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Abstract: The aim of this study was to determine volatile compounds in red wines of Zweigelt and
Rondo varieties using HS-SPME/GC-MS and to find a marker and/or a classification model for the
assessment of varietal authenticity. The wines were produced by using five commercial yeast strains
and two types of malolactic fermentation. Sixty-seven volatile compounds were tentatively identified
in the test wines; they represented several classes: 9 acids, 24 alcohols, 2 aldehydes, 19 esters, 2 furan
compounds, 2 ketones, 1 sulfur compound and 8 terpenes. 3,7-dimethyl-1,5,7-octatrien-3-ol (hotrienol)
was found to be a variety marker for Zweigelt wines, since it was detected in all the Zweigelt wines,
but was not present in the Rondo wines at all. The relative concentrations of volatiles were used as an
input data set, divided into two subsets (training and testing), to the support vector machine (SVM) and
k-nearest neighbor (kNN) algorithms. Both machine learning methods yielded models with the highest
possible classification accuracy (100%) when the relative concentrations of all the test compounds or
alcohols alone were used as input data. An evaluation of the importance value of subsets consisting
of six volatile compounds with the highest potential to distinguish between the Zweigelt and Rondo
varieties revealed that SVM and kNN yielded the best classification models (F-score of 1, accuracy
of 100%) when 3-ethyl-4-methylpentan-1-ol or 3,7-dimethyl-1,5,7-octatrien-3-ol (hotrienol) or subsets
containing one or both of them were used. Moreover, the best SVM model (F-score of 1) was built with a
subset containing 2-phenylethyl acetate and 3-(methylsulfanyl)propan-1-ol.

Keywords: wine adulteration; 3,7-dimethyl-1,5,7-octatrien-3-ol; HS-SPME/GC-MS; support vector
machine; k-nearest neighbor

1. Introduction

The wine sector is one of the most profitable agri-food industries [1–3]. The price of
wine should reflect its quality, which is influenced by the grape variety, terroir, vintage,
age and the style of wine. The wide price range creates opportunities for fraud aimed at
achieving greater profit. The methods of detecting wine adulteration rely on determining
deviations from the standard contents of natural components or demonstrating the presence
of a foreign component (a marker). Both methods are commonly used in scientific research,
but the latter is more accurate. Wine authentication is based on identity verification to
ensure that the product is as declared on the label [1].

Varietal adulteration of wine is defined as the addition of must produced from grape
varieties other than the labelled variety in illegal quantities [4]. It can be detected by volatile
compound analysis. The volatile compounds determining the aroma of wine originate from
grapes (varietal aromas) and are secondary products of fermentation processes (fermen-
tation aromas) and aging (post-fermentation aromas) [5]. The compounds derived from
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grapes provide varietal differentiation. Some volatile compounds synthesized in grapes
exist in volatile forms but mostly are non-volatile aroma precursors, which are released
through biochemical and chemical reactions during fermentation and aging [3,6,7]. These
compounds include monoterpenes, C13-norisoprenoids, C6-compounds, methoxypyrazines
and mercaptans [6,8,9]. Forty important monoterpenes are found in grapes, including the
following monoterpene alcohols and oxides: geraniol, linalool, citronellol, nerol, (E)-hotrienol
and cis- or (Z)-rose oxide, which have floral aromas [6].

There are two approaches to the analysis of volatile compounds: targeted analysis and
non-targeted analysis. Targeted analysis concerns selected compounds that are relevant
to the given research problem, while non-targeted analysis aims to determine as many
compounds as possible and creates patterns, which can be used to differentiate samples
using statistical methods. The non-targeted approach is more appropriate for the study of
potential markers of wine authenticity [10].

Non-targeted analysis of volatile compounds in combination with conventional sta-
tistical methods, such as principal component analysis (PCA), hierarchical component
analysis (HCA) and linear discriminant analysis (LDA), has been employed for varietal
differentiation of red wines [8,11–14]. Alternative data mining based on machine learning
(ML) algorithms has a high potential for varietal authentication [15]. SVM [16] and directed
acyclic graph (DAG) decision tree [17] have been applied to explore the volatiles’ finger-
prints of red wines. In addition, the following machine learning methods have been used
to analyze volatile compounds in white wines: SVM, random forest (RF), multilayer per-
ceptron (MLP), kNN and naive Bayes (NB) [18]. Other examples of varietal authentication
strategies include phenolic compounds/RF [19], total phenolic, flavonoid, anthocyanin
and tannin content/artificial neural networks (ANN) [20], NMR spectra/RF [21], NIR
spectra/radial basis function neural networks (RBFNN) and least-squares support vec-
tor machines (LS-SVM) [22], as well as fluorescence spectra/extreme gradient boosting
discriminant analysis (XGBDA) [23].

The OIV regulates the rules for indicating the name of the grape variety (or varieties)
on the wine label, but this information is optional [24]. The law lists the names of the
varieties authorized for the production, labeling and presentation of wine [25] but does
not provide the values of parameters and/or markers that could be used for the varietal
authentication of wines. In Poland, there is an opportunity for making false declarations of
grape variety, i.e., for designating a wine from the Rondo variety, which is one of the most
commonly grown varieties of red grapes, as a wine from the Zweigelt variety, which is less
commonly grown [26]. The aim of the present study was to determine volatile compounds
in red wines of the Zweigelt and Rondo varieties using HS-SPME/GC-MS and to find
a marker and/or a classification model for the assessment of their varietal authenticity
regardless of yeast strain and type of malolactic fermentation (MLF).

