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Abstract: γ-Alumina with incorporated metal oxide species (including Fe, Cu, Zn, Bi, and Ga) was
synthesized by liquid-assisted grinding—mechanochemical synthesis, applying boehmite as the
alumina precursor and suitable metal salts. Various contents of metal elements (5 wt.%, 10 wt.%, and
20 wt.%) were used to tune the composition of the resulting hybrid materials. The different milling
time was tested to find the most suitable procedure that allowed the preparation of porous alumina
incorporated with selected metal oxide species. The block copolymer, Pluronic P123, was used as a
pore-generating agent. Commercial γ−alumina (SBET = 96 m2·g−1), and the sample fabricated after
two hours of initial grinding of boehmite (SBET = 266 m2·g−1), were used as references. Analysis of
another sample of γ-alumina prepared within 3 h of one-pot milling revealed a higher surface area
(SBET = 320 m2·g−1) that did not increase with a further increase in the milling time. So, three hours
of grinding time were set as optimal for this material. The synthesized samples were characterized by
low-temperature N2 sorption, TGA/DTG, XRD, TEM, EDX, elemental mapping, and XRF techniques.
The higher loading of metal oxide into the alumina structure was confirmed by the higher intensity
of the XRF peaks. Samples synthesized with the lowest metal oxide content (5 wt.%) were tested
for selective catalytic reduction of NO with NH3 (NH3-SCR). Among all tested samples, besides
pristine Al2O3 and alumina incorporated with gallium oxide, the increase in reaction temperature
accelerated the NO conversion. The highest NO conversion rate was observed for Fe2O3-incorporated
alumina (70%) at 450 ◦C and CuO-incorporated alumina (71%) at 300 ◦C. The CO2 capture was also
studied for synthesized samples and the sample of alumina with incorporated Bi2O3 (10 wt.%) gave
the best result (1.16 mmol·g−1) at 25 ◦C, while alumina alone could adsorb only 0.85 mmol·g−1 of
CO2. Furthermore, the synthesized samples were tested for antimicrobial properties and found to be
quite active against Gram-negative bacteria, P. aeruginosa (PA). The measured Minimum Inhibitory
Concentration (MIC) values for the alumina samples with incorporated Fe, Cu, and Bi oxide (10 wt.%)
were found to be 4 µg·mL−1, while 8 µg·mL−1 was obtained for pure alumina.

Keywords: mechanochemical synthesis; γ-alumina; metal oxide incorporation; NO conversion; CO2

capture; antimicrobial properties

1. Introduction

The synthesis of mesoporous materials with tailored porosity was significantly ex-
panded after the discovery of ordered mesoporous silica by the Mobil Oil Company in
1992 [1]. Porous materials may possess micropores (sizes below 2 nm), mesopores (sizes
between 2 and 50 nm), and/or macropores (sizes above 50 nm) [2]. Non-silica materials
such as carbon [3], alumina [4], metal oxides [5], and metal-organic frameworks [6], were
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also commonly studied. As compared to silica-based materials, porous alumina is more
popular in catalysis, mainly in the petrochemical industries [7] because of its unique surface
properties (e.g., acidic, and basic sites) and tailorable porosity [7,8]. There are various
methods for the synthesis of porous alumina such as sol-gel [9,10], reverse micelle [11],
solvothermal [12], microwave-assisted [13], aerosol [14], polymer templating [15], etc., and
many of these methods use both cationic and anionic surfactants [16]. The synthesis of
porous metal oxide nanomaterials is gaining attention due to their wide applications, and
easy merging with silica, alumina, and carbon frameworks. Various attempts have been
made for the synthesis of ordered mesoporous γ-alumina using solvent-based methods.
Quan et al. synthesized mesoporous γ-alumina via the sol-gel method using a non-ionic
block copolymer, aluminum isopropoxide, aluminum nitrate, and organic solvents [7].
This study was further extended by Morris et al. [17] who adopted a one-pot synthesis
to incorporate metal oxides in the alumina framework. In their work one-pot synthesis
was conducted via self-assembly of the metal precursor and aluminum isopropoxide in
the presence of triblock copolymer [17]. The hydrophilic non-ionic surfactant, Pluronic
F127 and Pluronic P123 were used together with metal nitrates to study the textural prop-
erties of mesoporous γ-alumina [18]. Although popular, these methods use solvents and
often harmful chemicals, making them less attractive, at least in terms of the principles of
green synthesis. Wet chemical synthesis is a multi-step process, time-consuming, energy-
demanding, and may result in generating large amounts of waste [19,20]. To overcome
these existing challenges, an environmentally benign, simple, cost-effective, high-yield, and
scalable synthesis of porous materials is required [21]. That is why various green proce-
dures were developed [22–25], such as the mechanochemical synthesis of biomass-derived
porous carbons [26,27].

