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Abstract: Since the accidental discovery of the anticancer properties of cisplatin more than half a
century ago, significant efforts by the broad scientific community have been and are currently being
invested into the search for metal complexes with antitumor activity. Coordination compounds of
transition metals such as platinum (Pt), ruthenium (Ru) and gold (Au) have proven their effectiveness
as diagnostic and/or antiproliferative agents. In recent years, experimental work on the potential
applications of elements including lanthanum (La) and the post-transition metal gallium (Ga) in
the field of oncology has been gaining traction. The authors of the present review article aim to
help the reader “catch up” with some of the latest developments in the vast subject of coordination
compounds in oncology. Herewith is offered a review of the published scientific literature on
anticancer coordination compounds of Pt, Ru, Au, Ga and La that has been released over the past
three years with the hope readers find the following article informative and helpful.

Keywords: platinum; ruthenium; gallium; gold; lanthanum; coordination complexes; oncology;
cancer research

1. Introduction

Oncological diseases are the second leading cause of death worldwide with 9.6 million
deaths in 2018 as per the World Health Organization fact sheet. Cancer treatment involves
surgery, chemotherapy and radiotherapy [1]. Novel photodynamic therapy is a method that
involves administration of a photosensitizing compound, followed by irradiation with an
absorbance maximum wavelength and subsequent, localized formation of reactive oxygen
species (ROS), such as singlet oxygen [2]. The aim is to produce significant, toxicological
effects in the area of the tumor tissue, causing apoptosis, necrosis and finally—cell death [3].
Transition metals play an essential role in the chemistry of life. Serving as cofactors in
enzymatic active sites, they enable the great multitude of selective catalytic conversions
necessary for maintaining biological processes [4]. In living organisms, transition metals
can be found in trace amounts. Excessive intake of such elements can cause a variety of
toxicological effects, including carcinogenesis [5]. Yet exactly that toxicological potential
presents the fundament of transition-metal-based anticancer therapies [6]. Intracellular
release of toxic metal ions such as Pt(II)/(IV), Au(I)/(III), Ru(II)/(III), La(III), Ga(III) and
many others has been a staple of metal-based anticancer treatments ever since the discovery
of cisplatin’s antiproliferative properties more than half a century ago [7]. The authors of
the present review aim to inform the reader about developments over the past three years
in the research of Pt, Ru, Au and La transition metal complexes with potential antitumor
properties. Gallium as a post-transition metal is also discussed since the biological activity
of its ion is well-established [8] and the search for novel gallium complexes with anticancer
action is gaining traction once again [9,10].
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2. Novel Metal Complexes in Cancer Therapy
2.1. Platinum Coordination Compounds

Platinum-based drugs are widely used in anticancer chemotherapy. The first coordination
complex discovered with clinically viable antitumor action was cis-diamminedichloroplatinum(II)
ubiquitously known as cisplatin. Its biological activity was serendipitously discovered
in the 1960s by Rosenberg and coworkers [11]. Together with carboplatin, oxaliplatin,
nedaplatin and lobaplatin it is a choice drug for treatment of a variety of malignancies
such as testicular, colorectal, ovarian and breast cancer [12]. Cisplatin is characterized
by low specificity and its clinical use is therefore associated with systemic toxicities [12].
Carboplatin is considered a second-generation platinum-based drug with a higher degree
of biosafety [13] that allows for treatment with higher dosages. The main mechanism of
action of Pt(II) involves DNA binding, forming intra-strand and inter-strand crosslinks,
changing DNA structure, resulting in cell cycle arrest and apoptosis in actively proliferating
tumor cells [14]. Platinum drug resistance is a significant issue in chemotherapy. In order
to be overcome, a third-generation complex, oxaliplatin, was introduced in 1996 [15]. The
mechanisms of action of these drugs, their toxicities and modes of development of drug
resistance are well-known and described in detail in the scientific literature [16,17], and a
number of exhaustive reviews on the subject have been published [6,18,19]. An alternative
area of research when it comes to platinum-based anticancer drugs involves Pt(IV) coordi-
nation compounds. Compared to Pt(II) they have higher coordination numbers (6 vs. 4),
improved stability and reduced side effects. The ability to coordinate axial ligands allows
for greater structural modification. Additionally, within the intracellular medium they are
reduced to their active Pt(II) counterparts, with the axial ligands leaving. For these reasons,
Pt(IV) complexes are viewed as potential platinum prodrugs [20,21]. A very attractive
and informative review on the subject of Pt(IV) in cancer research [21] presents exciting
results both in terms of safety and drug resistance. Notably, coordinating biologically active
ligands could produce “multi-action” and “cancer-seeking” Pt(IV) prodrugs with enhanced
efficacy and multiple mechanisms of action [21]. Promising results have been observed
in vitro when treating cancer cell lines; however, there is a long way to go until safety and
efficacy in humans would be properly assessed. Below are introduced the most recent Pt(II)
and Pt(IV) complexes discussed in the scientific literature over the past three years.

Zhu and coworkers tested a variety of mitochondria-targeted platinum complexes
for anticancer activity against lung cancer [22]. They modified pyriplatin with a triph-
enylphosphonium moiety (Figure 1) with the aim to selectively target and penetrate the
inner mitochondrial membrane.
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Figure 1. Modified pyriplatin, described in [22]. 

Three complexes were synthesized with a triphenylphosphonium substitute, at-
tached at the ortho-, meta- and para-positions of the pyridine ring. They were tested for 
antiproliferative activity against lung cancer A549, cervical cancer HeLa, hepatocellular 
carcinoma SMMC cells and normal liver HL-7702, with the aid of the 3-(4,5-dimethylthi-
azol-2-yl)-2,5-diphenyltetrazolium bromide (MTT, 48 h) assay. The ortho-substituted 
complex manifested the highest anticancer cytotoxicity (IC50 = 8.7μM against A549), even 
compared to the positive standards cisplatin and pyriplatin. Its IC50 against healthy HL-
7702 cells was about six times higher (IC50 = 64.5), speaking to the improved selectivity of 
the compound. Tumor growth in mice, implanted with A549, was significantly sup-
pressed. Pt was discovered to accumulate primarily in liver and kidneys. More Pt was 

Figure 1. Modified pyriplatin, described in [22].