2. Results and Discussion

Initially, extractions were performed on four different fibers, polyacrylate (PA), carboxen-
polydimethylosiloxane (CAR/PDMS), polydimethylosiloxane-divinylbenzene (PDMS/DVB)
and divinylbenzene-carboxen-polydimethylosiloxane (DVB/CAR/PDMS), under the same,
standard conditions in order to select the fiber that allowed the obtention of the highest
number of tentatively identified chromatographic peaks. This is of particular importance
when a marker of wine adulteration is sought. Standard extraction conditions for all the fibers
were as follows: 3 mL of wine (undiluted) in a 7 mL vial, 0.9 g of NaCl, 50 µL of diluted
HCl, 100 µL of internal standard, minimum stirring speed, incubation temperature 40 ◦C,
incubation time 15 min, extraction temperature 40 ◦C and extraction time 30 min. Rondo
wine (R2) was used for the fiber selection. Comparison of the extraction efficiency of volatile
compounds from Rondo wine by HS-SPME using different fibers under standard extraction
conditions is shown in Figure 1. The largest number of tentatively identified peaks were
extracted on the PA fiber, and the area of these peaks was the largest among all the fibers.
Thus, the optimization of the extraction conditions was performed on the PA fiber. Rondo
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wine (R2) was used for optimization. The following parameters were optimized: addition
of NaCl (0.6 g; 1.2 g), wine dilution with water (2-fold dilution), addition of diluted HCl (no
addition; 100 µL), stirring speed (between minimum and half range; half range), extraction
temperature (30 ◦C; 50 ◦C) and extraction time (10 min; 20 min). In successive extractions,
one parameter of standard extraction conditions was changed, leaving the other parameters
unchanged. Comparison of the extraction efficiency of volatile compounds under different
conditions is shown in Figure 2. Fifty-two tentatively identified compounds were extracted
under standard conditions. The largest number of tentatively identified compounds (58)
was extracted when wine was 2-fold diluted. Although the volatiles extracted without the
addition of HCl had higher area value than those extracted with 2-fold dilution, we chose
2-fold dilution as optimal to extract as many compounds as possible. Thus, the optimal
extraction conditions for PA fiber were as follows: 1.5 mL of wine and 1.5 mL of distilled water
in a 7 mL vial (2-fold dilution), 50 µL of diluted HCl, 100 µL of internal standard, minimum
stirring speed, incubation temperature 40 ◦C, incubation time 15 min, extraction temperature
40 ◦C and extraction time 30 min. In summation, the optimal conditions for PA fiber differed
from the standard extraction conditions in that a 2-fold dilution of wine was used.
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Figure 1. Comparison of the extraction efficiency of volatile compounds from Rondo wine by HS-
SPME using different fibers under standard extraction conditions. Wine volume—3 mL in a 7 mL 
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standard—100 μL; stirring speed—minimum; temperature of sample incubation—40 °C; time of 
sample incubation—15 min; temperature of extraction—40 °C; time of extraction—30 min. The 

Figure 1. Comparison of the extraction efficiency of volatile compounds from Rondo wine by HS-
SPME using different fibers under standard extraction conditions. Wine volume—3 mL in a 7 mL
vial (undiluted wine); addition of NaCl—0.9 g; addition of diluted HCl—50 µL; addition of internal
standard—100 µL; stirring speed—minimum; temperature of sample incubation—40 ◦C; time of sample
incubation—15 min; temperature of extraction—40 ◦C; time of extraction—30 min. The results are
expressed as (A) number of tentatively identified peaks and (B) area of tentatively identified peaks.
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Figure 2. Comparison of the extraction efficiency of volatile compounds from Rondo wine (R2) by
HS-SPME using a PA fiber under different conditions. The results are expressed as (A) number of
tentatively identified peaks and (B) area of tentatively identified peaks.

Sixty-seven volatile compounds were tentatively identified in the Zweigelt and Rondo
wines; they are presented in Table 1. These compounds represent several classes: acids
(9 compounds), alcohols (24 compounds), aldehydes (2 compounds), esters (19 compounds),
furan compounds (2 compounds), ketones (2 compounds), sulfur compounds (1 compound)
and terpenes (8 compounds). The relative concentrations of volatile compounds in the wines
produced from grapes of the Zweigelt and Rondo varieties are shown in Tables S1 and S2 in
the Supplementary Material, respectively. Also, chromatograms of the volatile compounds
of Zweigelt and Rondo wines are shown in Figures S1 and S2 in the Supplementary Mate-
rial, respectively. To verify whether the tested wines differed in the proportions of aroma
compound classes, the subtotal concentration of the particular classes and their percentage
share in the total content of volatile compounds were calculated. The proportions of volatile
compounds in Zweigelt and Rondo wines were similar. A majority of the aroma compounds
were alcohols considering their number and the concentration of volatiles identified in the
wines. The concentrations of alcohols were 67.28–80.10% of the total volatile compounds
in Zweigelt wines and 67.12–87.78% in Rondo wines. Both Zweigelt and Rondo wines had
average concentrations of esters and acids. The concentrations of esters ranged from 6.88% to
17.42% in Zweigelt wines, and from 5.25% to 18.03% in Rondo wines, and acids ranged from
6.69% to 12.73% and from 4.29% to 11.39%, respectively. The minor compounds were ketones,
terpenes, aldehydes, sulfur compounds and furan compounds.
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Table 1. Volatile compounds identified in Zweigelt and Rondo wines.

Peak No. Compound Similarity (%) RT (min) LTPRI Exp. LTPRI Lit. References

Acids
20 Acetic acid 99 34.874 1469 1457 [27]
28 Propanoic acid 89 39.088 1554 1536 [27]
31 2-Methylpropanoic acid 98 40.221 1580 1573 [28]
52 Hexanoic acid 98 48.552 1852 1851 [28]
59 Octanoic Acid 98 53.311 2061 2067 [28]
60 Nonanoic acid 94 55.426 2167 2170 [27]
63 Decanoic acid 98 57.416 2270 2281 [28]
66 Benzoic acid 78 61.369 2449 2434 [29]
67 Dodecanoic acid 93 62.125 2479 2488 [28]

