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Abstract: Carnivorous plants are able to attract small animals or protozoa and retain them in their
specialized traps. Later, the captured organisms are killed and digested. The nutrients contained in
the prey bodies are absorbed by the plants to use for growth and reproduction. These plants produce
many secondary metabolites involved in the carnivorous syndrome. The main purpose of this review
was to provide an overview of the secondary metabolites in the family Nepenthaceae and Droser-
aceae, which were studied using modern identification techniques, i.e., high-performance liquid chro-
matography or ultra-high-performance liquid chromatography with mass spectrometry and nuclear
magnetic resonance spectroscopy. After literature screening, there is no doubt that tissues of species
from the genera Nepenthes, Drosera, and Dionaea are rich sources of secondary metabolites that can be
used in pharmacy and for medical purposes. The main types of the identified compounds include
phenolic acids and their derivatives (gallic, protocatechuic, chlorogenic, ferulic, p-coumaric acids, gal-
lic, hydroxybenzoic, vanillic, syringic caffeic acids, and vanillin), flavonoids (myricetin, quercetin, and
kaempferol derivatives), including anthocyanins (delphinidin-3-O-glucoside, cyanidin-3-O-glucoside,
and cyanidin), naphthoquinones (e.g., plumbagin, droserone, and 5-O-methyl droserone), and volatile
organic compounds. Due to the biological activity of most of these substances, the importance of the
carnivorous plant as a pharmaceutical crop will increase.

Keywords: carnivorous plants; insectivorous plants; secondary metabolites; naphthoquinones;
polyphenols

1. Introduction

Carnivorous plants are mainly angiosperms, represented by approximately 850 carniv-
orous plant species [1,2]. Exceptions are some carnivorous liverworts of the genera Colura
and Pleurozia [3,4]. Carnivorous plants are polyphyletic, and carnivorous syndromes have
evolved independently in about 10 lineages of flowering plants [5–9]. They are capable
of attracting small animals or protozoa and keep them in specialized traps, which are
generally of foliar origin [10,11]. However, inflorescences can sometimes be trap organs
as well [9]. Captured organisms are killed and digested, and nutrients from their bodies
are absorbed by plants to be used for growth and reproduction [1,10,12]. Some researchers
propose that carnivorous plant traps are analogous to the animal digestive tract [13].

Carnivorous species are also sources of various secondary metabolites (about
170 compounds), which are used by them to facilitate prey attraction, capture, diges-
tion, and nutrient assimilation as well as defense against pathogens and herbivores or
pollinator attraction [14,15]. As reported by Hatcher et al. [15], these metabolites provide
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a potentially powerful model system for exploring the role of metabolites in plant evolu-
tion and in adaptation to extreme nutrient-poor habitats. Moreover, they exhibit diverse
biological activity and therefore, potential for use in medicine [14,16,17]. Recently, Miclea
provided an overview of secondary metabolites found in carnivorous plants of the Sarrace-
niaceae family [14]. In our study, we focused on the phytochemistry of Nepenthaceae and
Droseraceae species (Figure 1).

Figure 1. Examples of plants from Nepenthaceae and Droseraceae. (A) Nepenthes cv. ‘Miranda’,
(B) Drosera binata Labill. var. dichotoma, (C) Drosera capensis L., (D) Dionaea muscipula J.Ellis.

The genus Nepenthes has a center of diversity in tropical Asia. Dionaea muscipula is
restricted to a small area of the Atlantic and Gulf Coastal Plain in North America, but
the genus Drosera is almost cosmopolitan with a large number of species in Australia and
South Africa [18]. Aldrovanda vesiculosa used to be widespread in the Old World and across
various climatic zones; however, now it is rare and endangered [19]. Plants belonging to the
Nepenthaceae and Droseraceae families are of great interest to researchers and, in recent
years, they have been intensively studied in terms of the biological activity of both crude
extracts and isolated components. Furthermore, some species, e.g., Di. muscipula and plants
from the genus Drosera are common in cultivation and easy to propagate and introduce
into in vitro cultures. Therefore, their biomass is relatively easily available, which makes
these plants a valuable model for biological and phytochemical investigations [20–22].

In the review, investigations based on modern identification techniques, such as high-
performance liquid chromatography (HPLC) or ultra-high-performance liquid chromatog-
raphy (UPLC) with mass spectrometry (MS) and nuclear magnetic resonance spectroscopy
(MNR) of isolated compounds, have been summarized. The LC-MS-based nontargeted
approach was excluded from the study when no compounds were identified. Although it
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is a powerful tool for the investigation of chemical diversity and useful for the assessment
of changes in metabolites in plants for which available data are scarce, it needs further anal-
yses such as nuclear magnetic resonance to elucidate the real structures of the compounds.
This approach was applied, for example, to study the ionizable metabolites of pitcher traps
and leaf blades in Nepenthes × ventrata [23], in pitchers of N. ampullaria, N. rafflesiana and its
hybrid (N. × hookeriana) [24], and in leaves of Drosera capensis [25].

The review is based mostly on papers published after 2010, as there are some review pa-
pers summarizing older investigations [16,26,27]. However, some oldest articles were also
mentioned to give a relevant background or when they provide unique well-documented
information. Our paper shows that phenolic acids and their derivatives (gallic, protocate-
chuic, chlorogenic, ferulic, p-coumaric, gallic, hydroxybenzoic, vanillic, syringic, and caffeic
acids, as well as vanillin), flavonoids (myricetin, quercetin, and kaempferol derivatives),
including anthocyanins (delphinidin-3-O-glucoside, cyanidin-3-O-glucoside, cyanidin),
naphthoquinones (e.g., plumbagin, droserone, 5-O-methyl droserone), and volatile organic
compounds, are the main types of compounds investigated in Nepenthaceae and Droser-
aceae. The role of these compounds in plant physiology, including growth, development,
and prey attraction, has been previously described in detail by Hatcher et al. [15].