Mechanochemical processing is one of the most promising eco-friendly alternatives
for the synthesis of porous nanomaterials [28]. This approach, which leads to a moderate
reduction in particle sizes and the formation of micro- up to nano-sized particles [29], differs
from the conventional procedures. The International Union of Pure and Applied Chemistry
(IUPAC) defines a mechanochemical reaction as “a chemical reaction that is induced by
the direct absorption of mechanical energy” [30]. Mechanochemical processing effectively
blends precursors to form nanoscale particles and enhances the chemical reactivity of
the products. Mechanochemistry is a broader concept than mechanical grinding as it
involves the reduction of particle size and simultaneous chemical reactions to form desired
products [31,32]. Mechanochemistry has already been used for the synthesis of a wide
range of metallic nanoparticles (NPs), e.g., Fe, Cu, Ag, Cd, Zn, Zr, Ti, etc. [33]. Control
of particle size can be achieved by adjusting milling time, grinding speed, ball size, and
ball-to-mass ratio [34]. During this process, high-energy milling assures large mechanical
stress and bond breakage of the reactant particles, resulting in exposure to reactive atomic
layers at the interface, which facilitates the formation of a larger number of defects and
results in the desired chemical properties [35]. The importance of mechanochemistry for the
synthesis of nanoparticles for antimicrobial applications has been presented elsewhere [36].

Stimulated by prior works [37,38] on the mechanochemical synthesis of crystalline
γ-alumina in the presence and absence of a few metal salts, the main objectives of this study
include: (i) optimization of the soft-templating mechanochemical synthesis of γ-Al2O3
with incorporated Bi2O3, Ga2O3, Fe2O3, CuO and ZnO, and (ii) their characterization
in terms of the chemical composition, surface area and porosity, and (iii) assessment
of their adsorption (CO2 adsorption), catalytic (selective catalytic reduction of NO) and
antimicrobial properties. Although these diverse applications seem to be disconnected,
their successful implementation depends on the enlarged specific surface area achieved by
well-developed mesoporosity and the properly modulated surface properties accomplished
by the incorporation of metal oxide species into γ-Al2O3. Namely, this study provides
extensive experimental data showing a significant impact of metal oxide incorporation on
the physicochemical and structural properties of the resulting alumina-based materials.
The rationale for selecting γ-alumina as the support for introducing the above-mentioned
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metal oxides is because of the unique properties of this material, which is widely used as
a catalyst and support for various catalysts [8,39], popular adsorbent for gas- and liquid-
phase applications, e.g., CO2 capture [40], and antimicrobial compound [41]. Additionally,
the above-mentioned metal oxide additives are known for their catalytic and antimicrobial
properties [39,41].

2. Results and Discussion
2.1. Basic Information about the Materials Studied

Schematic representation of the synthesis of γ-alumina with incorporated metal oxides
is presented in Figure 1, while the notation of the samples studied with basic information is
provided in Table 1.
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Figure 1. Schematic representation of the synthesis of γ-alumina with incorporated metal oxides.

Table 1. Sample notations and metal oxide percentages predicted and obtained by XRF analysis.

Sample Notation *
Metal Salts
Used in the
Synthesis

Metal Added Metal.
(Wt.%)

Metal Oxide
in the Sample

(Wt.%)

XRF Data

Al2O3
(Wt.%)

Metal Oxide
(Wt.%)

Al2O3 Al-3 NA NA NA NA 100.00 NA
Al2O3-Fe2O3 Al-Fe5-3 Fe(NO3)3·9H2O Fe 5 3.68 95.42 4.58
Al2O3-Fe2O3 Al-Fe10-3 Fe(NO3)3·9H2O Fe 10 7.02 90.69 9.31
Al2O3-CuO Al-Cu5-3 Cu(NO3)2·6H2O Cu 5 3.23 96.46 3.54
Al2O3-CuO Al-Cu10-3 Cu(NO3)2·6H2O Cu 10 6.22 93.09 6.91
Al2O3-ZnO Al-Zn5-3 Zn(NO3)2·6H2O Zn 5 3.19 96.73 3.27
Al2O3-ZnO Al-Zn10-3 Zn(NO3)2·6H2O Zn 10 6.16 93.01 6.99