Alcohols
2 2-Methylpropan-1-ol 98 16.232 1121 1100 [30]
4 Butan-1-ol 97 18,828 1171 1173 [27]
5 3-Methylbutan-1-ol 99 21.775 1228 1221 [31]
6 Pentan-1-ol 95 23.532 1263 1259 [28]
8 4-Methylpentan-1-ol 96 26.403 1319 1309 [32]
9 3-Methylpentan-1-ol 98 26.989 1330 1322 [32]
11 Hexan-1-ol 98 28.237 1353 1361 [28]
12 (E)-3-Hexen-1-ol 96 28.867 1365 1358 [32]
13 3-Ethoxypropan-1-ol 93 29.520 1378 1371 [27]
14 (Z)-3-Hexen-1-ol 90 29.925 1386 1379 [32]
18 Octen-3-ol 96 33.955 1454 1451 [33]
19 Heptan-1-ol 97 34.282 1459 1470 [27]
22 2-Ethylhexan-1-ol 98 36.215 1491 1486 [32]
23 3-Ethyl-4-methylpentan-1-ol 92 37.176 1509 1509 [27]
26 Butane-2,3-diol 98 38.732 1545 1563 [27]
29 Octan-1-ol 99 39.344 1560 1567 [28]
32 Propane-1,2-diol 90 40.855 1595 1591 [27]
34 2-(2-Ethoxyethoxy)- ethanol 96 41.732 1620 1622 [27]
39 Nonan-1-ol 97 43.083 1660 1656 [29]
46 Decan-1-ol 95 46.147 1761 1755 [29]
54 Phenylmethanol 80 49.320 1883 1879 [34]
56 2-Phenylethanol 97 50.168 1919 1919 [28]
57 Dodecan-1-ol 97 51.181 1963 1959 [29]
65 Hexadecan-1-ol 96 59.427 2368 2400 [33]

Aldehydes
24 Benzaldehyde 92 37.892 1526 1522 [28]
38 4-Methylbenzaldehyde 92 42.774 1651 1638 [32]

Esters
1 Ethyl 3-methylbutanoate 93 14.443 1079 1066 [32]
10 Ethyl 2-hydroxypropanoate 98 27.943 1348 1338 [27]
15 Methyl octanoate 87 29.967 1386 1381 [27]
16 Ethyl octanoate 98 32.775 1434 1429 [27]

21 2-Methylpropyl
2-hydroxypropanoate 94 34.665 1465 1454 [35]

25 Ethyl nonanoate 91 38.340 1536 1540 [28]

30 3-Methylbutyl
2-hydroxypropanoate 98 39.889 1572 1568 [35]

37 Ethyl decanoate 95 42.336 1638 1643 [27]
40 Ethyl benzoate 87 43.403 1669 1665 [27]
41 Diethyl butanedioate 96 43.675 1677 1672 [32]
42 Ethyl 9-decenoate 92 44.067 1689 1697 [28]
47 Methyl 2-hydroxy benzoate 82 46.712 1781 1775 [27]
48 Ethyl phenylacetate 95 46.937 1789 1787 [28]
49 2-Phenylethyl acetate 97 47.730 1819 1810 [32]
51 Ethyl dodecanoate 91 48.281 1841 1840 [29]
55 Ethyl 3-phenylpropanoate 92 49.464 1889 1892 [27]
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Table 1. Cont.

Peak No. Compound Similarity (%) RT (min) LTPRI Exp. LTPRI Lit. References

58 Diethyl-2-hydroxybutanedioate 89 52.939 2044 2038 [27]
61 Methyl hexadecanoate 92 56.302 2212 2211 [29]
62 Ethyl hexadecanoate 84 56.970 2247 2243 [27]

Furan compounds
35 Ethyl 2-furoate 87 41.936 1626 1627 [27]
36 Dihydrofuran-2(3H)-one 89 42.283 1636 1627 [28]

Ketones
3 4-Methyl-3-penten-2-one 98 17.497 1145 1139 [36]
7 3-Hydroxybutan-2-one 93 25.403 1300 1289 [28]

Sulphur compounds
44 3-(Methylsulfanyl)propan-1-ol 96 45.001 1720 1715 [32]

Terpenes
17 (Z)-Linalool oxide 96 33.397 1444 1446 [29]

27 3,7-Dimethyl-1,6-octadien-3-ol
(β-Linalol) 93 38.922 1550 1554 [27]

33 3,7-Dimethyl-1,5,7-octatrien-3-ol
(Hotrienol) 96 41.425 1610 1603 [29]

43 3-Cyclohexene-1-methanol,α,α,4-
trimethyl-(α-Terpineol) 87 44.322 1697 1694 [29]

45
1,1,6-Trimethyl-1,2-

dihydronaphthalene
(TDN)

85 45.774 1747 1737 [28]

50
(E)-1-(2,6,6-trimethyl-1,3-

cyclohexadien-1-yl)-2-buten-1-one
(β-Damascenone)

96 47.843 1823 1821 [29]

53
(E)-6,10-dimethyl-5,9-Undecadien-

2-one
(Geranylacetone)

97 48.627 1855 1855 [29]

64
(E,E)-3,7,11-trimethyl-2,6,10-

Dodecatrien-1-ol
((E,E)-Farnesol)

91 58.976 2347 2366 [29]

RT—retention time; RTPRI exp.—retention index experimentally determined; RTPRI lit.—retention index reported
in the literature for a CP-Wax columns or equivalent stationary phase.

The total concentration of volatile compounds tentatively identified in Zweigelt wines
ranged from 1969.81 µg/L to 4260.79 µg/L (Table S1). The Z3 wine had the lowest concentra-
tion of volatile compounds—Z5 had the highest. The lowest subtotal concentration of alcohols
was found in Z3 (1325.32 µg/L) and the highest in Z5 (3412.74 µg/L). The dominant alcohols
in the Zweigelt wines were 3-methylbutan-1-ol, 2-phenylethanol and 2-methylpropan-1-ol.
The subtotal concentration of esters ranged from 181.31 µg/L in Z4 to 472.89 µg/L in Z1LAB.
This volatile fraction was mainly composed of ethyl 2-hydroxypropanoate, ethyl octanoate
and diethyl butanedioate. We did not identify ethyl acetate, unlike Jurek [37]. The subtotal con-
centration of acids varied from 202.631 µg/L in Z3 to 358.72 µg/L in Z5, and the major acids
were octanoic, hexanoic and acetic acid. Zweigelt wines contained between 62.25 µg/L and
139.32µg/L of ketones in Z4LAB and Z1, respectively. Of the two ketones tentatively identified
in those wines, 4-methyl-3-penten-2-one was the more abundant one. The subtotal concentra-
tion of terpenes ranged from 1.99 µg/L in Z1LAB to 55.05 µg/L in Z1. Among the tentatively
identified terpenes, (E)-6,10-dimethyl-5,9-undecadien-2-one (geranylacetone) occurred at
the highest relative concentrations, followed by (E)-1-(2,6,6-trimethyl-1,3-cyclohexadien-1-
yl)-2-buten-1-one (β-damascenone) and 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN). The
subtotal concentration of aldehydes varied from 0.60 µg/L in Z2 to 15.26 µg/L in Z5. Ben-
zaldehyde was the more abundant compound of the two detected aldehydes. The relative
content of the only sulfur compound (3-(methylsulfanyl) propan-1-ol) tentatively identified
in this present study ranged from 0.66 µg/L in Z2 LAB to 1.63 µg/L in Z1LAB. Finally, the
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relative concentrations of the two furan compounds varied from 0.37 µg/L in Z3 to 1.61 µg/L
in Z4LAB.