2. Secondary Metabolites in Nepenthaceae and Droseraceae
2.1. Phenolic Compounds

Plant phenolics are the most common secondary metabolites in the plant kingdom.
This group includes both simple molecules such as phenolic acids and complex compounds
with high molecular mass. Phenolics are divided into several classes, i.e., phenols, phenolic
acids, coumarins, flavonoids, stilbenes, hydrolyzed and condensed tannins, lignans, and
lignins [28,29]. They are synthesized from carbohydrates via the shikimate pathway or
via the ‘polyketide’ acetate/malonate pathway during normal plant development and in
defense against stress conditions [30].

2.1.1. Phenolic Acids
General Information

A characteristic structural feature of phenolic acids is the aromatic ring with one
or more hydroxyl substituents and a carboxyl moiety. Two groups of phenolic acids are
distinguished: derivatives of benzoic acid and derivatives of cinnamic acid based on the
skeleton of C6–C1 and C6–C3, respectively. Phenolic acids can be esterified with alcohols,
amino acids, and carbohydrates or may be bonded with malic, tartaric, shikimic, lactic, and
quinic acids and may form conjugates with other natural compounds [28,29].

The role of phenolics in plants is varied. They may function as phytoalexins, an-
tifeedants, attractants for pollinators, antioxidants, and protective agents against UV
light [28,29,31]. They also have a regulatory function in plant growth and reproduction.
Some phenolics, e.g., ferulic and p-coumaric acids, are found in cell walls and contribute to
the mechanical strength.

Phenolic Acids and Their Derivatives in Nepenthaceae and Droseraceae

As mentioned above, phenolic acids may occur as esters or complex conjugates; thus,
acidic or/and alkaline hydrolysis is often performed in the investigation of plant material
to release the free form. This approach has been applied by Kováčik et al. [32]. They studied
free and bonded phenolic acids in N. anamensis, Drosera capensis, and Dionaea muscipula.
HPLC-MS analysis revealed the presence of gallic, protocatechuic, hydroxybenzoic, vanillic,
chlorogenic, syringic, caffeic, ferulic, sinapic, and p-coumaric acids and their derivatives
in both the leaves and traps of the species. In addition, free salicylic acid was found in
Di. muscipula and its glycoside- and ester-bound derivatives were present in Di. muscipula
and Dr. capensis. A phenolic aldehyde–vanillin was also found in all species. In turn, a
protocatechuic acid derivative (1-O-protochatechoyl glucoside) was found in Drosera magna
and the structure was established using NMR [33].
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The detailed phytochemical profile of polyphenolic constituents, including flavonoids,
phenolic acids, and their derivatives, in both field-grown and in vitro propagated leaves of
Dr. rotundifolia was described by Tienaho et al. The components were tentatively identified
based on their retention time, elution order, exact masses, and/or characteristic MS/MS
patterns. Ellagic and dimethylellagic acids and their glycosides, as well as quinic acid,
monogalloyl glucose, and coumaric acid glycosides were identified in both types of plant
material. In turn, methylellagic acid and digalloyl glycose were found only in the field-
grown plants [20]. The derivative of ellagic acid-3,3′-di-O-methylellagic acid 4′-glucoside
was also identified based on 1H and 13C NMR in aboveground parts of Dr. tokaiensis [34].
Furthermore, HPLC-DAD-ESI/MS analysis revealed the occurrence of ellagic acid, the
isomer of dimethylellagic acid, 3-O-methylellagic acid, and 3,3′-di-O-methylellagic acid in
Di. muscipula [35] and 3,3-di-O-methylellagic acid in Dr. binata [36].

The presence of gallic, chlorogenic, protocatechuic, ferulic, and p-coumaric acids [22],
as well as caffeic, salicylic, and ellagic acids [37] were observed in Di. muscipula, and elagic
acid was detected in Dr. binata, Dr. indica, Dr. spatulata, and Di. muscipula [38]; however, the
identification was only based on HPLC separation and comparison with the standards.

Structures of the most common phenolic compounds identified in Nepenthaceae and
Droseraceae species are shown in Figure 2.

Figure 2. Structures of the most common derivatives of (a) benzoic acid, (b) cinnamic acid, and
(c) ellagic acid found in Nepenthaceae and Droseraceae.

2.1.2. Flavonoids
General Information

Flavonoids are widespread plant secondary metabolites with a structure based on
the C6–C3–C6 backbone. They can be divided into several subclasses: anthocyanins,
chalcones, flavanones, flavones, flavonols, isoflavonoids, and flavanols on the basis of their
characteristic structural features. They have multiple functions in plant organisms, e.g.,
protection against the harmful effects of ultraviolet–visible (UV-B) radiation, antimicrobial
activity, and an inhibitory effect against herbivores such as insects and nematodes. They
are also responsible for yellow-orange coloration and participate in copigmentation with
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anthocyanins, which increases color intensity and stability [39]. Flavonoids found in
Nepenthaceae and Droseraceae plants mostly belong to derivatives of quercetin kaempferol
and myricetin (Figure 3).

Figure 3. General structure of flavonols (a) quercetin, (b) kaempferol, and (c) myricetin;
R—glycoside moiety.