Three complexes were synthesized with a triphenylphosphonium substitute, attached
at the ortho-, meta- and para-positions of the pyridine ring. They were tested for antiprolif-
erative activity against lung cancer A549, cervical cancer HeLa, hepatocellular carcinoma
SMMC cells and normal liver HL-7702, with the aid of the 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT, 48 h) assay. The ortho-substituted complex manifested
the highest anticancer cytotoxicity (IC50 = 8.7 µM against A549), even compared to the
positive standards cisplatin and pyriplatin. Its IC50 against healthy HL-7702 cells was about
six times higher (IC50 = 64.5), speaking to the improved selectivity of the compound. Tumor
growth in mice, implanted with A549, was significantly suppressed. Pt was discovered
to accumulate primarily in liver and kidneys. More Pt was accumulated in the lungs and
tumor tissue, compared to cisplatin. After 24 h of cultivation the ortho-substituted complex
was found to produce mitochondrial DNA (mtDNA) lesions, reduce oxygen consumption
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and decrease dramatically (by 87%) the mitochondrial membrane potential in A549 cells.
Cellular uptake was observed to increase with lipophilicity.

Eskandari et al. [23] synthesized a triangular polynuclear complex, containing three
Pt(II) centers and tested it against cancer stem cell (CSC)-enriched human mammary
epithelial cells HMLER-shEcad and CSC-depleted HMLER lines (MTT assay, 72 h). Mono-
and dinuclear analogs were also tested. Notably, the more Pt(II) centers in the complex,
the greater the antiproliferative activity. The trinuclear complex had the lowest IC50
(2.24 µM against HMLER and 1.26 against HMLER-shEcad). Its activity was greater than
the positive controls cisplatin, carboplatin and salinomycin. The IC50 against non-malignant
breast MCF10A cells was about two times greater than against HMLER-shEcad, showing
good selectivity. It manifested significant non-covalent DNA-intercalative and groove-
binding activity.

He et al. [24] synthesized a folate-containing Pt(II) complex (Figure 2) with the idea to
specifically target folate receptors that tend to be overexpressed on the surfaces of breast
cancer cells.
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Figure 2. The folate-Pt(II) complex described in [24].

After 72 h’s exposure, the complex significantly suppressed MCF-7 cell viability
(IC50 = 87) compared to the negative control. The complex increased Bak1/Bclx ratios
after 24 h of incubation, compared to cisplatin, a possible sign of pro-apoptotic activity.
Caspase-3 activity was also increased.

Adams and coworkers synthesized a number of Pt(II)-terpyridine complexes (Figure 3)
and subsequently tested them for in vitro antiproliferative properties against colon cancer
HCT 116, colon adenocarcinoma SW480, lung cancer NCI-H460 and endometrial carcinoma
SiHa cell lines (72 h incubation) [25].
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Figure 3. Three Pt(II)-terpyridine complexes, described in [25].

Substituting the hydroxyl group of complex 1 with an organic mustard-type side
chain significantly increased the antiproliferative activity of the complex against all cell
lines tested. IC50 values decreased in the following order complex 3 (IC50 between 0.4
and 4.0) > complex 2 (IC50 between 1.0 and 5.6) > complex 1(IC50 between 14 and 22).
What should be noted is that the corresponding ligands themselves were very active in
the nanomolar range. Adding Pt(II) to form complexes increased IC50 values more than
ten-fold. Despite that, complexes 2 and 3 suppressed cancer cell growth to the same degree
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or even further than the positive control cisplatin. Additional assays showed rapid binding
to L-histidine, 9-ethylguanine and L-cysteine.

Another series of four platinum–terpyridine complexes [26] were studied as promising
antiproliferative agents against A549, its cisplatin-resistant subline A549/DDP, epidermoid
carcinoma A431, HeLa and MCF-7. Results showed that all tested substances were as active,
or more active, compared to the positive control cisplatin, targeting not only DNA, but
also membrane proteins. Epidermal growth factor receptor (EGFR) inhibitory activity was
estimated to be higher (IC50 about 10 µM for the complexes) than that of gefitinib (IC50 of
about 90 µM).

Kutlu and coworkers [27] synthesized two pyridine-based Pt(II) complexes (Figure 4)
and tested them against the colon cancer cell line (DLD-1). After 24 h incubation, applying
the MTT assay, complex 1 behaved as a stronger cytostatic (IC50 = 25.79 µM), compared to
complex 2.
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Figure 4. The pyridine-based complexes 1 and 2 described in [27].

The presence of electron-withdrawing functional groups (such as fluorine atoms in
complex 1) was deemed responsible for the increased antiproliferative effect. In this case,
the authors proposed that the bond between the pyridine nitrogen and the platinum ion
decreases due to lower electron density, causing an effective increase in interaction with
DNA. Electron donors such as the amino- and methyl- groups in complex 2 would tend to
have the opposite effect.

Mbugua and coworkers [28] synthesized Pt(II) and Pd(II) complexes with pyrrole-
substituted Schiff bases. The newly-generated substances were tested with the aid of the
MTT test (24 h exposure) against the colorectal adenocarcinoma Caco-2, HeLa, Hep-G2,
MCF-7 and bone cancer PC-3 cell lines. Non-cancerous MCF-12A was also tested. The most
active Pt(II) complex (Figure 5) was extremely potent against Hep-G2, with IC50 being in
the nanomolar range (IC50 = 0.3 µM). It also suppressed the Caco-2, MCF-7 and PC-3 (IC50
ranging between 16 and30 µM).
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Figure 5. The most potent antiproliferative complex described in [28].

The complex manifests a strong DNA-binding ability, the authors proposed using it
as a possible viable candidate for DNA intercalation. Its low toxicity against the healthy
MCF-12A shows its potential as a selective molecule with anticancer activity.

Another Schiff base containing complex was synthesized, characterized and tested
for antiproliferative activity against MCF-7, Hep-G2, HeLa and A549 cancer cells and
non-cancerous NHDF cells [29]. The complex exhibited pronounced activity against MCF-7.
Its antiproliferative behavior against the cancer cell lines was significant, though lower
than that of cisplatin. On the other hand, toxicity against the healthy NHDF cells was low,
showing better selectivity than the positive control. Additionally, the ligand itself was less
active than the complex. Significant calf thymus DNA (CT-DNA) binding was observed.
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A number of potent phenanthriplatin analogs [30] (Figure 6) with multidentate ligands
have been synthesized and tested (MTT assay, 72 h) for anticancer activity against the
ovarian cancer A2780, its cisplatin-resistant variant A2780cis, ovarian adenocarcinoma
SKOV-3, triple-negative breast cancer MDA-MB-231 and A549 cancer cell lines. Toxicity
against normal MET5A and HEK-293 cells was also measured.
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Both ligands were inactive in the absence of the Pt(II) coordination center. Complex 2
was much more effective than complex 1. After 72 h incubation, complex 2 was found to
be more potent than cisplatin against all cancer cell lines, including the cisplatin-resistant
A2780cis (IC50 = 0.55 µM). Its toxicity against normal cells was decreased compared to
phenanthriplatin. Cellular uptake was also improved and apoptosis was induced.