Al2O3-Bi2O3 Al-Bi5-3 Bi(NO3)3·5H2O Bi 5 2.87 97.79 2.21
Al2O3-Bi2O3 Al-Bi10-3 Bi(NO3)3·5H2O Bi 10 5.57 94.77 5.23
Al2O3-Ga2O3 Al-Ga5-3 Ga(NO3)3 Ga 5 3.44 97.74 2.26
Al2O3-Ga2O3 Al-Ga10-3 Ga(NO3)3 Ga 10 7.26 94.83 5.17

NA = Not applicable. * Sample notation Al-Mex-Y: Al refers to aluminum oxide; Me refers to metal oxide; Y
denotes time of ball milling in hours; x indicates Me wt.% equal to x% of Al used in the synthesis (1.2 g of
AlO(OH)—boehmite was used in each synthesis, which contains 0.54 g of Al; thus, in the case of Al-Fe10-3 in
addition of 1.2 g of boehmite containing 0.54 g of aluminum, the specified amount of iron salt containing 10% of
Fe equivalent to 10% Al used, i.e., 0.054 g of Fe, was added).

2.2. Compositional Analysis of the Materials Studied

The composition of the selected samples was studied using EDX and elemental map-
ping. The elemental mapping of Al-Fe10-3 is displayed in Figure 2 and shows that the
iron species are uniformly distributed throughout the sample. Similarly, the elemental
mappings of pristine alumina and Al-Cu10-3 are shown in Figures S1 and S2, respectively.
Additionally, these samples were characterized by TEM to obtain images of Al-Fe5-3 and
Al-Fe10-3 (Figure 3), which show the presence of disordered but quite uniform meso-
pores. In addition, the TEM images of Al-Cu10-3 show a similar distribution of mesopores
(Figure S3). The wide-angle X-ray diffraction was also used to elucidate the incorporation
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of metal oxide species into the alumina framework. The XRD patterns of Al-Fe5-3 and
Al-Fe10-3 (Figure S4) show signals characteristic for γ-alumina with some signs originating
from the incorporated iron oxide species as indicated by the spectra of gamma alumina
(standard ICSD DB card # 66559) and hematite (standard ICSD DB card # 96075). These
tiny XRD signals can be related to the very high dispersion of metal oxide species.
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Figure 2. EDX spectrum and elemental mapping for Al-Fe10-3: (a) SEM image, (b) layered elemen-
tal mapping, (c) aluminum distribution, (d) oxygen distribution, (e) iron distribution, and (f) the
corresponding EDX spectrum.
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To discover the composition of the obtained materials, an X-ray fluorescence analysis
was carried out. The XRF spectra of the samples studied in comparison to the spectrum of
pristine Al2O3 are shown in Figure 4.
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All synthesized materials are composed mainly of aluminum oxide as shown in Table 1.
The presence of different elements was proven in all samples with incorporated metal oxide
species, which indicates the efficiency of the synthesis process. In the case of Al-Fe5-3 and
Al-Fe10-3, signals at 6.40 and 7.06 keV, characteristic of iron were noted. Both materials with
incorporated copper oxide show signals around 8.04 and 8.90 keV, characteristic of Cu. For
Al-Zn5-3 and Al-Zn10-3 signals characteristic for zinc are located at 8.63 and 9.57 keV. The
alumina with incorporated Ga oxide reveals peaks at 9.24 and 10.26 keV, which confirm the
presence of this metal in its structure. Samples Al-Bi5-3 and Al-Bi10-3 represent peaks at
around 10.84 and 13.02 keV, characteristic of bismuth. In all cases, an increased percentage
contribution of metal elements in the sample results in increased intensity of XRF patterns,
which indicates the effective incorporation of those elements into the alumina structure.
The γ-phase of alumina exists at the temperature range of 400–700 ◦C. The rise in the
temperature up to 900 ◦C transforms the γ-phase to δ-Al2O3. The thermal behavior of
the pristine alumina along with and without triblock copolymer was investigated by a
thermal decomposition study as shown in Figure S5. The presence of metal species in
the alumina structure changes the decomposition pattern of the triblock copolymer. This
behavior agrees with the previous study conducted by Goncalves et al. [39].