Flavonoids in Nepenthaceae and Droseraceae

The presence of flavonoids in the genera Nepenthes, Drosera, and Dionaea was pre-
viously reported in papers from the 1960s to the 1990s. For example, quercetin and its
3-O-galactoside, 3-O-glucoside, and 3-O-digalactoside, gossypetin and its 7-O-glucoside,
and 3-O-glucoside kaempferol were detected in Dr. rotundifolia [40,41]. Iwashina et al.
reported the presence of kaempferol and quercetin 3-O-glycosides in Di. muscipula and
myricetin and quercetin 3-O-galactosides in Dr. spathulata [42]. Moreover, the presence
of kaempferol and quercetin glycoside was determined based on the TLC screening of
three Nepenthes hybrids: N. rajach, N. tentaculata, and N. muluensis [43]. In some stud-
ies, identification was based on a comparison of retention times with standards; for ex-
ample, hyperoside, isoquercitrin, myricetin, quercetin, and ellagic acid were found in
Dr. rotundifolia and Dr. madagascariensis [44], and in Dr. spatulata and Dr. tokaiensis [45].
However, retention parameters are often misleading, as coelution may occur in the case
of compounds with similar polarity, and only further studies based on mass spectrometry
and NMR identification can confirm the occurrence of specific derivatives of quercetin
and kaempferol. In another study, epicatechin 3-gallate and quercetin gallate esters:
quercetin 3-O-(2′′-galloylarabinofuranoside), quercetin 3-O-(6′′-galloylglucoside), quercetin
3-O-(3′′-galloylrhamnoside), quercetin 3-O-(2′′-galloylxylopyranoside), and quercetin 3-O-
(3′′-galloylxylopyranoside), were isolated from N. gracilis leaves using preparative chro-
matography and characterized using C NMR and ESI–MS [46]. The appearance of quercetin
and kaempferol after acidic hydrolysis in the trap and leaves of N. anamensis, Dr. capensis,
and Di. muscipula was confirmed in HPLC–MS by Kováčik et al. [32], proving the presence
of many derivatives of these aglycones in the species. In turn, free flavonoid aglycones:
methylated myricetin, quercetin, isorhamnetin, or rhamnetin, kaempferol or fisetin, and
their glycosidic conjugates: 3-O-glycosides and 3-O-rhamnosylglucoside kaempferol or
fisetin were observed in Dr. binata cultured in vitro. As can be seen, some flavonoids were
not distinguished based on the collected MS data, because the formula and, therefore, the
molecular mass of kaempferol and fisetin, as well as iorhamnetin and rhamnetin are the
same (C15H10O6 and C16H12O7, respectively) [47], and more studies are needed to clarify
this issue.

Furthermore, NMR and mass spectroscopic data allowed establishing the structure of
the main flavonoid, quercetin 3-O-(6′-n-butyl-D-glucuronide isolated from
N. thorellii × (ventricosa × maxima) [48]. In turn, Wong et al. conducted a compara-
tive UHPLCQ/TOF-MS-based metabolomic analysis of four Nepenthes species, includ-
ing N. minima, N. ampullaria, N. rafflesiana, and N. northiana. They tentatively identified
89 metabolites from different groups and, among others, flavonoid compounds, mostly
derivatives of quercetin and kaempferol [49]. In another study, Fourier transform ion cy-
clotron resonance mass spectra (FT-ICR-MS) and 1H and 13C NMR data allowed establish-
ing the structure of four flavonoids (quercetin, quercetin 3-O-(6′-n-butyl ß-D-glucuronide),



Molecules 2023, 28, 2155 6 of 20

quercitrin, kaempferol-3-O-a-L-rhamnoside) isolated from N. mirabilis leaves [50], and
quercetin, hyperoside, and 2′-O-galloylhyperoside were identified in leaves of Dr. rotundifolia
based on UHPLC-TOF-MS [51]. In turn, NMR analysis of Dr. magna components isolated
using column fractionation revealed the presence of tamarixetin-3-rhamnoside, naringenin-
6-C-β-D-glucopyranoside, hirsutrin, and four new flavonoid compounds (three flavonol
diglycosides and flavan-3-ol glycoside) [33].

Flavonoids identified by MS-MS analysis in Dr. rotundifolia grown in the field and
propagated in vitro included myricetin glycoside, hyperoside, galloylhyperoside, and
hydroxybenzoylhyperin. Additionally, dihydromyricetin, hexahydroxyflavonegalloyl gly-
coside, tetrahydroxyflavone, kaempferol-galloylglycoside, quercetin, and its derivatives:
glycoside and glycoside gallate, were found in plants grown in field conditions. In turn,
syringetin glycoside and spinatoside were identified only in in vitro cultivated species [20].
Myricitrine and quercimelin were isolated from the aboveground parts of Dr. tokaiensis [34].

Anthocyanins

Anthocyanins are plant pigments from the flavonoid class. They are water-soluble
compounds that display different colors (red, blue, and purple), and the color depends on
pH, light, and temperature [52].

Anthocyanins are found both in reproductive organs (flowers and fruits) and veg-
etative organs (stems, roots, or leaves). They mostly occur as glycosides and aglycone
forms (anthocyanidins) are rarely found in nature. Cyanidin derivatives followed by del-
phinidin derivatives are the two most common anthocyanins found in plants [52,53]. It
should be mentioned that the coloration of plant organs may be a result of the presence of
betalains—pigments derived from amino acid tyrosine; however, the presence of betalains
and anthocyanins exclude each other [54].

Plant pigments play an important role in the interaction between plants and animals
because they attract pollinators and seed dispersers. In carnivorous plants, these pigments
are responsible for the distinctive red coloration of the trap, which probably attracts prey;
however, the issue is still under debate because many invertebrate species cannot distin-
guish red wavelengths of light. The other suggested functions of trap pigments include
protection against stress related to excess light exposure, nutrient deficiency, ultraviolet
radiation, environmental conditions, pathogens, and predators [55].