Tham and coworkers [31] followed a novel approach in terms of Pt-based anticancer
therapy. They attempted to cause immunogenic cell death by causing endoplasmic retic-
ulum stress. The novel compounds were tested against CT26 colorectal carcinoma (IC50
between 1.5 and 8.8 µM). Increasing lipophilicity caused a corresponding increase in cellular
uptake. The most potent complex increased intracellular ROS levels and caused endoplas-
mic reticulum stress. An induction in phagocytosis-related signaling was observed.

Derivatives of benzothiazole aniline [32] (a substance with known anticancer proper-
ties) were used as ligands it order to produce selective anticancer agents (Figure 7). Cell
viability was measured using the cell counting kit 8 (CCK-8) method (24 h cultivation).
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Figure 7. The complexes described in [32].

All three complexes were less active than their corresponding organic ligands, but more
active that benzothiazole aniline itself. Complexes 1 and 2 were particularly effective against
the Hep-G2 human hepatic carcinoma cell line (half-maximal inhibitory concentration
below 30 µM). Complex 1 moderately suppressed the proliferation of rat glioma C6, HeLa,
colorectal adenocarcinoma HT-29 and MCF-7 cancer cell lines (IC50 below 100 µM). Toxicity
against a variety of non-malignant cell lines was measured, revealing good selectivity
toward cancer cells. Molecular docking revealed that complex 1 acted as an intercalating
agent, binding to the minor groove of DNA.

A series of pyridine co-ligand functionalized cationic complexes inhibited prolifera-
tion in MCF-7, A549 and Hep-G2 cancer cells [33]. MTT testing proved a concentration-
dependent antiproliferative effect (48 h treatment). The most active complexes are displayed
on Figure 8.
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Cancer cell tests revealed complexes 1 and 2 to be more potent than the positive
control oxaliplatin and as potent as cisplatin. Complex 3 was more potent than both
positive controls. Clonogenic studies showed that these three complexes suppressed the
clonogenic potential of the tested cell lines. Cancer cell migration, invasion and cancer
stem cell spheroid formation were decreased. Complex 3 demonstrated potential to target
sterol regulatory element-binding protein 1 (SREBP-1)-dependent signaling pathways, thus
inhibiting lipid biogenesis.

Nadar and coworkers [34] designed radioactive platinum(II)–bisphosphonate com-
plexes in an attempt to specifically target bone cancer. The aim was to combine the anti-
cancer activity of Pt(II) with the good radionuclide potential of its radioactive isotope 195Pt
and the bone-targeting properties of bisphosphonates. This novel approach yielded promis-
ing results as Pt uptake, due to treatment of mice with the novel complex, was concentrated
in the hard tissues, compared to a Pt(II) bearing, non-bisphosphonate positive control.

Pt(II), liganded with two bidentate analogs of thiourea (a known anticancer molecule)
exhibited a moderate antiproliferative effect (MTT assay, 48 h) against colorectal cancer
LoVo and MCF-7 with an IC50 greater than 100 µM [35]. Interestingly, if Pt(II) was ex-
changed with Pd(II) as a coordination center, then antiproliferative activity dramatically
improved (IC50 between 10.44 and 62.86 µM), approaching that of cisplatin.

Mononuclear, Schiff base macrocyclic ligands were synthesized and coordinated with
Pt(II) [36] (Figure 9). MTT assay (24 h incubation) was performed in order to estimate
potential antiproliferative activity. Both ligands significantly suppressed the HeLa (IC50
between 12 and 15 µM) and A549 cell lines (IC50 = 10 µM). The addition of Pt(II) further
improved the observed effect with an IC50 between 6 and 11 µM.
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A Pt(II) complex with an ONN-“pincer” ligand [37] showed significant antiprolifer-
ative effect against Hep-G2 cells (IC50 = 6 to 12 µM), comparable to cisplatin. Activity
against normal hPBMC was very mild, where IC50 > 200 µM.

Yambulatov and coworkers have synthesized a series of Pt(II) complexes with sub-
stituted 1,4-diaza-1,3-butadienes (redox-active, “non-innocent” ligands) [38]. They were
tested for antiproliferative activity against malignant SKOV-3 and normal HDF cell lines.
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One of the complexes manifested significant activity against SCOV-3, similar to cisplatin
(IC50 = 12 µM) and high toxicity against the non-cancerous cell line (IC50 = 9 µM)

Octahedral platinum (IV) complexes with the non-steroidal anti-inflammatory drugs
indomethacin and acetylsalicylic acid as axial ligands have been reported [39]. After 72 h of
incubation, the MTT assay showed significant cytotoxicity against a large panel of cancer
cell lines. Particularly notable was the manifested activity against ovarian A2780 and
cisplatin-resistant ovarian (ADDP) cancer cell lines. Activity against HT-29 colon cancer
was also significantly increased in comparison to the positive controls cisplatin, carboplatin
and oxaliplatin.

Another Pt(IV) prodrug was designed with two axial maleimide moieties to facilitate
albumin binding [40]. Testing was performed on an in vivo murine cancer CT26 model.
Twenty days after the beginning of treatment, tumor growth was significantly suppressed
compared to the positive control oxaliplatin. Survival of the test animals was prolonged,
some even entered remission and one was completely cured. The authors propose the
formation of a stable albumin adduct in the blood stream, followed by cellular endocytosis
and subsequent reduction of Pt(IV) to active Pt(II).

A series of mono-axial octahedral diazido Pt(IV) complexes with coumarin 3-carboxylate
(an anticancer agent), 4-phenylbutyrate or dichloroacetate (PDK inhibitors) and their di-
axial functionalized analogs were synthesized and tested against A2780 and A549 [41].
Cytotoxicity was measured versus healthy MRC-5 fibroblasts as well. Both mono- and
di-functionalized complexes manifested significant photocytotoxicity after irradiation with
blue light with IC50 values in the nanomolar range (IC50 = 0.11–7.1 for A2780 and 1.2–51.9
for A549). At equimolar concentrations, the di-functionalized complexes caused higher plat-
inum cell accumulation and photogenerated ROS, compared to their mono-functionalized
analogs. Another diazido-Pt(IV) complex [42] (Figure 10) was unreactive in the dark, but
highly cytotoxic when irradiated with visible or UV light (MTT test, 2 h exposure). It
acted as a prodrug that, upon photoactivation, was reduced to square planar Pt(II) species
that binds to nuclear DNA. Additionally, photoactivation causes the release of a variety
of reactive species such as azidyl and hydroxyl radicals, singlet oxygen and others that
further add to the cytotoxic effect and possibly cause immunogenic cell death.
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Figure 10. The diazido-complex described in [42].