2.3. Low-Temperature N2 Sorption Analysis

The textural properties of the mechanochemically synthesized samples were obtained
based on low-temperature N2 sorption isotherms data. The adsorption isotherms of γ-
Al2O3, the alumina samples with incorporated metal oxide species (10 wt.%) and the
reference samples, are shown in Figure 5a together with the corresponding PSD curves.
Similarly, the N2 adsorption/desorption isotherms and their respective PSD curves of γ-
Al2O3 with 5 wt.% and 20 wt.% metal oxide loading are shown in Figures S6a,b and S7a,b,
respectively. The adsorption isotherms obtained for all synthesized samples are of Type IV
with the H1 hysteresis loop, characteristic of mesoporous materials [2]. The incorporation
of metal oxide species somewhat alters the adsorption isotherms in comparison to those
obtained without metal oxides and reference samples. Capillary condensation for all metal-
incorporated samples occurs at higher relative pressure because of the presence of larger
pores. This feature is validated by the specific surface area, the pore size, as well as the pore
volume of the samples studied (Al-Me5-3 and Al-Me10-3), as shown in Table 2. Data for
samples Al-Me20-3 are provided in Table S1 and the textural properties for 4, 5 and 10 h
milled samples are listed in Table S2.
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Figure 5. N2 adsorption/desorption isotherms for various samples (a) with the corresponding pore-
size distribution curves (b) (obtained from the adsorption branches). For clarity, the isotherms for
Al2O3-3, Al-Fe10-3, Al-Cu10-3, Al-Zn10-3, Al-Bi10-3, Al-Ga10-3 in (a) are offset along the y-axis by 175,
350, 250, 200, 225, and 125 cm3·g−1, respectively.
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Table 2. Textural properties of the synthesized samples.

Sample SBET
(m2·g−1)

Pore Diameter KJS
(nm)

Single Point Pore Volume
(cm3·g−1)

nCO2 (25 ◦C)
(mmol·g−1)

Commercial γ-Al2O3 96 34.2 0.41 -
Boehmite 282 1.58 0.34 -

Al-3 * 266 17.7 0.86 -
Al-3 320 15.2 0.96 0.85

Al-Fe5-3 307 21.9 1.43 1.02
Al-Fe10-3 246 23.9 1.20 1.07
Al-Cu5-3 281 17.9 1.21 0.79
Al-Cu10-3 277 29.2 1.27 0.96
Al-Zn5-3 252 29.3 1.48 0.79
Al-Zn10-3 255 31.1 1.32 1.01
Al-Bi5-3 300 18.3 1.18 0.80
Al-Bi10-3 320 17.5 1.08 1.16
Al-Ga5-3 286 18.0 1.15 0.78
Al-Ga10-3 280 18.2 1.15 1.03

* Initial grinding of boehmite for two hours, data not available for CO2 capture, SBET-Specific surface area
calculated using the BET equation in the relative pressure range of 0.05–0.20; Single point pore volume obtained
from the volume adsorbed at 0.98 P/P0; Pore diameter at the maximum of PSD obtained by the KJS method;
nCO2 –amount of CO2 adsorbed at 1.03 bar.

2.4. Catalytic Tests

The catalytic performance of the prepared materials was studied for ammonia-induced
selective catalytic reduction of NO at the temperature range of 150–450 ◦C. The results of
the NH3-SCR catalytic tests obtained for the mechanochemically synthesized materials are
presented in Figure 6.
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Figure 6. NO conversion (a) and the by-product N2O formation (b) over pristine Al2O3-3 and
different metal oxide incorporated samples (Al-Me5-3).

In the case of all tested samples, besides pristine Al2O3 and gallium oxide-incorporated
samples, an increase in the reaction temperature accelerates the NO conversion as shown
in Figure 6a. In the case of alumina, after exceeding the temperature of 450 ◦C, nitrogen
oxides are produced rather than NO conversion. This phenomenon is not observed for
the metal oxide-incorporated alumina samples. Among all metal oxides used, the copper
and iron oxide-incorporated samples showed a significant improvement in the catalytic
behavior of alumina. The Al-Cu5-3 material reveals the best catalytic properties for the low-
temperature SCR, reaching 71% NO reduction at 300 ◦C. Overall, the highest NO conversion
rate was observed for Al-Fe5-3 material, reaching a 70% reduction at the temperature of
450 ◦C. Incorporation of zinc intoAl2O3 structure caused increased catalytic performance
of the material with increasing temperature, but this change is so small, that it is below
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profitability. Modification of Al2O3 with bismuth in principle did not affect the catalytic
properties of alumina at all and the incorporation of gallium oxide even reduced them.