Although speculation on the presence of anthocyanins in Nepenthes species was found
in the literature previously, the detection methods used were not selective. A study con-
ducted by Dávila-Lara et al. [56] gave clear evidence. Based on chromatographic parameters,
UV–Vis spectra, and mass data obtained with the use of ultra-high performance liquid
chromatography-electrospray ionization-high-resolution mass spectrometry (UHPLC–ESI–
HRMS), three different cyanidin derivatives, i.e., 3-O-glucoside, 3-O-galactoside, and
3-O-glucuronide, were identified in mature and well-developed pitchers in seven Nepenthes
species: N. × ventrata (natural hybrid of N. ventricosa and N. alata), N. thorelii, N. ventricosa,
N. robcantleyi, N. maxima, N. fusca, and N. mirabilis. An analysis of the distribution of
anthocyanins in Nepenthes × ventrata tissue showed that the pigments were most abundant
in the peristome, compared to the digestive zone, and 3-O-glucoside was predominant
(0.68 vs. ca 0.12 µmol/g of fresh weight, respectively). Low amounts of pigments were also
identified in the branches and leaf blades of the plants. Interestingly, the ratio between the
anthocyanins was constant in the different tissues [56].

Some studies report the presence of anthocyanins in Droseraceae, including cyanidin
and delphinidin 3-O-glucosides in Di. muscipula [57], cyanidin and pelargonidin glycosides
in Dr. anglica and Dr. intermedia [58], and cyanidin 3,5-di-O-glucoside, and 3-O-galactoside,
as well as pelargonidin 3-O-galactoside and 3-O-glucoside in Dr. spatulata [59]. However, it
should be noted that the reports were published in 1966–1999 and the investigation was
carried out using poorly selective techniques such as column chromatography with spectral
analysis or thin layer chromatography (or the methodology was not described); thus, the
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results need to be verified and the molecular structure should be established with the use
of more selective modern techniques.

Only one recent study gives reliable information on anthocyanins in Droseraceae.
Henarejos-Escudero et al. investigated pigments in digestive glands, epidermis of the base
of the mature stems, and flower petals from Di. muscipula using HPLC with mass spec-
trometry (ESI-MS/MS), and three compounds were found, i.e., delphinidin-3-O-glucoside
(myrtillin), cyanidin-3-O-glucoside (kuromanin), and cyanidin. Kuromanin was predomi-
nant in the snap trap, whereas myrtillin was the most abundant in mature stems. Aglycone
(cyanidin) was found only in the snap trap [60].

Structures of the most common anthocyanins identified in Nepenthaceae and Droser-
aceae species are shown in Figure 4.

Figure 4. Structure of the most common anthocyanins: (a) cyanidin derivatives; (b) delphinidin
derivatives found in Nepenthaceae and Droseraceae species.

2.2. Naphthoquinones
2.2.1. General Information

Naphthoquinones derived from the naphthalene class are bicyclic structures with
two carbonyl groups at positions 1, 4 or 1, 2. They are known toxins and insect ecdysis
inhibitors. They also provide antimicrobial protection against visiting preys and preserve
the prey during digestion. They show allelopathic effects that might protect plants from
pathogen infection and can increase the ability of plants to compete with surrounding
organisms for limited resources or to deter herbivores [15,61]. Different substituents may
be attached to the ring structure; however, the presence of a hydroxyl and/or methyl group
in the quinone structure is typically found in nature.

2.2.2. Naphthoquinones in Nepenthaceae and Droseraceae

Naphthoquinones are characteristic chemotaxonomic markers within Nepenthaceae
and Droseraceae families. Several 1,4-naphthoquinone derivatives were found, and plumba-
gin was the main compound identified. The review paper by Devi et al. listed 114 species [26]
in which plumbagin and sometimes other naphthoquinones were detected. Among them,
91 Nepenthes species were investigated by Schlauer et al. using TLC and GC-MS analysis
of steam distillates and ether extracts from fresh leaves [62]. Furthermore, the studies
conducted using GC-MS followed by isolation and elucidation of the structure using 1H-
NMR, 13C-NMR have detected plumbagin in N. khasiana roots and in the waxy layers
at the top prey capture region of the pitchers. In turn, its derivatives, i.e., droserone
(3,5-dihydroxy-2-methyl-1,4-naphthoquinone, the oxygenated form of plumbagin) and
5-O-methyl droserone (2-methyl-3-hydroxy-5-methoxy -1,4-naphtho-quinone), were found
in pitcher fluid after induction with chitin or prey capture [63,64].

Plumbagin was also detected in the extract from aerial parts of N. × thorelii
(ventricosa × maxima) [65] and N. cv. ‘Miranda’ [66] and in the leaf and pitcher tissue
of N. × ventrata, a natural hybrid of N. alata and N. ventricosa [67,68]. A detailed study of
naphthoquinones in the extract of branches and leaves of N. mirabilis conducted by Thanh
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et al. [50] revealed the presence of droserone, plumbagin, 3-methoxy-7-methyljuglone,
2-methoxy-7-methyljuglone, nepenthone C, and nepenthones F and G.

Although there are some reports on naphthoquinones in Nepenthes genus, less is known
about this group in Droseraceae family. Only plumbagin was found in Dr. intermedia [69]
and D. peltata var. lunata [70], and its structure was established after isolation and NMR
analysis. Norman et al. have recently provided more details on the phytochemical pro-
filing of crude extracts from bulbs and leaves of Dr. magna followed by isolation and
NMR characterization. The study showed the presence of 1,4-naphthoquinones includ-
ing hydroxydroserone, hydroxydroserone -5-O-β-D-glucoside, droserone, and plumba-
gin, and two 2,3-dihydronapthalene-1,4-diones [33]. Plumbagin was also determined
in Dr. burmanii by competitive ELISA using a monoclonal antibody against plumba-
gin [71], as well as in Aldrovanda vesiculosa L. [72] and in Dr. binata using HPLC and MS
data [47]. In a recent study, 7-methyljuglone (ramentaceone), 7-methyljuglone diglyco-
side, and 7-methyljuglone glycoside have been found in Dr. rotundifolia [20]. Further-
more, plumbagin and 3-chloroplumbagin were identified in Dr. binata using HPLC-DAD-
ESI/MS [36], plumbagin along with its derivatives (dihydroplumbagin, 3-chloroplumbagin,
8,8′-biplumbagin) were detected in Di. muscipula [35], and MS and NMR analysis proved
that ramentaceone is a main naphthoquinone in Dr. aliciae from in vitro cultures [73,74].
HPLC and a comparison of retention parameters with standards showed the presence of
droserone and plumbagin in Di. muscipula and Dr. binata, droserone and ramentaceone in
Dr. spatulata and droserone, plumbagin and ramentaceone in Dr. indica [38].