The relative concentrations of total volatile compounds in the Rondo wines ranged
from 1986.35 µg/L in R3LAB to 3846.62 µg/L in R5 (Table S2). The subtotal concentra-
tion ranged from 1333.15 to 3273.99 µg/L for alcohols, 147.90–527.25 µg/L for esters,
130.02–250.04 µg/L for acids, 45.79–106.65 µg/L for ketones, 1.21–56.21 µg/L for terpenes,
3.62–6.81 µg/L for aldehydes, 0.34–5.98 µg/L for furan compounds and 1.51–3.11 µg/L
for the sulfur compound. The Rondo wines were characterized by a high relative contents
of the alcohols 3-methylbutan-1-ol, 2-phenylethanol and 2-methylpropan-1-ol, the esters
ethyl 2-hydroxypropanoate, ethyl octanoate and diethyl butanedioate, octanoic, acetic and
hexanoic acids, the ketone 4-methyl-3-penten-2-one, the terpenes (E)-6,10-dimethyl-5,9-
undecadien-2-one (geranylacetone) and (Z)-linalool oxide, as well as benzaldehyde and
dihydrofuran-2(3H)-one. The main compounds in individual classes of volatiles were the
same as in our previous papers [38–40] with the exception of octanoic acid. This compound
was the main acid in the present study, while acetic acid was reported as the most abundant
acid in our previous papers [38,40]. 3-(Methylsulfanyl) propan-1-ol was the only sulfur
compound tentatively identified in this study, which is in agreement with our previous
papers [38,40] and in contrast with work by Liu et al. [41], in which 2-methyldihydro-3(2H)-
thiophenone was the only sulfur compound identified.

When comparing all the test wines produced from grapes of the Zweigelt and Rondo
varieties, we found that some of the Zweigelt wines did not contain some of the compounds
tentatively identified in all Rondo wines and vice versa. Some Zweigelt wines did not con-
tain benzoic acid, octen-3-ol and benzaldehyde, while some Rondo wines did not contain
2-methylpropanoic acid, butan-1-ol, ethyl benzoate, ethyl 9-decenoate, (Z)-linalool oxide
and 3,7-dimethyl-1,6-octadien-3-ol (β-linalool). One of the volatile compounds tentatively
identified in this study—3,7-dimethyl-1,5,7-octatrien-3-ol (hotrienol)—was detected in all
Zweigelt wines but was not present in the Rondo wines at all. This means that hotrienol
can be used as a marker for Zweigelt wines. Hotrienol belongs to the class of terpenes. Ju-
rek [38] identified this terpene as well as several other terpenes, such as linalool, α-terpineol,
citronellol, vitispiran and TDN, in Zweigelt wines.

Wines produced from the same grape variety, Zweigelt or Rondo (Z1–Z5 or R1–R5), in
which AF was carried out by different commercial yeast strains and MLF was spontaneous,
differed in the relative concentrations of individual volatile compounds. Furthermore, among
Z1–Z5 wines, only Z1 contained (E)-6,10-dimethyl-5,9-undecadien-2-one (geranylacetone) and
among R1–R5 wines, only R2 contained (Z)-linalool oxide. Thus, the yeast strain influenced the
content of these compounds. Similarly, Gammacurta et al. [42] showed that the concentrations
of esters in Cabernet Sauvignon wines from the Bordeaux region depended on the commercial
strain of S. cerevisiae used. Moreover, Liu et al. [43] found that volatile compounds levels,
including terpene levels, were contingent on yeast strains. The different levels of terpenes
may have been a product of the activity of β-glucosidase secreted by yeast and releasing
monoterpene alcohol from the bound terpenoid precursor. However, several terpenoids can
also be synthesized by S. cerevisiae by the de novo pathway. Additionally, the production of
terpene alcohols was related to other reactions, such as chemical isomerization, hydration or
reduction, conducted by wine yeasts [44].

In the case of Zweigelt wines subjected to different types of MLF, i.e., spontaneous MLF
(Z1–Z5) or induced MLF (Z1 LAB–Z5 LAB), the relative contents of 2-phenylethyl acetate
and dihydrofuran-2(3H)-one (butyrolactone) were lower in the former compared to the latter
wines. On the other hand, the relative contents of diethyl-2-hydroxybutanedioate and methyl
hexadecanoate were higher in the Z1–Z5 wines compared to the Z1LAB–Z5LAB wines. As
for Rondo wines subjected to spontaneous MLF (R1–R5) and induced MLF (R1 LAB–R5
LAB), the relative contents of ethyl 2-hydroxypropanoate (ethyl lactate), 2-methylpropyl 2-
hydroxypropanoate (isobutyl lactate), 3-methylbutyl 2-hydroxypropanoate (isoamyl lactate),
2-phenylethyl acetate and dihydrofuran-2(3H)-one were lower in the former compared to the
latter wines. However, the contents of ethyl benzoate, ethyl hexadecanoate and (E)-1-(2,6,6-
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trimethyl-1,3-cyclohexadien-1-yl)-2-buten-1-one (β-damascenone) were higher in R1–R5 than in
R1LAB–5LAB. Wines R1–R5 contained diethyl-2-hydroxybutanedioate (diethyl malate), while
R1LAB–5LAB did not contain this compound. Our results regarding the relative content of
ethyl lactate in wines subjected to different types of MLF are in agreement with the results of
Abrahamse and Bartowsky [45], Costello et al. [46], Lasik-Kurdyś et al. [47], Malherbe et al. [48]
and our previous research [38]. All these authors state that ethyl lactate is a characteristic volatile
product of MLF. Also, the results of the analysis of butyrolactone and 2-phenylethyl acetate
conducted in this present study are similar to our previous findings [38]. In contrast to our
study, Abrahamse and Bartowsky [45] reported that the concentration of 2-phenylethyl acetate
was higher in wine subjected to spontaneous MLF compared to induced MLF. On the other
hand, Costello et al. [46], Lasik-Kurdyś et al. [47] and Malherbe et al. [48] found that the type of
MLF had no significant effect on the content of 2-phenylethyl acetate.