When photoactivated, the complex is able to induce calreticulin exposure on the
membrane of A2780 cells as well as the release of high mobility group box 1 (HMGB1)
protein and ATP to the extracellular environment—known symptoms of immunogenic
cell death.

Essential information on the Pt complexes’ structure, type of cancer cells suppressed
and biological activity has been summarized in Table 1.
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Table 1. Summary of the platinum complexes presented.

Citation Number Metal Ion/Ligand Type Effective against Biological Activity
(If Investigated)

[22] Pt(II), triphenylphosphonium-
pyridine A549; HL-7702

mtDNA lesions, impairment
of mitochondrial

membrane potential

[23] Pt(II), triangular
polynuclear complex

HMLER; HMLER-shEcad;
MCF10A

DNA intercalation;
DNA groove binding

[24] Pt(II), folic acid MCF-7 increased Bak1/Bclx ratios and
Caspase-3 activity

[25] Pt(II), terpyridine HCT116; SW480; NCI-H460;
SiHa

Binding to L-histidine,
9-ethylguanine and L-cysteine

[26] Pt(II), terpyridine A549; A549/DDP; A431; HeLa;
MCF-7 DNA binding; EGFR inhibition

[27] Pt(II), substituted pyridines DLD-1 n/a

[28] Pt(II), pyrrole-substituted
Schiff bases

Caco-2; HeLa; Hep-G2;
MCF-7; PC-3 DNA intercalation

[29] Pt(II), Schiff base MCF-7 CT-DNA binding

[30] Pt(II), phenanthridine A2780; A2780cis; SKOV-3;
MDA-MB-231; A549 Apoptosis

[31] Pt(II), N-heterocyclic carbene
(NHC) CT26 Induction of endoplasmic

reticulum stress, increase in ROS
[32] Pt(II), benzothiazole aniline C6; HeLa; HT-29; MCF-7 DNA intercalation

[33] Pt(II), pyridine cationic MCF-7; A549; Hep-G2

sterol regulatory
element-binding protein 1
(SREBP-1) targeting, lipid

biogenesis inhibition

[34] Pt(II), radioactive
bisphosphonate n/a Theragnostic, bone accumulation

in mice
[35] Pt(II), thiourea LoVo; MCF-7 n/a
[36] Pt(II), macrocyclic Schiff base HeLa; A549 n/a
[37] Pt(II), ONN-“pincer” Hep-G2 n/a
[38] Pt(II), 1,4-diaza-1,3-butadiene SCOV-3 n/a

[39]
Pt(IV), axial ligands

indomethacin/
acetylsalicylic acid

A2780
ADDP n/a

[40] Pt(IV), axial maleamide CT-26 (in vivo murine model) Albumin binding enhances drug
accumulation in cancer cells

[41] Pt(IV), mono- and di-axial
diazido complex A2780; A549 Photocytotoxicity, DNA binding,

ROS generation

[42] Pt(IV), diazido complex A2780
UV-induced photocytotoxicity,
ROS generation, immunogenic

cell death

2.2. Ruthenium Coordination Compounds

Platinum-based drugs are undeniably effective in the treatment of a variety of cancers.
Unfortunately, they are not a “silver bullet”—limited activity against many common neo-
plastic diseases, significant toxicity and acquired platinum resistance [43] have all pushed
the broader scientific community to look for alternatives. One such alternative is presented
by another member of the transition metal family—ruthenium. It is redox-active, i.e., exists
in a variety of oxidation states, the most prominent under physiological conditions being
+2 and +3 (the former is considered more active) [44]. Ru(II)/(III) complexes are character-
ized by six-coordinated octahedral configuration, allowing for employment of biologically
active ligands with different geometries. Rates of ligand exchange in Ru(II) and Ru(III)
complexes are similar [45] to those of Pt(II). Ru compounds are considered less toxic than Pt.
Ionic mimicry (similar ionic charge/ionic radius ratios) allows Ru to compete with Fe for
binding with biomolecules, employing the transferrin pathway to specifically target cancer
cells [46]. Protein and DNA binding, impairment of mitochondrial functions, cell cycle
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arrest and apoptosis are frequently described. Photoactivation is also a prominent feature
of Ru-complex research. It provides improved toxicity over a localized area, thus reducing
systemic adverse events while promoting antiproliferative activity. Two main approaches
toward synthesis of Ru-based anticancer complexes seem to prevail above all. The first
one involves complexation with polypyridyl-type bi/tri-dentate ligands, employing a
bipyridine, terpyridine or 1,10-phenanthroline scaffold. The second approach involves
coordination with a five or six-membered arene ligand, a monodentate and a bidentate
ligand. To the reader’s benefit, the authors recommend a number of detailed reviews,
delving deep into the subject of ruthenium complexes in anticancer therapy [43,44,47,48].
Henceforth the authors introduce some prominent samples of the vast experimental and
publication efforts that have been invested over the past three years into the search for
Ru-coordination compounds with anticancer activity.

A Ru(II) complex with a Schiff base and p-cymene as ligands was synthesized and
tested against Caco-2 and normal mouse fibroblast L-929 strains [49]. The Schiff ligand
itself and its ruthenium complex manifested low antiproliferative activity against Caco-2,
the former being the less toxic of the two (IC50 = 803.65 and 510.26, respectively).