Among recent reports, only one paper describes the distribution of naphthoquinones
within particular plant organs [64]. Based on the analysis of the N. khasiana species,
Raj et al. revealed that plumbagin was the most abundant in the roots (approx. 1.4%),
followed by the leaf (0.4%) and the stem (0.2%), and only approx. 0.04% was found in
the pitcher.

The structures of naphthoquinones identified in Nepenthaceae and Droseraceae are
presented in Figure 5.

Figure 5. Structure of the most common 1,4-naphthoquinone derivatives identified in Nepenthaceae
and Droseraceae.

2.2.3. Acetogenic Tetralones

Acetogenic tetralones are regarded as derivatives of naphthoquinone differing in the
presence of the hydroxyl group in position 4 instead of the carbonyl group. A few members
of this group, namely isoshinanolone, shinanolone, and epishinanolone (Figure 6), were
described by Aung et al. as a component of extract from leaves of N. gracilis. After isolation,
identification was based on mass and NMR spectra; however, only shinanolone data were
shown [75]. Cis-isoshinanolone was found in the extract of N. mirabilis branches and
leaves [50] and in the aerial parts of N. thorellii × (ventricosa × maxima) [48]. After isolation,
the structure was confirmed with the NMR method.
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Figure 6. Structure of shinanolone (a) and isoshinanolone (b).

2.3. Other Metabolites

Volatile organic compounds (VOCs) involved in the attraction of prey are widely
investigated secondary metabolites in carnivorous plants, and many different compounds
have been identified. They are lipophilic components with low molecular weight and high
vapor pressure at ambient temperature. The composition of VOC is very complex and
includes a wide range of compounds from different classes, e.g., volatile terpenes (monoter-
penes, diterpenes, and sesquiterpenes), phenylpropanoids, benzenoids, and volatile fatty
acids [76]. Gas chromatography with mass spectrometry is the most common method for
identification of VOCs. VOCs were identified, for example, in N. rafflesiana—fifty-four
compounds [77], in N. rajah—44 components [78], and in Di. muscipula—over 60 VOCs [79].
More details on VOCs in carnivorous plants were provided by Hatcher et al. [25].

Furthermore, a detailed metabolomics analysis based on UHPLCQ/TOF-MS of the
aerial parts of N. minima, N. ampullaria, N. rafflesiana, and N. northiana revealed the presence
of non-phenolic compounds, for example alkaloids [49].

It should also be mentioned that, in addition to secondary metabolites, proteins in
pitcher fluid have been intensively studied [80–82]. They belong to pathogenesis-related
proteins and are responsible for the digestion of prey and the antibacterial effect. For
example, 29 proteins belonging to serine carboxypeptidases, α and ß galactosidases, lipid
transfer proteins, and esterases/lipases were found to be excreted in N. mirabilis, N. alata,
N. sanguinea, N. bicalcarata, and N. albomarginata pitchers [81].

The secondary metabolites detected in Nepenthes and Droseraceae, as well as the
methods applied for their determination, are summarized in Tables 1–3.
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Table 1. Secondary metabolites identified in Nepenthes.

Investigated Species Compound Method Ref.

phenols/phenolic acids and derivatives

N. anamensis (leaf, trap)

gallic: 58.9 (l), 53.7 (t) µg/g; protocatechuic: 4.48 (l), 15.1 (t) µg/g;
hydroxybenzoic: 4.28 (l), 9.21 (t) µg/g; vanillic: 2.53 (l), 9.93 (f) µg/g;

chlorogenic: 32.4 (l) 53.8 (f) µg/g; syringic: 10.7 (l), 14.7 (f) µg/g; caffeic: 2.6
(l), 3.57 (f) µg/g; ferulic: 1.07 (l), 7.97 (f) µg/g; sinapic: 7.09 (l) 15.7 (f) µg/g;

p-coumaric 2.08 (l), 6.77 (t) µg/g; vanillin: 0.85 (l), 0.94 (f) µg/g dw

HPLC-MS [32]

flavonoids: flavonols

N. minima, N. ampullaria, N. rafflesiana,
N. northiana

quercetin (Q), Q 3-O-rhamnoside, Q 3-(6′′-galloylglucoside),
Q 3-O-(6′′-n-butyl ß-D-glucuronide), rutin, miquelianin, kaempferol (K)

3-glucoside, K 3-O-beta-D-xyloside, 6,8-dihydroxy-K 3-rutinoside, afzelin,
luteolin, baicalin, butin, myrciacitrin

UHPLC-Q/TOF–MS [49]

N. gracilis
(leaves)

quercetin esters: 3-O-ß-(3′′-O-galloylxylopyranoside),
3-O-α-(3′′-O-galloylrhamnopyranoside),

3-O-ß-(2′′-O-galloylxylopyranoside),
3-O-α-(2′′-galloylarabinofuranoside), 3-O-ß-(6′′-galloylglucopyranoside)

CC/NMR, MS [46]