In our study, PCA was used for preliminary data analysis to visualize the potential
grouping of samples. PCA is based on a linear transformation of data into a set of new
orthogonal variables called principal components [10,16,21,49]. The PCA for all the com-
pounds revealed that, according to the Kaiser–Guttman criterion, the first 14 principal
components had eigenvalues greater than 1 and this explained 85.85% of the total variance.
Analyzing the location of the points representing the data on the plane formed by the first
two principal components, we found that grape variety may be a factor differentiating
the wines (Figure 3). However, the two principal components explained only 39.59% of
the variance. A PCA run for alcohols showed that the first 6 principal components had
eigenvalues greater than 1 and explained 77.33% of the total variance. An analysis of the
wines on a plane spanning the first two principal components indicated that the wines
formed two varietal groups (Figure 4). The first two principal components explained
53.15% of the total variance. PCA for the other classes of volatile compounds, acids, esters,
terpenes and others (aldehydes, furan compounds, ketones and the sulfur compound), did
not indicate that the wines could be grouped by variety.
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Figure 3. Score plot on the PCA plane defined by the first two principal components for all volatile
compounds found in the wine samples. Z1–Z5—Zweigelt wines in which AF was induced using
various yeast strains and MLF was spontaneous. Z1 LAB–Z5 LAB—Zweigelt wines in which AF
was induced using various yeast strains (the same strains as in Z1–Z5 wines) and MLF was carried
out by inoculation with lactic acid bacteria. R1–R5—Rondo wines in which AF was induced using
various yeast strains and MLF was spontaneous. R1 LAB–R5 LAB—Rondo wines in which AF was
induced using various yeast strains (the same strains as in R1–R5 wines) and MLF was carried out by
inoculation with lactic acid bacteria.
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Figure 4. Score plot on the PCA plane defined by the first two principal components for alcohols
found in the wine samples. Z1–Z5—Zweigelt wines in which AF was induced using various yeast
strains and MLF was spontaneous. Z1 LAB–Z5 LAB—Zweigelt wines in which AF was induced using
various yeast strains (the same strains as in Z1–Z5 wines) and MLF was carried out by inoculation
with lactic acid bacteria. R1–R5—Rondo wines in which AF was induced using various yeast strains
and MLF was spontaneous. R1 LAB–R5 LAB—Rondo wines in which AF was induced using various
yeast strains (the same strains as in R1–R5 wines) and MLF was carried out by inoculation with lactic
acid bacteria.

Although PCA allowed us to separate the two grape varieties for wine production in
the case of all the investigated compounds and alcohols, the first two principal components
failed to explain the variance sufficiently. Therefore, alternative data treatment methods,
SVM and kNN, were used. The advantage of using these machine learning techniques is
that they do not require any assumptions to be made about data distribution or homogeneity
of variances [49,50].

SVM is a supervised technique whose aim is to find a hyperplane in a p-dimensional
space (p is the number of variables) to separate classes of data [49,50]. The major advantage
of SVM is that the learning capacity is good enough even if there are many features. To
separate two classes of data, several possible hyperplanes could be chosen [15]. In this
study, we implemented SVM using a radial basis function (RBF) kernel. Table 2 shows
the classification accuracy of SVM depending on the relative content of the investigated
volatile compounds in the test set and by variety. Using SVM for all the test compounds or
separately for alcohols only, we obtained models with the highest possible classification
accuracy (100%). When acids alone were considered, it was possible to classify the wines
in the test set at an accuracy of 93.33%, with Rondo wines classified at 87.5% accuracy
and Zweigelt wines classified at 100% accuracy. When terpenes only were taken into
account, the classification accuracy was 93.33% in the test set; Rondo wines were classified
at 100% accuracy and Zweigelt wines at 83.3% accuracy. The weakest classification accuracy
(86.67%) was achieved for wines using models built on the basis of the seven compounds
from the ‘others’ group and esters. Overall, SVM provided a more accurate classification
of the Zweigelt wines than of the Rondo wines. The wines of the Zweigelt variety were
classified at 100% accuracy by analyzing the relative content of all compounds, acids alone,
alcohols alone and esters alone. A 100% classification accuracy for the Rondo wines was
achieved when we analyzed all compounds, alcohols alone and terpenes alone.
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Table 2. Classification accuracy of SVM method in the test set and in the subsets of Rondo and
Zweigelt wines (%).

Accuracy
Compound Test Set Rondo Zweigelt

Acids 93.33 87.50 100
Alcohols 100 100 100

Esters 86.67 71.43 100
Terpenes 93.33 100 83.33
Others 86.67 87.50 85.71

All 100 100 100

kNN is a supervised machine learning technique mainly used for classification problems.
This technique consists in classifying a data point by analyzing the nearest data points. The
advantage of kNN is that the use of the same or a very similar number of samples for the
analyzed classes results in a reliable classification [15]. In this study, kNN was implemented
with a Euclidean distance measure between data points. Table 3 presents the classification
accuracy of KNN in the test set and by variety with the optimal number of k nearest neighbors.
When all the test compounds or alcohols alone were considered, kNN allowed the obtention
of models with the highest possible classification accuracy (100%). When esters only were
taken into account, the classification accuracy was 93.33% in the test set, with wines of the
Rondo variety classified at 100% accuracy and the Zweigelt wines at 88.89% accuracy. For
terpenes, the classification accuracy was 93.33% in the test set; Rondo and Zweigelt wines
were classified at 90% and 100% accuracy, respectively. Again, the model obtained on the basis
of the compounds belonging to the ‘others’ group provided the weakest classification accuracy
(80%). Similarly to SVM, kNN provided a more accurate classification of the Zweigelt wines
than of the Rondo wines. The Zweigelt wines were classified 100% correctly when the relative
contents of all compounds, alcohols only, terpenes only and others only were analyzed; 100%
correct classification of Rondo wines was achieved when we considered all the compounds,
or alcohols only or esters only.