Cole and coworkers [50] synthesized a series of Ru complexes, two 6,6′-dimethyl-2,2′-
bipyridine and an imidazo[4,5-f][1,10]phenanthroline ligand as potential photodynamic
therapeutic agents (Figure 11). Cytotoxicities in dark conditions as well as photocytotox-
icities were estimated using the resazurin viability assay in both hypoxic and normoxic
conditions. All compounds were moderately active in dark conditions against SKMEL-28
melanoma cells (EC50 between 30−75 µM). Hypoxic conditions caused EC50 values to
double, consistent with previous observations.
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and green light, with less success. When the substitute R was replaced by a chain of three 
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the photosensitizing capacity of these complexes to be a result of efficient production of 
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Similar polypyridine ruthenium(II) complexes [52] were tested (MTT assay) against 
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effect was in the low micromolar range. Particularly against B16, the compounds 
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Irradiation with visible light increased cytotoxicity of compounds 1, 4, 6 and 7,
dropping EC50 to between 2.5 to 5 µM. Compounds 1 and 7 maintained their high post-
irradiation cytotoxicity even in hypoxic conditions. The authors tried irradiation with red
and green light, with less success. When the substitute R was replaced by a chain of three
or four thiophene rings (complex 8), the complex exhibited attomolar (in normoxia) and
picomolar (in hypoxia) cytotoxicities toward SKMEL-28 cells [51]. The authors proposed the
photosensitizing capacity of these complexes to be a result of efficient production of singlet
oxygen and a possible involvement of triplet intra-ligand charge transfer states. Similar
polypyridine ruthenium(II) complexes [52] were tested (MTT assay) against melanoma
B16, Hep-G2, A549 cancer and LO2 normal cell lines. The antiproliferative effect was in
the low micromolar range. Particularly against B16, the compounds performed better than
cisplatin both in terms of antiproliferative effect and in terms of selectivity. Cell migration
was disrupted, G0/G1 cell cycle arrest was observed and apoptosis was increased. B16
cells also experienced a significant increase in intracellular ROS. The Ru(II) complexes
penetrated the mitochondrial membrane. Intracellular GSH was depleted and MDA levels
were significantly increased compared to the non-treated control group.
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Another novel photosensitizing polypyridyl complex incorporates the anthraquinone
rhein [53] (Figure 12). The complex is lipophilic and able to penetrate the lysosomes of
A549 cells.
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Figure 12. The complex described by [53].

In dark conditions, the complex does not generate intracellular ROS. Light irradiation
causes intracellular ROS production. Cytotoxicities against MCF-7, A549, leukemia NB-4,
A2780, cisplatin-resistant A2780R and normal liver cells LO2 were measured using the
MTT assay in both light and dark conditions. IC50 values against all cell lines are moderate
(35 to 250 µM) after 48 h of cultivation in darkness. Furthermore, 15 min of irradiation
increases toxicities dramatically (IC50 of 35 to 25 µM). Phototoxicity indices against all cell
lines are between 4 and 28.5. The authors propose the main mechanism of action in light
conditions is the induction of autophagy.

Similar polypyridyl Ru(II) complexes have been synthesized, bearing a naphthoquinone
moiety (plumbagin) [54]. The two most potent complexes bear two 1,10-phenanthroline plus
one plumbagin ligands and two 4,7-diphenyl-1,10-phenanthroline and one plumbagin
ligands. Increasing the lipophilicity of the ancillary ligands (from dimethyl sulfoxide
(DMSO), through bipyridine and 1,10-phenanthroline to 4,7-dipjenyl-1,10-phenanthroline)
increases biological activity against in vivo MCG-803 tumor mice model. The two most
potent substances severely impair mitochondrial respiration and glycolysis, induce DNA
damage and increase expression of the growth arrest and DNA damage inducible alpha
(GADD45A) gene, causing G0/G1 cell cycle arrest.

Notaro and coworkers investigated a polypyridyl Ru(II) complex, incorporating a mal-
tol ligand with the aim to improve bioavailability of the metal ion [55]. The compound was
highly cytotoxic against HeLa, A2780 and its cisplatin and doxorubicin-resistant varieties
A2780cis and A2780ADR, CT26, CT26LUC cancer cells and normal RPE-1 cells, manifesting
no selectivity toward cancer cells. Adding the maltol moiety improved cytotoxicity of
the complex (IC50 = 0.42–2.86 µM), even though maltol itself is non-toxic. The compound
induces apoptosis in HeLa cells after 4 h of incubation, cell accumulation being greater
than that of cisplatin. It accumulates predominantly in the cellular nucleus. Another
study [56] discovered that cellular resistance to ruthenium cyclometallated compounds
depends on ABCB1 export and EGFR gene expression. Inhibiting these genes improved
the biological activity.

Chen and coworkers tested a Ru(II) polypyridyl complex with intrinsic antiprolif-
erative properties in combination with taxol [57] against HeLa and A549 cells and their
taxol-resistant variants. Synergistic effects were observed, even at low dosages. Pyroptosis,
caspase 1 activation, gasdermin D (GSDMD) activation and ROS increase in HeLa/Taxol
cells was observed. An in vivo naked mice model also yielded promising results.

A series of N-heterocyclic carbene Ru(II) arene complexes [58] were synthesized and
tested for antiproliferative activity (Figure 13).
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cell types tested. G2/M cell cycle arrest was observed. An in vivo mouse model with 
Ehrlich ascites carcinoma (EAC) showed that complex 2 decreases liver damage markers 
in inoculated mice. The authors proposed that this complex prevented the growth of the 
EAC cells and caused cell death. Superoxide dismutase (SOD), catalase (CAT) and 
glutathione (GSH) levels increased in a dose-dependent manner compared to the non-
treated group of animals. 
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After 48 h of exposure, results from the MTT assay demonstrated that attaching short
alkyl moieties caused very low cytotoxicity. Complexes 4 and 6 had the highest lipophilicity
and manifested high cytotoxicity, comparable to cisplatin, against a panel of cancer cell
lines—A549, HT-29, HCT116, LoVo, HeLa and A2780 (IC50 = 1.98−25.6). They exhib-
ited antimigratory and proapoptotic activity against A2780 and induced mitochondrial
dysfunction, releasing intracellular ROS.

Morais and coworkers tested a series of cyclopentadienyl Ru(II) complexes [59] with
monodentate imidazole-based or bidentate heteroaromatic ligands. The investigated sub-
stances were very lipophilic. Binding to human serum albumin (HSA) was noted. Those
that incorporate a bidentate heteroaromatic ligand manifested significant antiproliferative
activity (MTT assay, 72 h) against A2780 (IC50 = 0.20−0.45 µM), MDA-MB-231 (IC50 = 13.4
to over 100 µM) and HT-29(IC50 = 11.3 to over 100 µM), unlike the group with monoden-
tate ligands.