During experiments, the N2O formation, as a by-product, was constantly measured,
and the results are presented in Figure 6b. The amount of N2O in the case of all samples
with incorporated metal oxides was kept low—not exceeding 20 ppm. The highest by-
product generation was observed for pristine alumina, which may indicate that metal
incorporation in the alumina structure decreases N2O production. However, and this is
worth mentioning, all the catalytic materials obtained had very low nitrous oxide formation
(below 30 ppm). Therefore, it is shown that the effective catalytic reduction of NO is due to
the effective incorporation of selected metal oxide species into the alumina structure.

2.5. Carbon Dioxide Capture Study

The CO2 adsorption isotherms for pristine alumina and all alumina samples with
incorporated metal oxides (5 wt.% and 10 wt.%), measured at 25 ◦C and 1.03 bar pres-
sure, are shown in Figure 7a,b and the amount of CO2 captured is listed in Table 1. The
general mechanism for CO2 capture is based on the interaction between the acidic nature
of CO2 and the basic site of the metal oxide species in the alumina framework. The de-
velopment of basic O2− sites on the surface results from high-temperature calcination,
which enhances CO2 adsorption [42]. During calcination, the surface hydroxyl groups
are removed, and some basic sites are formed. The amount of CO2 captured by pristine
alumina is 0.85 mmol·g−1, which is the lowest value compared to that recorded for the
alumina samples with incorporated metal oxide species. The observed increase in CO2
capture by metal oxide-incorporated alumina samples is due to the presence of additional
basic sites exposed on the surface. The highest CO2 capture was observed for the alumina
samples with incorporated metal oxides (samples obtained by using 10 wt.% of metal).
Among them, Al-Bi10-3 (1.16 mmol·g−1) shows the best adsorption capacity of CO2 at 25 ◦C.
The CO2 adsorption isotherms and the respective amounts of CO2 captured measured for
alumina samples containing 20 wt.% of the selected metal oxide are given in Supplementary
Materials (see Table S1).
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Figure 7. CO2 adsorption isotherms measured at 25 ◦C for pristine alumina and metal oxide-
incorporated samples: Al-MeO5-3 series (a) and Al-MeO10-3 series (b).

2.6. Antimicrobial Activity against Pseudomonas aeruginosa

Samples of alumina with incorporated metal oxide species, synthesized via a one-pot-
mechanochemical method, were tested as antimicrobial agents against Pseudomonas aeruginosa
(PA). The samples calcined at 600 ◦C were not completely dispersed in the given solvent.
Therefore, they were sonicated in DMSO for 10 h and the homogeneous dispersible obtained
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was used for antimicrobial activity evaluation. PA is a member of the ESKAPE pathogens, a
group of Gram-positive and Gram-negative bacteria that can readily evade (i.e., escape) the
attack of most clinical antibiotics because of the multidrug resistance (MDR) developed by
a variety of phenotypes of these bacteria which can escape the biocidal action of antibiotics
and resist their working mechanisms [43,44]. After incubation of PA (ATCC15692) with
alumina as a control and metal oxide incorporated alumina for 18 h, the MIC value was
found to be 8 µg·mL−1 for the control and 4 µg·mL−1 for the samples with incorporated Cu
(10 wt.%), Fe (10 wt.%) and Bi (10 wt.%) oxides. Similarly, the samples with incorporated
Zn (10 wt.%), and Ga (10 wt.%) oxides gave the MIC of 8 µg·mL−1 as shown in Figure 8.
Higher MIC for the alumina samples with incorporated Zn and Ga oxides might be caused
by poor dispersion and agglomeration of the samples. To further explore the biological
activity of pristine alumina and metal oxide-incorporated samples, the antimicrobial activity
was tested against drug-resistant Pseudomonas aeruginosa (DRPA). The activity of pristine
alumina (control) was found to be 8 µg·mL−1. The antimicrobial activity in the same strain
for the samples with incorporated Cu and Fe oxides was found to be 4 µg·mL−1 and for
those with incorporated Bi, Zn, and Ga oxides, the MIC was found to be 8 µg·mL−1. The
photographs of the MIC measurements against DRPA for all the samples studied are shown
in Figure S9. As expected, the incorporation of 5 wt.% of metal oxide-incorporated alumina
structure was found to be less effective than the 10 wt.% contributions, see Figure S10.
Surprisingly, alumina samples with the highest metal oxide loading (20 wt.%) were found
to be the least effective among all the samples studied. The lower activity might be due to
the higher agglomeration of these samples.
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Figure 8. Photographs showing the MIC measurements for Al2O3, Al-Cu10-3, Al-Zn10-3, Al-Fe10-3,
Al-Bi10-3, and Al-Ga10-3 (MIC values are marked in the red box) against Pseudomonas aeruginosa.