Table 3. Classification accuracy of kNN method in the test set and in the subsets of Rondo and
Zweigelt wines (%).

Accuracy
Compound Test Set Rondo Zweigelt

Acids 1 86.67 87.50 85.71
Alcohols 1 100 100 100

Esters 93.33 100 88.89
Terpenes 1 93.33 90 100

Others 80 72.73 100
All 100 100 100

1—for these compounds k = 1 for KNN method; for the remaining compounds k = 3.

In this study, the relative concentrations of all volatile compounds or alcohols alone
were used as an input data set for the successful varietal authentication of Polish wines
by SVM and kNN. In the past, Gómez-Meire et al. [18] investigated the suitability of
applying a semi-quantitative analysis of volatiles and different machine learning techniques,
such as SVM, RF, MLP, kNN and NB, for the classification of Spanish wines from four
autochthonous white grape varieties (Albariño, Treixadura, Loureira and Dona Branca).
The authors obtained perfect classification by the RF algorithm using all the volatiles
determined in the wines, while the other techniques yielded promising results using only
some classes of volatile compounds. Moreover, some authors had used modeling of GC-MS
fingerprints. Majchrzak et al. [16] applied SVM to classify white and red wines according
to the variety and obtained an accuracy of 98.7 and 98.2%, respectively. On the other hand,
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Springer [17] used a decision tree for the authentication of similar grape varieties for wine
production and achieved 85–98% correct classification of external samples.

According to Costa et al. [51], the variable selection method allows to reduce com-
putation time, improve prediction and better understand the data in machine learning
methods. It is possible to simplify the classification model by eliminating redundant or
irrelevant variables from the data set. A nonparametric Mann–Whitney test was used to
verify whether the wines made from Zweigelt and Rondo varieties differed in the content
of the studied compounds. Based on the results, the number of variables was reduced to
37. In the next step, in order to further reduce the number of variables, after analyzing
the p-value (p-value < 0.0000001 in the Mann–Whitney test, Table S3 in the Supplementary
Materials), descriptive statistics (mean, maximum, minimum and variance) of the tested
compounds and the values of factor loadings in the PCA analysis (variables with the high-
est factor loadings given by PCA for the first two principal components, Figure S3 in the
Supplementary Materials), six of the compounds with the highest potential to distinguish
between Zweigelt and Rondo wines were selected: 3-ethyl-4-methylpentan-1-ol, octen-
3-ol, butane-2,3-diol, 2-phenylethyl acetate, 3,7-dimethyl-1,5,7-octatrien-3-ol (hotrienol)
and 3-(methylsulfanyl)propan-1-ol. Then, one-, two-, three-, four-, and five-variable sub-
sets of the selected compounds were constructed. SVM and kNN were applied to the
subsets as well as to the entire set of the selected compounds. The importance value of
these subsets was evaluated on the basis of the F-score. It was revealed that SVM and
kNN methods yielded the best classification models (F-score of 1 and accuracy of 100%)
when 3-ethyl-4-methylpentan-1-ol or 3,7-dimethyl-1,5,7-octatrien-3-ol (hotrienol) or sub-
sets containing one or both of them were taken into account. This was due to two facts.
Firstly, Zweigelt wines were characterized by a much higher relative content of 3-ethyl-4-
methylpentan-1-ol, an average of 1.21 µg/L (min = 0.67, max = 1.96), than Rondo wines,
which on average contained 0.18 µg/L (min = 0, max = 0.39) of this compound, and sec-
ondly, 3,7-dimethyl-1,5,7-octatrien-3-ol (hotrienol) was not present in the Rondo wines at
all but was detected in all samples of the Zweigelt wine at an average concentration of
0.60 µg/L (min = 0.27, max = 1.31). The accuracy of classification and F-score values are
shown in Table 4 and Figure 5, respectively. The subsets of two or more variables containing
3-ethyl-4-methylpentan-1-ol or 3,7-dimethyl-1,5,7-octatrien-3-ol (hotrienol) were omitted to
simplify the presentation. Moreover, the best model (F-score of 1) was built with subset
T6 containing 2-phenylethyl acetate and 3-(methylsulfanyl)propan-1-ol for SVM because
Zweigelt and Rondo wines differed in the relative concentrations of these compounds. The
average concentration of 2-phenylethyl acetate in Zweigelt wines was 1.12 µg/L (min = 0,
max = 4.37) while in Rondo wines it was 4.71 µg/L (min = 0, max = 12.38). In turn, the
average concentration of 3-(methylsulfanyl)propan-1-ol in Zweigelt wines was 1.11 µg/L
(min = 0.54, max = 1.70) and in Rondo wines was 2.20 µg/L (min = 1.08, max = 3.89). The
worst models (F-score of 0.75) were built with subsets O1 and T2 (accuracy of 73.33%) using
SVM. The worst kNN model (F-score equal 0.36) was obtained for 2-phenylethyl acetate
(accuracy of 53.33%).

Table 4. Subsets formed from selected compounds.

Accuracy (%)
Notations Compounds SVM kNN

O1 octen-3-ol 73.33 73.33
O2 3-ethyl-4-methylpentan-1-ol 100 100
O3 butane-2,3-diol 86.67 60.00
O4 2-phenylethyl acetate 93.33 53.33

O5 3,7-dimethyl-1,5,7-octatrien-3-ol
(hotrienol) 100 100
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Table 4. Cont.