Elsayed and coworkers [60] synthesized one Ru(II) and one Ru(III) complex, coordi-
nated with 2-aminophenyl benzimidazole and DMSO (Figure 14-1 and -2, respectively)
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In vitro MTT assay showed that both complexes manifested moderate cytotoxicity
against Caco-2 and MCF-7 (IC50 = 230–320 µM) and very low toxicity against non-cancerous
liver (THLE-2). Activity of the Ru(III) complex—complex 2—was higher than that of its
Ru(II) analog. Treatment with complex 2 induced DNA laddering in both cancer cell types
tested. G2/M cell cycle arrest was observed. An in vivo mouse model with Ehrlich ascites
carcinoma (EAC) showed that complex 2 decreases liver damage markers in inoculated
mice. The authors proposed that this complex prevented the growth of the EAC cells and
caused cell death. Superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH)
levels increased in a dose-dependent manner compared to the non-treated group of animals.

A series of Biginelli hybrids were synthesized and liganded to Ru(II) [61]. The antipro-
liferative activity (MTT, 48 h exposure) against a panel of cancer cell lines of the series of
ligands was moderate. Adding Ru(II) significantly increased potency. Two of the complexes
(Figure 15) manifested significant cytotoxicity against HeLa, A375 and K562 cancer cells
(IC50 = 8.63−33.85 µM).
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Loss of activity was minimal. Adding electron-donating groups to the hydroxyphenyl 
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substituted hydroxyphenyl moiety [63] were tested against the MDB-MA-231, HeLa and 
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antiproliferative activity of the two most prominent substances toward cancer cells was 
similar to cisplatin (MTT assay); however, their toxicity toward the normal cell line was 
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against MDB-MA-231. 

Ru(II) complexes with diclofenac and organophosphines as ligands [64] (Figure 17) 
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to be effective against A549, MDA-MB-231 and MCF-7 cancer cells, with an IC50 from 0.56 
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Figure 15. The complexes presented in [61].

Adding chlorine or nitro-groups to the aromatic ring seemed to increase cytotoxic-
ity. These two complexes demonstrated pronounced antiangiogenic effects, via in vitro
inhibition of endothelial cell tube formation after 48 h. Cell migration was also impeded.

A series of Ru(II)-p-cymene-imidazophenanthroline complexes [62] were synthesized
and tested against the HeLa and CaCo-2 cancer cell lines and normal HEK-293 cells. CT-
DNA and bovine serum albumin (BSA) binding was noted. The most prominent member
(Figure 16) exhibited strong antiproliferative activity (MTT assay) at an IC50 of 2.0−2.5 µM.
Toxicity against HEK293 was found to be low with selectivity factor of over 40.
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Figure 16. The most active complex presented in [62].

Strong antiproliferative activity was observed even in the presence of 1 mM GSH. Loss
of activity was minimal. Adding electron-donating groups to the hydroxyphenyl moiety
decreased biological activity, while addition of electron-withdrawing groups increased
cytotoxicity. Similar complexes, incorporating substituted phenyl, instead of a substituted
hydroxyphenyl moiety [63] were tested against the MDB-MA-231, HeLa and normal
HEK293 cell lines. CT-DNA and BSA binding was noted here as well. The antiproliferative
activity of the two most prominent substances toward cancer cells was similar to cisplatin
(MTT assay); however, their toxicity toward the normal cell line was significantly lower—
IC50 values of 85 and 178 against cisplatin’s 64. A p-fluorophenyl moiety improved activity
against HeLa and p-nitrophenyl moiety increased toxicity against MDB-MA-231.

Ru(II) complexes with diclofenac and organophosphines as ligands [64] (Figure 17)
were synthesized and tested for biological activity. MTT testing revealed the compounds to
be effective against A549, MDA-MB-231 and MCF-7 cancer cells, with an IC50 from 0.56 to
12.28 µM—similar to or lower than cisplatin.
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The tested compounds were more toxic to the non-cancerous MRC-5 and MCF-10A
cell lines compared to cisplatin. Interactions with BSA and CT-DNA were noted. One of
the complexes induced apoptosis in MCF-7.

Two bis-aminophosphine Ru(II) complexes with p-cymene ligands [65] exhibited
antiproliferative effects against A375 cells with IC50 values (6.72 and 8.76 µM) lower than
cisplatin. Both compounds were more active than the bis-aminophosphine ligand alone.
The complex, containing two units of p-cymene-Ru(II) induced apoptosis in the tested
cell line.

A number of Ru(II) p-cymene complexes with cyclic/polycyclic aromatic diamine
ligands [66] manifested better cytotoxic effects than cisplatin against the OVCAR-3, M-14
and HOP-62 cancer cell lines (IC50 = 4.31–6.31 µM). CT-DNA binding improved with the
increase in the delocalization of the aromatic fragment of the ligand.

A series of dinuclear p-cymene-tetrazole-Ru(II) complexes [67] were tested against
several types of cancer cell lines (MTT assay). The ligands themselves were non-cytotoxic.
Two of the compounds yielded promising results against the HeLa, MCF-7 and A549
cell lines. DNA binding, bovine serum albumin binding and morphological changes
indicating apoptosis were observed. G0/G1 cell cycle arrest was induced and cell migration
was inhibited.

A number of half-sandwich arene chloride complexes of Ru(II) [68] were bound to
CT-DNA and BSA protein. All complexes exhibited good anticancer potency against MCF-7
cells (IC50 = 2.64–18.21 µM).

Organometallic Ru(II)-flavone [69] complexes were synthesized and tested against the
MCF-7 and MDA-MB-231 cell lines. Neither complex exhibited significant antiproliferative
activity. Interestingly, one of the thioflavone ligands, containing a C=S group demonstrated
very high cytotoxic activity against MCF-7. Once this functional group was engaged in
complexation with Ru(III), anticancer activity was diminished, though still significant
(IC50 = 1.2–43.06 µM). The Ru(II)-thioflavone complex was found to inhibit MCF-7 and
MDA-MB-231 cell migration.

Ru(III)-pyrazolopyrimidine [70] complexes manifested stronger antiproliferative ac-
tivity against SCOV-3 cells compared to cisplatin. Toxicity against normal liver cells was
low. Cell invasion and proliferation were inhibited. Intracellular ROS levels increased,
mitochondrial membrane potential was reduced and apoptosis was initiated.

Ru(II) complexes with biologically active aminoflavone ligands [71] were synthe-
sized in order to overcome cisplatin resistance in a number of cell lines. The compounds
(Figure 18) were tested against A2780, A2780cis, Toledo and Toledo-cis.
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They were effective in the low-micromolar range both against sensitive and cisplatin-
resistant lines (MTT assay, IC50 = 0.5–4.6 µM). Mitochondrial membrane potential loss oc-
curred in a dose-dependent manner. Apoptosis was induced due to interaction with DNA.