To understand the antimicrobial mechanism of action of the metal oxide-incorporated
alumina samples, a morphological study was performed through SEM and the results are
shown in Figure 9. As it is shown, the rupture of the cell membrane and release of the
intracellular fluid is the main reason for bacteria-killing. In the case of the control sample,
the slight deformation and fissures in the cell membrane indicate the cellular activity of the
pristine alumina sample. In the case of the samples with incorporated Fe, Cu, Bi, Ga, and
Zn oxides, the clear shrinkage and rupture of the cell membrane prove the advantage of
metal oxides in the alumina structure, which enhances their biological activity. Thus, this
study opens new areas for research concerning mechanochemically synthesized porous
samples for biological applications.
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Figure 9. SEM images showing the status of cell morphology and membrane integrity of the bacterial
cells treated with Al2O3 (a), Al-Zn10-3 (b), Al-Fe10-3 (c), Al-Cu10-3 (d), Al-Ga10-3 (e) and Al-Bi10-3 (f)
(yellow arrows show the cell membrane ruptures).

3. Experimental
3.1. Chemicals

All chemicals were used as received without further purification. Catapal A (boehmite),
as an alumina precursor was provided by the Sasol Company. Triblock copolymer
poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) Pluronic P123, nitric
acid (70%), 200 proof ethanol, metal salts Fe(NO3)3·9H2O, Bi(NO3)3·5H2O, Ga(NO3)3,
Zn(NO3)2·6H2O, and Cu(NO3)2·6H2O, were supplied by Sigma-Aldrich. Deionized water
purified by the Milli-Q water purification system was used during the ball milling.

3.2. Mechanochemical Synthesis of Metal Oxide-Incorporated γ-Al2O3

The synthesis of metal oxide-incorporated γ-Al2O3 was performed using a modified
method reported by Szcześniak et al. [37]. Briefly, 1.2 g of boehmite and 3.0 g of P123 were
added to 2 mL of deionized water (DI) and 2 mL of 200-proof ethanol. Next, 100 µL of 70%
HNO3 was added, followed by the addition of the selected metal salt. The control sample
was synthesized without the addition of metal salt as depicted in Figure 1. Moreover, the
commercial γ-alumina, boehmite, and two-step ground boehmite samples were prepared as
a reference for this study. Then, the as-prepared mixture was placed in an yttria-stabilized
zirconia (YZrO2) grinding jar equipped with eight yttria-stabilized ZrO2 balls, 1 cm in
diameter each, and milled for 3 h with a rotation speed of 500 rpm using Planetary ball mill
(PM200, Retsch). The other milling time (4, 5 and 10 h) was also tested and the selected
results are shown in supporting information. The 3 h was found to be the most suitable
milling time. Paste-like materials were obtained and furthermore calcined in a quartz glass
boat for 4 h, directly in air at 600 ◦C, at a heating rate of 1 ◦C/min. This step enabled the
removal of the polymer matrix from the final product giving γ-phase alumina, formed at
the temperature range of 400–700 ◦C [39,45] with incorporated selected metal species. The
obtained samples were named Al-MeX-Y, where Al = Al2O3, Me = Fe, Cu, Zn, Bi and Ga),
x = weight percentage contribution of the metal element (5%,10% and 20%), and Y = the
total grinding time (3 h, 4 h and 10 h). The selected samples with their notions are shown
in Table 1.

3.3. Measurements and Characterizations of γ-Alumina with Incorporated Metal Oxide Species

The X-ray fluorescence (XRF) analysis (Eplison 4, Malvern Instruments Ltd., Malvern,
UK) and energy-dispersive X-ray spectroscopy (EDX, PTG Prism Si (Li), Princeton Gamma
Tech., Plainsboro, NJ, USA) were carried out to determine the elemental composition of the
samples. Wide angle X-ray diffraction (XRD) measurements were collected on a Rigaku
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Miniflex 600 X-ray diffractometer operating with a Cu anode at a voltage and current of
40 KV and 15 mA, respectively. The scan rate and the step size were 0.25◦ min−1 and
0.02◦, respectively, in the range of 10–80◦. The XRD spectra were analyzed using PDXL-2
software. A transmission electron microscope (TEM) was operated using FEI Tecnai TF20
FEG TEM at 200 KV equipped with a 4 k ultra-scan charge-coupled device (CCD) camera
for high-resolution digital images of alumina samples with incorporated metal oxides.