N. thorellii × (ventricosa × maxima)
(aerial parts) quercetin 3-O-(6′′-n-butyl-D-glucuronide) HPLC-DAD, CC/NMR [48]

N. mirabilis
(branches and leaves)

quercitrin, quercetin (Q), Q-3-O-b-D-glucuronide,
K-3-O-a-L-rhamnoside CC/NMR, MS [50]

flavonoids: anthocyanins *

N. × ventrata, N. thorelii, N. ventricosa,
N. robcantleyi, N. maxima, N. fusca, N. mirabilis
(pitchers: digestive zone—dz, peristome—p)

cyanidin-3-O-glucoside: ca 0.5–6 (p), up to ca 2 (dz) µM/g fw
cyanidin-3-O-galactoside: ca 0.1–0.6 (p), up to ca 0.3 (dz) µM/g fw

cyanidin-3-O-glucuronide: ca 0–0.1 (p, dz) µM/g fw
UHPLC/HRMS [56]

other phenolic compounds

N. mirabili (branches and leaves)s epicatechin CC/NMR, MS [50]

N. gracilis (leaves) epicatechin 3-O-gallate CC/NMR, MS [46]

N. minima, N. ampullaria, N. rafflesiana, N.
northiana (aerial parts)

syringin, catechin 5-O-gallate, coniferin,
5-galloylshikimic acid UHPLC-Q/TOF–MS [49]

naphthoquinones

N. cv. ‘Miranda’ (leaves) plumbagin GC-MS [66]



Molecules 2023, 28, 2155 11 of 20

Table 1. Cont.

Investigated Species Compound Method Ref.

Nepenthes × ventrata (N. alata × ventricosa)
(pitcher, leaves) plumbagin NMR [67]

Nepenthes thorellii × (ventricosa × maxima)
(aerial parts) plumbagin HPLC-DAD, CC/NMR [48]

N. × ventrata (N. alata × N. ventricosa) (leaves) plumbagin LC-MS/MS [68]

N. khasiana
(root, stem, leaves, pitchers),

plumbagin: ca 1.4% (r), 0.2% (s), 0.4% (l), 0.04% (pi) dw *
droserone, 5-O-methyl droserone (pi) GC-MS/NMR [64]

N. khasiana (pitcher liquid) 5-O-methyl droserone, droserone HPLC/MS, UV, NMR [63]

N. mirabilis (branches and leaves)
3-methoxy-7-methyljuglone2-methoxy-7-methyljuglone, plumbagin,

droserone,
nepenthones C, F and G

CC/NMR, MS [50]

N. alata, N. fusca, N. gracilis, N. mirabilis,
N. superba, N. thorelii,

N. ventricosa (pitcher fluids)
plumbagin, 7-methyl-juglone LC/MS, NMR [83]

N. adrianii × clipeata
(twigs and leaves) isoplumbagin Isolation/NMR [84]

acetogenic tetralone

N. gracilis (leaves), Isoshinanolone, shinanolone epishinanolone Isolation/MS, NMR [75]

N. thorellii × (ventricosa × maxima)
(aerial parts) isoshinanolone HPLC-DAD, NMR [48]

N. mirabilis
(branches and leaves) cis-isoshinanolone CC/NMR, MS [50]

alkaloids

N. minima, N. ampullaria, N. rafflesiana,
N. northiana (aerial parts) trigonelline, anatoxin a, berberastine UHPLC-Q/TOF–MS [49]

* values were estimated from the graph; Q—quercetin; K—kaempferol; (dz)—digestive zone; (p)—peristome; (r)—root; (s)—stem; (l)—leaf; (t)—trap; (pi)—pitcher; fw—fresh weight;
dw-dried weight.
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Table 2. Secondary metabolites identified in Drosera.

Species Compound Method Refs.

phenols/phenolic acids and derivatives

Dr. capensis (leaf, trap)

gallic: 167.8 (l), 195.5 (t) µg/g; protocatechuic: 1.26 (l), 12.1 (t) µg/g;
chlorogenic: 28.5 (l), 29.6 (t) µg/g; ferulic: 1.15 (l), 2.21 (t) µg/g; p-coumaric:
1.52 (l), 2.06 (t) µg/g; hydroxybenzoic: 3.72 (l), 17.5 (t) µg/g; vanillic: 1.57 (l)

2.07 (t) µg/g; syringic: 7.86 (l) 10.1 (t) µg/g; caffeic: 1.91 (l) 3.01 (t) µg/g;
sinapic: 0.18 (l), 0.69 (t) µg/g; vanillin: 1.93 (l), 1.62 (t) µg/g dw

HPLC-MS [32]

Dr. rotundifolia, Dr. tokaiensis,
Dr. spatulata ellagic acid (EA) HPLC [45]

Dr. tokaiensis (aboveground part) 3,3-di-O-methylellagic acid 4′-glucoside HPLC/NMR [34]

Dr. magna (bulbs and leaves) 1-O-protochatechoyl glucoside Isolation/NMR [33]

Dr. rotundifolia
field (f), in vitro propagated (p)

quinic acid (fp), monogalloyl glucose (fp), digalloyl glucose (f), coumaric acid
glycoside (fp), EA (fp), EA glycoside (fp), dimethylEA glycoside ((fp),

dimethylEA (fp), methylEA (f)
UPLC/DAD/MS-MS [20]

Dr. anglica, Dr. intermedia,
Dr. madagascariensis, Dr. rotundifolia

(aerial part)
ellagic acid (0.137–1.107%), 3,3′-di-O-methylEA (0.084–0.143%) dw LC-MS/NMR [85]

Dr. binata in vitro culture 3,3-di-O-methylellagic acid HPLC-DAD-MS [36]

flavonoids

Dr. binata

methylated myricetin (M) methylated M 3-O-glucoside, quercetin (Q),
Q 3-O-glucoside;

isorhamnetin (iRh) or rhamnetin (Rh); Rh/isoRh 3-O-glucoside; kaempferol
(K)/fisetin (F)

K/F 3-O-glucoside; K/F-3-O-rhamnosylglucoside,

HPLC-UV/MS [47]

Dr. rotundifolia field (f), in vitro propagated (p)

myricetin glycoside (fp), hyperoside (fp), galloylhyperoside (fp),
hydroxybenzoylhyperin (fp),

dihydromyricetin (f), hexahydroxyflavonegalloyl glycoside (f),
tetrahydroxyflavone (f), kaempferol-galloylglycoside (f), quercetin (Q)(f),

Q-glycoside (f) Q-glycoside gallate (f), syringetin glycoside (p), spinatoside (p)

UPLC/DAD/MS [20]

Dr. rotundifolia quercetin, hyperoside and 2”-O-galloylhyperoside UHPLC-TOF-MS [51]
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Table 2. Cont.