Conjugates containing two or three dinuclear Ru(II)–arene structures [72] have been
tested against the A2780, A2780cisR (cisplatin-resistant), A24 and (D-)A24cisPt8.0 cell lines.
All compounds are much more potent than cisplatin with an IC50 between 23 and 650 nM.
Ester conjugates are more potent than amide analogs.

Qu and coworkers investigated how protonation states of ligands in Ru(II) complexes
may influence photodissociation and quantum yields for singlet oxygen [73]. They observed
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that deprotonation of bipyridine ligand hydroxyl groups increased quantum yield for
singlet oxygen (these are reduced ten-fold by protonation) and decreased quantum yield
for photodissociation products.

Oliveira et al. prepared two Ru(II)-diphosphine complexes, containing lapachol and
lawsone as ligands [74]. Both complexes were highly cytotoxic against the MDA-MB-
231, MCF-7, A549 and DU-145 (prostate) cancer cell lines with IC50 values in the low
micromolar range (IC50 = 0.03–2.70 µM). They interacted with the minor DNA grooves
and moderately with bovine serum albumin. The lapachol-containing complex was highly
selective against triple-negative breast cancer (MDA-MB-231), inhibiting cell migration and
colony formation. It arrested cell cycle, disrupted mitochondrial membrane potential and
caused an increase in ROS.

Ru(III) coordination compounds with quinolone antibiotics [75] were tested against
LoVo colon cancer in order to translate antibacterial action to anticancer activity. Complexes
with levofloxacin, ciprofloxacin and ofloxacin demonstrated stronger antiproliferative
effect than cisplatin. G0/G1 cell cycle arrest was observed. More Ru(III) complexes with
triazolopyrimidine [76] ligands were screened on MCF-7, HeLa and normal L929 cells.
Increased ROS generation was observed as well as DNA and protein binding. Increased
lipophilicity of the tested substances was associated with higher antiproliferative effect
(IC50 as low as 4 µM against MCF-7 and 5 µM against HeLa). Toxicity against L929 was
lower than cisplatin’s.

A Ru(III) complex with 1,4,8,11-tetraazacyclotetradecane exhibited an antiprolifer-
ative effect against SiHa cells, with an IC50 of 48 µM after 48 h of exposure [77]. Cell
morphology changes were observed, such as nuclear fragmentation. The number of apop-
totic cells increased, while the number of viable cells decreased after 24 h of exposure at
50 µM concentration.

Essential information on the Ru complexes’ structure, type of cancer cells suppressed
and biological activity has been summarized in Table 2.

Table 2. Summary of the ruthenium complexes presented.

Citation Number Metal Ion/Ligand Type Effective against Biological Activity
(If Investigated)

[49] Ru(II), p-cymene, Shiff base Caco-2 n/a

[50,51] Ru(II), polypyridine,
1,10-phenanthroline SKMEL-28 Photocytotoxicity,

ROS generation

[52] Ru(II), polypyridine B16; HepG2; A549

Disrupted cell migration, G0/G1
cell cycle arrest, ROS generation,

mitochondrial
membrane penetration

[53] Ru(II), rhein-substituted
polypyridine

MCF-7; A549; NB-4; A2780;
A2780R Photocytotoxicity, autophagy

[54] Ru(II), 1,10-phenanthroline,
plumbagin MCG-803 in vivo murine model Mitochondrial impairment, DNA

damage, G0/G1 cell cycle arrest

[55] Ru(II), polypyridine, maltol HeLa; A2780; A2780cis;
A2780ADR; CT-26; CT-26LUC Apoptosis

[57] Ru(II), polypyridine, HeLa, A549 Pyroptosis, caspase 1 activation,
ROS increase

[58] Ru(II), NHC A549; HT-29; HCT-116; LoVo;
HeLa; A2780

Mitochondrial dysfunction,
apoptosis, disrupted

cell migration
[59] Ru(II), cyclopentadienyl A2780; MDAMB231; HT29 HSA binding.

[60] Ru(II)/(III), 2-aminophenyl
benzimidazole, DMSO Caco-2, MCF-7, EAC(in vivo) DNA-laddering, G2/M cell

cycle arrest

[61] Ru(II), dinuclear,
Biginelli hybrids HeLa; A375; K562 Inhibited cell migration and

endothelial tube formation
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Table 2. Cont.

Citation Number Metal Ion/Ligand Type Effective against Biological Activity
(If Investigated)

[62] Ru(II), p-cymene,
imidazophenanthroline HeLa; CaCo-2 CT-DNA and BSA binding

[63] Ru(II), p-cymene,
imidazophenanthroline MDB-MA-231; HeLa CT-DNA and BSA binding

[64] Ru(II), diclofenac,
organophosphines A549; MDA-MB-231; MCF-7 CT-DNA and BSA

binding, apoptosis

[65] Ru(II), p-cymene,
bis-aminophosphine A375 Apoptosis

[66] Ru(II), p-cymene,
aromatic diamine OVCAR-3; M-14; HOP-62 CT-DNA binding

[67] Ru(II), dinuclear,
p-cymene, tetrazole HeLa; MCF-7; A549

DNA and BSA binding, G0/G1
cell cycle arrest, cell migration

inhibition
[68] Ru(II), half-sandwich arene MCF-7 CT-DNA and BSA binding
[69] Ru(II), flavone MCF-7; MDA-MB-231 Cell migration inhibition

[70] Ru(II), pyrazolopyrimidine SCOV-3
ROS generation, mitochondrial
impairment, inhibition of cell

invasion and proliferation

[71] Ru(II), aminoflavone A2780; A2780cis; Toledo;
Toledo-cis

Mitochondrial impairment, DNA
interaction, apoptosis

[72] Ru(II), dinuclear, arene A2780; A2780cisR; A24;
(D-)A24cisPt8.0 n/a

[74] Ru(II), diphosphine,
lapachol, lawsone

MDA-MB-231; MCF-7; A549;
DU-145

DNA interaction. Cell cycle
arrest, mitochondrial disruption,

ROS increase
[75] Ru(III), quinolone antibiotics LoVo G0/G1 cell cycle arrest

[76] Ru(III), triazolopyrimidine MCF-7, HeLa Increased ROS generation, DNA
and protein binding