Nitrogen adsorption-desorption isotherms were measured at −196 ◦C on ASAP
2010/2020 volumetric adsorption analyzers manufactured by Micromeritics Instruments
Co. (Norcross, GA, USA), using 99.998% pure liquid nitrogen. Each sample was degassed
under vacuum for at least 2 h at 200 ◦C before adsorption and CO2 sorption measurements.
High-resolution thermogravimetric analysis (HR-TGA) experiments were conducted on a
TA Instruments TGA Q500 thermogravimetric analyzer. Thermogravimetric profiles were
recorded up to 950 ◦C in flowing air with a heating rate of 10 ◦C·min−1.

3.4. Calculations

Brunauer–Emmett–Teller (BET) surface areas (SBET) were calculated from N2 adsorp-
tion isotherms in the relative pressure range of 0.05–0.2. Pore size distributions (PSDs)
were obtained from the adsorption branch of isotherms using the improved Kruk–Jaroniec–
Sayari (KJS) method [46]. Pore widths (WKJS) were determined from the PSD curves at their
apex points. The single-point pore volumes were obtained from the maximum amount
adsorbed at a relative pressure of about 0.98.

3.5. Selective Catalytic Reduction of NO with Ammonia (NH3-SCR)

The catalytic performance of the selected samples was tested in the process of ammonia-
induced selective catalytic reduction of NO (NH3-SCR), in a fixed-bed flow microreactor
under atmospheric pressure in the temperature range of 150–450 ◦C [47]. To investigate
the catalytic properties of the samples, 200 mg of the catalyst was sandwiched between
the quartz cotton under flowing He. In a typical run, the reaction mixture (800 ppm NO,
800 ppm NH3 in He with 3% (v/v) addition of O2) was introduced to the catalytic microre-
actor through mass flow controllers that maintained the total flow rate of 100 cm3·min−1.
The catalytic unit downstream of the reactor was used to decompose possibly forming NO2
to NO [48]. The concentration of residual NO and N2O (a by-product of the reaction) in
the final stream was measured every 65 s by non-dispersive infrared sensor (NDIR) from
Hartmann and Braun. NO conversion was calculated according to the following formula:

NO conversion = (NOin − NOout)/NOin (1)

where: NOin—inlet concentration of NO, NOout—outlet concentration of NO.

3.6. CO2 Capture Study

Carbon dioxide adsorption was measured on an ASAP 2020 volumetric adsorption
analyzer up to ~1.15 bar pressure and at 25 ◦C. Each sample was degassed at 200 ◦C
(ramping 1 ◦C·min−1) for 2 h. Then the dewar filled with water at ambient conditions was
used to measure CO2 capture at that temperature.

3.7. Determination of Minimum Inhibitory Concentrations

Guidelines from the Clinical and Laboratory Standards Institute (CLSI) were adopted
to determine the Minimum Inhibitory Concentration (MIC) values by the broth microdilu-
tion method. The tested bacterial strains of Pseudomonas aeruginosa (PA) (ATCC 15692) and
drug-resistant PA (DRPA) (ATCC BAA 2108) were cultured [46]. Various concentrations of
Al-Me10-3 and pristine alumina as a control sample were dispersed in Nutrient Broth (NB)
medium with a given strain of bacteria at a density of 1 × 106 CFU·mL−1. The resulting
suspensions were transferred to a 96-well microtiter plate at 200 µL per well (three wells
for each compound). The plate was then incubated at 37 ◦C for 24 h. MIC values were
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determined as the lowest concentration that inhibited the visible growth of the tested
microorganisms with unaided eyes.

3.8. SEM Images of Bacteria

The morphology of incubated PA bacteria was characterized by SEM as previously
described [41]. At first, PA bacteria (1 × 109 CFU·mL−1) were treated with the control and
Al-Me10-3 samples, at MIC concentration for 2 h. Similarly, pristine alumina was taken
as a control sample with a concentration of 8 µg·mL−1. The bacterial solution was then
centrifuged at 3750 rpm for 7 min at 4 ◦C and resuspended in 1 mL of phosphate-buffered
saline (PBS) twice. Subsequently, the bacteria were fixed with PBS containing 2.5% of
glutaraldehyde. After washing with PBS three times, the bacteria were subjected to a few
minutes post-fixation with 1% tannic acid. After fixation, the sample was washed three
times with PBS, dehydrated with a series of graded ethanol solutions, dried in air, and
coated with gold. SEM images were taken using a Quanta 450 Field Emission Gun Scanning
Electron Microscope (FEG SEM).

