar-
maceutical guidelines that separate the production from the quality control premises in
the pharmaceutical industry. No organic solvents are being used by the proposed tech-
nique, only water. The overall score shown in the AGREE pictogram indicates the highest
ecological compatibility and lowest impacts of the proposed methods.

A

Figure 7. Evaluation of the greenness of the proposed methods using the GAPI (A) and the AGREE
(B) assessment metrics.

3.5. Evaluation of the Proposed Methods against the Reported Ones

One of the useful tools when establishing new methodologies is to compare them to
a previously reported one. As shown in Table 6, several techniques can be found within
the literature survey for estimating CFX in the presence of its degradants, including HPLC,
TLC, derivative spectroscopy, and densitometry. The proposed methods outperform the
chromatographic techniques (HPLC and TLC methods) in terms of being more ecologi-
cally green, through avoiding the use of hazardous organic solvents and lowering energy
consumption in HPLC instrumentation. Another added value is the fast analysis time,
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requiring just a few seconds, which hence provides higher throughput, which is a huge
advantage in routine quality control of pharmaceuticals (Table 6). Moreover, the proposed
methods can be applied for simultaneous determination of CFX in the presence of either
acidic or alkaline degradation products, whereas the previously reported spectrophotomet-
ric methods were applied for CFX determination in the presence of only one degradation
pattern (Table 6). Table 6 also shows the greenness assessment of the reported methods
compared to the proposed methodologies on the GAPI scale. As shown, the proposed
methods have the lowest ecological impact among all, as indicated by a fewer number
of red zones and a greater number of green zones in their pictogram. Only method [21]
showed a comparable GAPI pictogram; however, the method was used only with acidic
degradants and needed sulfuric acid as a solvent, whereas the proposed methods only
depend on water as the greenest ecological solvent and are capable of estimating the drug
under study in the presence of both acidic and alkaline degradants.
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Table 6. Comparison between the proposed and reported methods applied for the simultaneous determination of CFX and its degradation products.

Technique Applied Analysis Time Solvents Used Linearity Range Degradation Product Application GAPI Assessment
Proposed method Multivariate Seconds Water 12-20 pg mL~! Acidic or alkaline Pharmaceutical dosage forms
spectrophotometry O
Reported [21] Second derivative Seconds Sulfuric acid 4-24 pg mL~! Acidic only Pharmaceutical dosage forms
spectroscopy
Derivative spectroscopy Seconds Water 5-40 pg mL ! Acidic only Pharmaceutical dosage forms
Reported method [20]
Densitometric About 10 min Methanol:acetic acid 2-12 ug/spot Acidic only Pharmaceutical dosage forms
Reorted method [14] FSQ spectrophotometric Seconds Acetonitrile:water 10-22 pg mL~! Alkaline only Pharmaceutical dosage forms

(10:90)
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Table 6. Cont.
Technique Applied Analysis Time Solvents Used Linearity Range Degradation Product Application GAPI Assessment
Reorted method [14] HPLC 5 min Ammomurp . 5-20 pg mL~! Alkaline only Pharmaceutical dosage forms
acetate:acetonitrile
Reported method [18] HPLC 15 min Methanol:phosphate 0.5-1.5 g mL~! Ac1d1c,‘alsz1hne, Pharmaceutical dosage forms
buffer or oxidative
Reported method [17] HPLC 10 min Methanol:acetonitrile: 51-360 pug mL~! AC1d1c,.alkz_1hne, Pharmaceutical dosage forms
buffer or oxidative
Reported method [15] TLC More than 10 min Benzene and 100-600 ng/spot Acidic, alkaline, Pharmaceutical dosage forms

Methanol:acetic acid

or oxidative
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4. Conclusions

In the present work, four new different multivariate chemometric analytical methods,
namely, CLS, PCR, PLS, and GA-PLS, were developed and validated for the simultaneous
determination of cefotaxime in the presence of its acidic or alkaline degradation products.
The chemometric methods studied showed high sensitivity and good resolving power
for separating the pure drug from its degradation products without the need for any
separation steps. The proposed methods provide a more economical alternative to the
other chromatographic methods for routine analysis of cefotaxime in both a pure form
and a pharmaceutical dosage form without any interference from degradation products.
The results of the validation parameters insured that all applied methods were linear,
accurate, and precise, with no significant differences between the proposed and reported
methods. Comparing the results of the CLS model for a CFX/acidic degradants mixture
and the PCR model for a CFX/alkaline degradants mixture, they showed the lowest RMSEP
(0.19 and 0.21) and standard deviation values (0.94 and 1.40), respectively. Hence, they
were considered to be the best-developed models. Moreover, the developed methods excel
at being simple, easy, green, and fast, unlike chromatographic methods, which are more
complex, expensive, time-consuming, and not environmentally friendly in most cases. The
prediction capabilities of the developed models were compared and proved to be high.
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