Accuracy (%)
Notations Compounds SVM kNN

O6 3-(methylsulfanyl)propan-1-ol 86.67 80.00
T1 octen-3-ol; butane-2,3-diol 80.00 73.33
T2 octen-3-ol; 2-phenylethyl acetate 73.33 73.33

T3 octen-3-ol;
3-(methylsulfanyl)propan-1-ol 80.00 73.33

T4 butane-2,3-diol; 2-phenylethyl acetate 86.67 80.00

T5 butane-2,3-diol;
3-(methylsulfanyl)propan-1-ol 93.33 93.33

T6 2-phenylethyl acetate;
3-(methylsulfanyl)propan-1-ol 100 86.67

TR1 octen-3-ol; butane-2,3-diol;
2-phenylethyl acetate 80.00 86.67

TR2 octen-3-ol; butane-2,3-diol;
3-(methylsulfanyl)propan-1-ol 73.33 80.00

TR3 octen-3-ol; 2-phenylethyl acetate;
3-(methylsulfanyl)propan-1-ol 80.00 86.67

TR4 butane-2,3-diol; 2-phenylethyl acetate;
3-(methylsulfanyl)propan-1-ol 93.33 93.33

F
octen-3-ol; butane-2,3-diol;

2-phenylethyl acetate;
3-(methylsulfanyl)propan-1-ol

80.00 86.67

O1–O6—denote the one-element groups; T1–T6—groups including two elements; TR1–TR4—groups including
three elements; F—the four-element group.
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3. Materials and Methods
3.1. Winemaking Process and Wine Samples

The details of the winemaking process are presented in our previous article [26]. The
grapes of the Zweigelt and Rondo varieties originated from ‘Małe Dobre’ and ‘Dom Bliskow-
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ice’ vineyards, respectively. The vineyards are located in the Lublin Province, Poland. The
parameters of grape musts used for fermentation were as follows: Zweigelt must—extract
value 22 Blg, pH 3.31, total acidity as tartaric acid 6 g/L; Rondo must—extract value 20 Blg,
pH 3.61, total acidity as tartaric acid 6.45 g/L. Alcoholic fermentation (AF) was performed
using five commercial yeast strains: four Saccharomyces cerevisiae (SafOEno TM SC 22, Essen-
tiale Grand Cru (Lesaffre, France), Siha Active Yeast 8 and Siha Rubino Cru (Eaton, Tinton
Falls, NJ, USA)) and one S. cerevisiae x S. bayanus (SafOEno TM HD S62 (Lesaffre, France)) for
both Zweigelt and Rondo wines. One part of the wines was left to undergo spontaneous MLF
without inoculation with lactic acid bacteria (LAB), and the remaining parts were subjected to
MLF by inoculation with the LAB Oenococcus oeni—Viniflora Oenos (Eaton, Tinton Falls, NJ,
USA). O. oeni starter culture was added after the completion of AF (sequential inoculation)
to the part of wines in which MLF was induced. The winemaking process was performed
in duplicate. The parameters of the final wines, such as individual sugars, acids, pH and
total acidity, are presented in the supplementary material to our previous article [26]. Table 5
presents a description of wines. Twenty different wines were produced from October 2017
to April 2018 and analyzed in April 2019. Three bottles of each wine were taken for analysis
(60 samples in total).

Table 5. Description of wine samples.

Wine Code Grape Variety Yeast Lactic Acid Bacteria

Z1 Zweigelt SafŒno™ SC 22 -
Z1 LAB Zweigelt SafŒno™ SC 22 Viniflora Oenos

Z2 Zweigelt SafŒno™ HD S62 -
Z2 LAB Zweigelt SafŒno™ HD S62 Viniflora Oenos

Z3 Zweigelt Essentiale Grand Cru -
Z3 LAB Zweigelt Essentiale Grand Cru Viniflora Oenos

Z4 Zweigelt Siha Active Yeast 8 -
Z4 LAB Zweigelt Siha Active Yeast 8 Viniflora Oenos

Z5 Zweigelt Siha Rubino Cru -
Z5 LAB Zweigelt Siha Rubino Cru Viniflora Oenos

R1 Rondo SafŒno™ SC 22 -
R1 LAB Rondo SafŒno™ SC 22 Viniflora Oenos

R2 Rondo SafŒno™ HD S62 -
R2 LAB Rondo SafŒno™ HD S62 Viniflora Oenos

R3 Rondo Essentiale Grand Cru -
R3 LAB Rondo Essentiale Grand Cru Viniflora Oenos

R4 Rondo Siha Active Yeast 8 -
R4 LAB Rondo Siha Active Yeast 8 Viniflora Oenos

R5 Rondo Siha Rubino Cru -
R5 LAB Rondo Siha Rubino Cru Viniflora Oenos

3.2. Chemicals

Sodium chloride and hydrochloric acid were obtained from POCh (Gliwice, Poland).
Sodium chloride was oven dried at 200 ◦C overnight. Hydrochloric acid (37%) was dis-
solved in water at a concentration of 78 g/L. 4-Hydroxy-4-methyl-2-pentanone (the internal
standard) was purchased from Sigma-Aldrich (Saint Louis, MO, USA) and prepared in
water at a concentration of 7 mg/L. A mixture of n-alkanes (C7–C30) for the calculations
of linear temperature programmed retention indices (LTPRI) was supplied by Supelco
(Bellefonte, PA, USA). All chemicals were of an analytical grade.

3.3. SPME-GC/MS
3.3.1. HS-SPME

A fiber for the extraction of wines was selected from the following fibers: PA, CAR/PDMS,
PDMS/DVB and DVB/CAR/PDMS (Supelco, Bellefonte PA, USA). The fibers were precondi-
tioned according to the manufacturer’s instructions. Standard extraction conditions for all
the fibers were as follows: in a glass vial of 7 mL, 0.9 g of NaCl, 3 mL of wine (undiluted),
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50 µL of diluted HCl, 100 µL of 4-hydroxy-4-methyl-2-pentanone (as an internal standard)
and a magnetic stirring bar was placed. Rondo wine (R2) was used for the fiber selection.
The vial was tightly capped with a polytetrafluoroethylene (PTFE)-silicone septum (Supelco,
Bellefonte, PA, USA), on which a screw cap with a hole was placed. The vial was placed on
an MS7-H550-S hotplate magnetic stirrer (DLAB Scientific Co., Beijing, China) in a block to
ensure uniform heat distribution. Each wine sample was incubated at 40 ◦C for 15 min under
continuous stirring at a minimum speed prior to extraction. Then, the fibers were exposed
to the headspace (HS) at 40 ◦C for 30 min under continuous stirring. After extraction, the
fiber was removed from the vial and thermally desorbed in the GC injection port for 2 min at
220 ◦C in split-less mode. Prior to each analysis, the fiber was cleaned by inserting into the
auxiliary GC injection port at 280 ◦C for 5 min.