4. Conclusions

The one-pot mechanochemical synthesis of metal oxide-incorporated alumina samples
using boehmite as an alumina precursor and liquid-assisted grinding has been shown to be
successful and satisfies the main principles of green chemistry and an eco-friendly type of
synthesis. The method helps avoid an unnecessary rise in the temperature during friction,
shear, or mechanical processing. This method provided pristine alumina with a surface
area of 320 m2·g−1 and a single point pore volume of 0.96 cm3·g−1. Reference samples
such as commercial γ-alumina, boehmite, and two-step synthesized samples show lower
surface area and smaller pore volumes. The alumina samples with incorporated metal
oxides show somewhat reduced surface area; however, there is a rise in mesoporosity and
hence in the total pore volume. The very high total pore volume is an advantageous feature
for the selective catalytic reduction of NO. It was found that the catalytic activity of metal
oxide-incorporated alumina samples is enhanced in comparison to that of pristine alumina.
The iron oxide and copper oxide species incorporated into the alumina structure results in
the samples that show the best catalytic properties in SCR (high NO conversion and very
low N2O formation under a low-temperature range—under 300 ◦C), among all the samples
tested. The materials obtained in this way are potential materials for industrial applications.
The formation of γ-alumina was possible by the appropriate thermal treatment at 600 ◦C of
the boehmite-polymer composite. High-temperature calcination facilitates a higher number
of basic sites exposed to the surface, and therefore, facilitates a higher CO2 capture. The
metal oxide-incorporated alumina samples showed an improved CO2 capture capacity at
ambient temperature compared to that of pristine alumina. The EDX elemental mapping,
XRD, TEM, and X-ray fluorescence analysis results confirmed the presence of metal oxides
in the samples as evidenced by EDX for Al-Fe10-3 and Al-Cu10-3 and an increase in the XRF
patterns intensity with increasing metal content in each sample. This was further supported
by a composition study through XRF. Most of the samples have higher percentages of the
respective metal oxides (XRF data) than the predicted percentage based on the amount
of metal salt used in the synthesis. The observed difference may be caused due to some
losses during sample processing. After proper characterization, the biological activity of
the samples was tested, and it was found that analyzed samples are quite active against
Pseudomonas aeruginosa. The best activity was obtained for Al-Me10-3. The Cu, Fe, and
Bi samples show better antimicrobial activity than pure alumina. However, the samples
with incorporated Zn and Ga oxides exhibit similar MIC values to the control pristine
alumina. Similarly, antimicrobial activity against drug-resistant PA (DRPA) was tested and
it was found that the samples Al-Cu10-3 and Al-Fe10-3 show 4 µg·mL−1, and the rest of the
samples with incorporated metal oxides show 8 µg·mL−1.
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules28052002/s1, Figure S1: EDX spectrum and
elemental mapping for γ-Al2O3 sample; Figure S2: EDX spectrum and elemental mapping for Al-
Cu10-3 sample; Figure S3: TEM image of Al-Cu10-3; Figure S4: Powder XRD patterns of Al-Fe5-3
and Al-Fe10-3 (b) in comparison with standard spectra for γ-alumina and hematite (Fe2O3); Figure
S5: TGA and DTG profiles of Pluronic (P123), Al2O3, Al-Fe5-3, Al-Fe10-3 and Al-Fe20-3 before and
after calcination; Figure S6: N2 adsorption/desorption isotherms and the corresponding pore-size
distribution curves for Al2O3-3, Al-Cu5-3, Al-Fe5-3, Al-Zn5-3, Al-Bi5-3, and Al-Ga5-3; Figure S7: N2
adsorption/desorption isotherms and the corresponding pore-size distribution curves for Al2O3-3,
Al-Cu20-3, Al-Fe20-3, Al-Zn20-3, Al-Bi20-3, and Al-Ga20-3; Figure S8: CO2 adsorption isotherms for
pristine alumina and Al-Me20-3 (Me = Fe, Cu, Zn, Bi, Ga) samples at 25 ◦C; Figure S9: Photograph
showing the MIC values for Al2O3, Al-Bi10-3, Al-Fe10-3, Al-Cu10-3, Al-Zn10-3 and Al-Ga10-3 against
drug resistant Pseudomonas aeruginosa (DRPA); Figure S10: Photograph showing the MIC values
for Al-Bi5-3, Al-Fe5-3, Al-Cu5-3, Al-Zn5-3, and Al-Ga5-3, and against Pseudomonas aeruginosa (PA);
Table S1: Textural properties of the samples with the highest metal loading; Table S2: Textural
properties of the reference samples.
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