Species Compound Method Refs.

Dr. tokaiensis (aboveground part) myricitrine, quercimelin HPLC/NMR [34]

Dr. magna
(bulbs and leaves)

tamarixetin-3-rhamnoside, naringenin-6-C-β-D-glucopyranoside, hirsutrin,
three new flavonol diglycosides, flavan-3-ol glycoside Isolation/NMR [33]

Dr. rotundifolia Dr. anglica, Dr. intermedia,
Dr. madagascariensis,

(aerial part)

myricetin (M) (<0.003–0.097%), M-3-O-β-galactopyranoside (0.038–0.275%),
M-3-O-β-glucopyranoside, hyperoside (H) (0.048–1.530%), 2′′-O-galloylH

(0–2.515%), isoquercitrin (0.032–0.421%), kaempferol (K),
K-3-O-β-galactopyranoside, K-3-O-(2′′-O-galloyl)-β-galactopyranoside,

astragalin, quercetin (0.056–0.187%) dw

LC-MS/NMR [85]

naphthoquinones

Dr. binata, Dr. adelae, Dr. aliciae, Dr. capensis,
Dr. cuneifolia, Dr. ramentacea plumbagin: 0.001–0.059% fw HPLC-UV/MS [47]

Dr. binata, Dr. gigantea plumbagin: 2.04 and 0.15 mg/g fw HPLC-DAD-MS [35]

Dr. binata plumbagin, 3-chloroplumbagin HPLC-DAD-MS [36]

Dr. intermedia, plumbagin HPLC-MS/NMR [69]

Dr. burmanii plumbagin ELISA [71]

Dr. peltata Smith var. lunata plumbagin: 11.05 mg/g dw TLC/NMR [70]

Dr. magna (bulbs and leaves) hydroxydroserone (H), H-5-O-β-D-glucoside, droserone, plumbagin,
2,3-dihydronapthalene-1,4-diones Isolation/NMR [33]

Dr. rotundifolia
field (f), in vitro propagated (p) 7-methyljuglone, 7-methyljuglone diglycoside, 7-methyljuglone glycoside (f,p) UPLC/DAD/MS-MS [20]

Dr. aliciae in vitro culture ramentaceone Isolation/NMR, MS [73,74]

* Q—quercetin; K—kaempferol; M—myricetin; EA—ellagic acid; fw—fresh weight; dw—dried weight; (l)—leaf; (t)—trap.
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Table 3. Secondary metabolites identified in Dionaea.

Species Compound Method Ref.

phenols/phenolic acids and derivatives

Di. muscipula
(leaf, trap)

gallic: 187.8 (l), 167.4 (t) µg/g; protocatechuic: 2.74 (l), 3.21 (t) µg/g; chlorogenic:
24.5 (l), 30.8 (t) µg/g; ferulic: 0.65 (l), 0.69 (t) µg/g; p-coumaric: 0.57 (l), 0.76 (t)
µg/g; salicylic: 0.28 (l), 0.19 (t) µg/g; hydroxybenzoic: 4.26 (l), 4.53 (t) µg/g;
vanillic: 4.84 (l), 6.87 (t) µg/g; syringic: 8.78 (l), 12.2 (t) µg/g; caffeic: 10.8 (l),

12.0 (t) µg/g; sinapic: 17.0 (l), 42.2 (t) µg/g; vanillin: 2.45 (l), 1.97 (t) µg/g dw

HPLC-MS [32]

Di. muscipula ellagic, dimethylellagic acid isomer, 3-O-methylellagic acid,
3,3′-di-O-methylellagic acid HPLC-DAD-MS [35]

Di. muscipula caffeic: ca 0.18 mg/g, salicylic: ca 300 mg/g, ellagic: ca 0.18 mg/g * HPLC-DAD [37]

Di. muscipula
chlorogenic:0.26 mg/g, p-coumaric: 0.04 mg/g ferulic: 0.16 mg/g,

gallic: 0.31 mg/g,
protocatechuic: 0.29 mg/g dw

HPLC-DAD [22]

flavonoids: flavonols

Di. muscipula myricetin: ca 20 mg/g, hyperoside: ca 0.3 mg/g, quercetin: 15 mg/g dw * HPLC-DAD [37]

Di. muscipula kaempferol, quercetin after hydrolysis (leaf, trap) HPLC-MS [32]

Di. muscipula kaempferol: 0.59 mg/g dw HPLC-DAD [22]

Di. muscipula hyperoside, quercetin-3-(6′′-O-galloyl)-glucoside/galactoside,
kaempferol-3-(6′′-O-galloyl)-glucoside HPLC-DAD-MS [35]

flavonoids: anthocyanins

Di. muscipula (digestive glands) delphinidin-3-O-glucoside, cyanidin-3-O-glucoside,
cyanidin HPLC/MS-MS [60]

naphthoquinones

Di. muscipula plumbagin: 3.45 mg/g fw, dihydroplumbagin, 3-chloroplumbagin,
8,8′-biplumbagin HPLC/DAD-MS [35]

Di. muscipula plumbagin: ca 50 mg/g dw * HPLC-DAD [37]

* values were estimated from the graph; dw—dried weight; (l)—leaf; (t)—trap.
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3. Biological Potential of Nepentheceae and Droseraceae Species