SPME conditions were optimized on PA fiber. Rondo wine (R2) was used for opti-
mization. The following parameters were optimized: addition of NaCl (0.6 g; 1.2 g), wine
dilution with water (2-fold dilution), addition of diluted HCl (no addition; 100 µL), stirring
speed (between minimum and half range; half range), extraction temperature (30 ◦C; 50 ◦C)
and extraction time (10 min; 20 min). In successive extractions, one parameter of standard
extraction conditions was changed, leaving the other parameters unchanged. The optimal
extraction conditions for PA fiber were as follows: 0.9 g of NaCl, 1.5 mL of wine, 1.5 mL of
distilled water, 50 µL of diluted HCl, 100 µL of 4-hydroxy-4-methyl-2-pentanone, incuba-
tion at 40 ◦C for 15 min under continuous stirring at a minimum speed prior to extraction
and exposition to the headspace (HS) at 40 ◦C for 30 min under continuous stirring. All
wines were extracted under optimal conditions.

3.3.2. GC/MS

The wines were analyzed in triplicate using a GCMS-QP2010 gas chromatograph cou-
pled to a quadrupole mass spectrometer (Shimadzu, Kyoto, Japan). The chromatographic
technique was presented in our previous publication [38]. Chromatographic separations
were carried out using a VF-WAXms capillary column with the following characteristics:
60 m, 0.25 mm ID × 0.25 µm film thickness and 100% polyethylene glycol (Agilent, Santa
Clara, CA, USA). The carrier gas was helium at a flow rate of 1.8 mL/min. The column
oven temperature program was as follows: initial temperature 34 ◦C for 5 min, 34–100 ◦C
at a rate of 3 ◦C/min and held for 6 min and 100–220 ◦C at a rate of 5 ◦C/min and held
for 15 min. The total run time was 72 min. An electron ionization source was used with
a source temperature of 200 ◦C and an electron energy of 70 eV. Mass spectral data were
collected over the range of m/z 30–300 in the full scan mode (scan time 0.4 s). Data were
acquired using GCMSsolution software version 2. Volatile compounds were tentatively
identified on the basis of their mass spectra and experimental LTPRI. Mass spectrometric
information of each chromatographic peak was compared to the NIST 05 mass spectral
library, considering a minimum similarity value of 80%. A mixture of n-alkanes (C7–C30)
diluted in hexane (Supelco, Bellefonte, PA, USA) was loaded onto the SPME fiber and
injected under the temperature program mentioned earlier in this subsection to calculate
experimental LTPRI of each extracted compound. Experimental LTPRIs were compared
to the retention indices reported in the literature for similar chromatographic columns.
Semi-quantitative data of the aroma compounds were calculated by dividing the peak area
of a compound with the peak area of the internal standard and multiplying the result with
the concentration of the internal standard (233.33 µg/L). The concentrations of the volatiles
were expressed as µg/L.

3.4. Statistical Analysis

The data were analyzed statistically using the Statistica 13.3 software package (Statsoft,
Krakow, Poland) and open-source software Python 3.7, library: Scikit-learn. All the test
compounds were analyzed and divided into groups: acids, alcohols, esters, terpenes
and others (the group “others” included aldehydes, furan compounds, ketones and sulfur
compound). PCA was used for preliminary data analysis to visualize the potential grouping
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of samples. In PCA, significant principal components were selected based on the Kaiser–
Guttman criterion (principal components whose eigenvalues were greater than 1 were
chosen). The SVM and kNN machine learning techniques were used for data classification.
SVM using a radial basis function (RBF) kernel and kNN with a Euclidean distance measure
between data points were implemented. The dataset was not particularly large, so the
models in both SVN and kNN were firstly verified by 10-fold cross-validation. Next, the
data set was randomly divided into two subsets, training and testing, which contained
75% and 25% of observations, respectively. SVM and kNN techniques were applied. An
RBF kernel in the SVM method has two parameters, which must be tuned to achieve a
good performance. A grid search of these parameters for the kernel was performed using
GridSearchCV function in Python. Then, the F-score was used to generate a ranking of
importance for subsets formed from the selected variables. The methodology used in the
study is summarized in Figure 6.
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4. Conclusions

In this paper, we found that the compound 3,7-dimethyl-1,5,7-octatrien-3-ol (hotrienol)
could be used as a variety marker to distinguish Zweigelt wines from Rondo wines as it
does not occur in the latter. Furthermore, we proposed classification models of red wines
produced from two grape varieties, i.e., Zweigelt and Rondo, for the assessment of varietal
authenticity. For the first time, the relative concentrations of volatile compounds were used
for the varietal authentication of wines produced in Poland.

PCA allowed us to separate Zweigelt and Rondo wines in the case of all the test com-
pounds and alcohols, but the first two principal components failed to explain the variance
sufficiently. Wines were classified according to grape variety at 100% accuracy by the machine
learning methods SVM and kNN, although wines from the same grape variety had different
relative concentrations of the individual volatile compounds because they were produced
using different yeast strains and types of malolactic fermentation. Application of the variable
selection method simplified the classification model. The most important variables were
3-ethyl-4-methylpentan-1-ol and 3,7-dimethyl-1,5,7-octatrien-3-ol (hotrienol) for SVM and
kNN as well as 2-phenylethyl acetate and 3-(methylsulfanyl)propan-1-ol for SVM.

The state-of-the-art approach to varietal authentication presented in this paper can
be applied in the control of wine quality. The classification models may be expanded to
include wines from other grape varieties differing in production methods. The relative
concentrations of volatile compounds in the Zweigelt and Rondo wines can be used to create
databases of authentic wines. Further research on Zweigelt and Rondo wines produced in
different vineyards located in different geographical regions of Poland is needed to show
whether the wines can be classified independently of the region of origin.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28041961/s1, Table S1: Relative concentrations of volatile
compounds in Zweigelt wines (µg/L); Table S2: Relative concentrations of volatile compounds in
Rondo wines (µg/L); Figure S1: GC/MS chromatogram of volatile compounds of Zweigelt wine (see
Table 1 for compound names); Figure S2: GC/MS chromatogram of volatile compounds of Rondo
wine (see Table 1 for compound names); Table S3: p-values obtained by the Mann-Whitney test when
comparing Zweigelt and Rondo wines; Figure S3: Projection of variables on the PCA plane defined
by the first two principal components (numbers 1–67 stand for volatile compounds; see Table 1 for
their names).
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