Carnivorous plants from Nepentheceae and Droseraceae have been used in folk
medicine for a long time in the treatment of various disorders [17,27], and recent inves-
tigations have confirmed a wide range of activities of both crude extracts and isolated
compounds [20,37,51,86].For example, it has been evidenced that Dr. rotundifolia and
Dr. tokaiensis extracts have anti-inflammatory potential [45] and N. bicalcarata shows an-
timicrobial and antidiabetic activity [87]. Antibacterial activity was also evidenced for
N. cultivar ‘Miranda’ against Klebsiella pneumonia [88], for N. gracilis against Bacillus subtilis
and Escherichia coli [89], and for Di. muscipula against Staphylococcus aureus, Enterococcus faecalis,
E. coli, and Pseudomonas aeruginosa [21,37]. A biofilm inhibitory effect against E. coli strains
was also proved for Dr. rotundifolia and Dr. intermedia [90]. Additionally, Dr. rotundifolia
extract exhibited antiviral activity and was effective against enteroviruses [20].

Moreover, it has been shown that some species are effective against different types of
cancer. N. adrianii × clipeata showed cytotoxicity toward oral cancer cells [84], N. thorelii ×
(ventricosa × maxima) exerted anti-leukemic properties [65] and an anticancer effect toward
breast cancer [48], and N. cultivar ‘Miranda’ was active in the case of lung cancer [88]. It
should also be mentioned that the extracts had lower cytotoxicity to normal cells compared
to cancer cells.

It is assumed that the majority of the biological properties of Nepenthaceae and Droser-
aceae species are related to naphthoquinones. It was found that ramentaceone isolated
from Dr. aliciae [73,74], chloroplumbagin from Di. muscipula [91], and plumbagin derived
from N. alata [92] showed significant anticancer activity. Furthermore, plumbagin (from
N. gracilis) [93] and its isomer ramentaceone (from Dr. aliciae) [86] were shown to be have
antibacterial and antifungal properties. Phytochemical screening of anti-inflammatory con-
stituents of N. mirabilis also showed that naphthoquinone derivatives were the most potent
inhibitors of production of proinflammatory cytokines in cells with lipopolysaccharide-
induced inflammation; however, some other constituents, e.g., phenolic compounds, also
exhibit an anti-inflammatory effect [94]. Both phenolic compounds and nepenthosides were
responsible for the antiosteoporotic activity of N. mirabilis extract [50,95] and flavonoids:
quercetin and 2”-O-galloylhyperoside were the main components of Dr. rotundifolia extract
involved in antispasmodic action [51].

4. Conclusions and Future Directions

The review showed that species from the genera Nepenthes, Drosera, and Dionaea
are rich sources of secondary compounds, which can be grouped into four major types:
phenolic acids and derivatives, flavonoids (including anthocyanins), naphthoquinones
(including acetogenic tetralones), and volatile organic compounds. Among them, the
greatest attention is paid to flavonoids and naphthoquinones, and these metabolites have
been intensively studied recently in terms of their biological activity. It has been evidenced
that naphthoquinones are cytotoxic against several types of cancer, and they have signif-
icant antibacterial, antifungal, antiviral, insecticidal, anti-inflammatory, and antipyretic
properties [35,36,94–96]. In turn, flavonoids have been shown to exert antiosteoporotic,
anti-inflammatory, and antispasmodic effects [50,51,94,95]. This clearly indicates that
Nephentaceae and Droseraceae plants have a great potential as a source of components
for the development of new drugs and therapies. Furthermore, isolated components may
serve as valuable additives to enhance biological effects, for example, antibacterial activity
of nanosilver particles [35,36,38].

Obviously, Nephentaceae and Droseraceae are not the only sources of these com-
pounds. For instance, plumbagin is commonly found in members of families Plumbag-
inaceae and Ebenceae [97]. However, it should be highlighted that many species from
the genera Nepenthes, Drosera, and Dionaea can be relatively easily cultivated in vitro and,
therefore, they can be a readily available alternative source of metabolites.

The review has shown that there is still scarce information on the chemistry of carniv-
orous plants including Nepenthaceae and Droseraceae families; in particular, the genus
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Aldrovanda is poorly explored. Therefore, this issue should be intensively studied in the fu-
ture, especially in the context of reports on the biological activity of extracts or components
isolated from some species. The bioactivity-guided approach, which combines the applica-
tion of modern isolation and identification techniques with assays of the biological activity
of particular fractions, seems to be a promising tool for a comprehensive exploration of
the biological potential of these species, which may lead to discovering new therapeutic
agents [93].

Moreover, future research should be focused on verification of older reports on the phy-
tochemical composition with the use of modern analytical techniques. The investigations
should be also extended to other groups of compounds, including primary metabolites,
as it has recently been shown that Dionaea and Aldrovanda traps contain arabinogalactan
proteins with potential in industry [98,99], and proteins from Nepenthes digestive fluid
could help in the therapy of celiac disease [100].

Furthermore, detailed studies on the distribution of particular groups of metabolites
in plant tissues should be conducted [101], given the scarcity of such papers shown in this
review. Further phytochemical studies should be also focused on the investigation of the
numerous cultivars and mutants of Dionaea and hybrids of Nepenthes because literature
data on this topic is scarce so far. It should be noted that the investigation of such plants can
lead to a breakthrough in science as has recently been demonstrated by Anda-Larisa et al. [102].

It is also worth increasing the efforts to propagate carnivorous species in vitro and
test different elicitors and cultivation conditions, which may significantly increase biomass
production and the content of metabolites [103,104].

Our paper summarizes the current knowledge on the occurrence of secondary metabo-
lites in Nepenthes, Drosera, and Dionaea, which can be a good starting point for further
investigations and can help researchers dealing with the phytochemistry of these genera.
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