[77] Ru(III),
1,4,8,11-tetraazacyclotetradecane SiHa Nuclear fragmentation,

apoptosis

2.3. Gallium Coordination Compounds

Gallium is a post-transition metal that exhibits a typical oxidation state of +3. In
terms of ionic radius, electric charge and coordination number, Ga(III) closely resembles
Fe(III) [78]. For that reason, similar to Ru, Ga compounds are able to compete for iron-
occupied sites in biomolecules. This ionic mimicry is fundamental for the biological activity
of Ga(III) substances. The involvement of gallium in cancer research dates back four
decades [79–81]. Gallium compounds have been applied as diagnostic and therapeutic
agents in oncology [79]. Rapidly proliferating malignancies have high metabolic activity
and need significant iron intake. Many types of cancer are characterized with overex-
pression of transferrin receptors [82]. Ga(III) competes with iron for transferrin binding
which allows it to penetrate “iron-hungry” cancer cells and exhibit its physiological effects—
impairment of DNA synthesis, disruption of mitochondrial function, overall inhibition of
iron-dependent enzymes, generation of ROS and ultimately, apoptosis [83]. As the search
for novel, metal-based anticancer drugs intensifies, scientific interest into Ga(III) complexes
with antiproliferative action has been revitalized over the past decade [83–89]. The rela-
tively low number of studies, performed so far, combined with the intrinsic anticancer
properties of the Ga(III) ion itself present an exciting possibility for research into novel
complexes with biologically active ligands and potential antiproliferative action.

A number of gallium complexes with planar tetradentate ligands have recently been
synthesized. Unlike the most prevalent six-coordinated complexes, these tend to block
interactions between the metal coordination center and biomolecules to a lesser extent. In
this case the vacant coordination sites may possess labile solvent molecules that would, in
theory, allow for improved interaction with biomolecules by way of solvent ligand exchange.



Molecules 2023, 28, 1959 16 of 33

A number of such gallium(III) salens were synthesized by Zhang and co-workers [9]. One
of the complexes (Figure 19) exhibited anticancer activity against several cell lines (HeLa,
Hep-G2, MCF-7, A549) within the nanomolar dosage range (IC50 = 0.42–1.25 µM), as
established using MTT assay.
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that same cell line at 5μM concentrations. Mitochondrial membrane potential was 
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Figure 19. One of the complexes presented in [9].

Coordination with gallium(III) dramatically improved activity compared to free lig-
ands and zinc analogs. The ethyl substituent at the amino-group turned out to be crucial,
methyl and 1,4-butanediyl moieties decreased biological activity. The most prominent
complex was found to enter cells through passive diffusion, being distributed mainly in
mitochondria, endoplasmic reticulum and lysosomes. It was also discovered to inhibit
protein disulfide isomerase in a concentration-dependent manner.

Gross and coworkers developed tetradentate metallocorroles with potential anticancer
activity [90]. A variety of metal ions were coordinated with a corrole ligand. All com-
pounds manifested moderate cytotoxicity against the DU-145, SKMEL-28, MDA-MB-231
and OVCAR-3 cell lines. Cytotoxicity increased with lipophilicity which depended on
the type of liganded metal ion. The Ga(III) complex exhibited moderate antiproliferative
activity (IC50 = 129–274 µM).

A number of benzoylpyridine thiosemicarbazones were synthesized as tridentate lig-
ands with potential antiproliferative properties [91]. After synthesis, these series of ligands
were coordinated with gallium(III) in a molar ratio of 1:1. Both the ligands themselves and
their complexes exhibited significant antiproliferative activity (higher than that of cisplatin)
against the HepG-2 cell line. Increasing the lipophilicity of the ligands tended to improve
the antiproliferative effect after 48 h of treatment. Additionally, the inclusion of gallium(III)
further improved the observed action. The most potent ligand and its gallium(III) complex
(Figure 20) significantly increased early and late apoptosis in that same cell line at 5µM
concentrations. Mitochondrial membrane potential was decreased. Ferritin expression was
downregulated, while transferrin receptor-1 expression was upregulated. Both activated
caspase-3 and ROS were increased, the effect of the gallium(III) complex being significantly
improved, compared to the ligand itself.
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Firmino and co-workers [92] synthesized two isonicotynoyl hydrazones as potential
iron chelators. Generally, iron chelators tend to exert antiproliferative effects as they deprive
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malignant cells of much necessary iron. Both compounds (Figure 21) were coordinated to
gallium(III) at a ligand: metal ion ratio of 1:2.
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Figure 21. The ligands presented in [92].

The novel ligands and their gallium(III) complexes were assayed for antiproliferative
action against the leukemia HL60, MCF-7, HCT116 and PC-3 cancer cell lines as well as
the non-malignant HEK-293 line (MTT, 48 h). The hydrazone, containing primary amino-
group (compound 2) and its gallium(III) complex did not inhibit cell viability at 10 µM
concentration. When that amino-group was replaced with a methyl moiety (compound 1),
cell viability in all cancer cell lines was reduced to 50% at that concentration. Clonogenicity
was reduced. Increasing lipophilicity improved anticancer activity. It is noteworthy that
the activity of both ligands did not differ significantly from the activity of their respective
complexes. Compound 1 and its complex were further tested for cytotoxicity. Their IC50 val-
ues against HL60 and HCT116 were within the low micromolar range (IC50 = 0.4–2.0 µM),
exhibiting at least 25-fold lesser toxicity toward the non-malignant HEK-293 line.

Two similar hydrazones were complexed with gallium(III) (Figure 22) [84] in order
to test their anticancer and antitubercular activities. Both ligands and their respective
complexes were tested for their impact on cell viability of cancer (MCF-7, PC-3) and
non-cancerous (RWPE-1) cells with the help of the MTT test. All substances manifested
cytotoxicity within the micromolar range against MCF-7, with gallium(III) complexation
strengthening the observed effect. Ligands and complex 1 were inactive toward PC-3,
while complex 2 has a selectivity index (related to RWPE-1) lower than 1. The improved
activity of the halogenated ligand was associated with its higher lipophilicity. Its complex
accumulated to a larger extent in both cancer cell strains.
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A number of octahedral gallium complexes with polypyridyl ligands (Figure 23) were
tested against bulk osteosarcoma cells (OSC) and osteosarcoma stem cells (OSCs) [93].
These compounds were found to be potent at nanomolar concentrations. Anticancer
potency was measured via the MTT assay (IC50 = 0.07–3.60 µM). Salinomycin, cisplatin
and carboplatin were used as positive controls. IC50 values of all three complexes were
significantly lower than those of the positive controls. Activity improved with the increase
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of lipophilicity, complex 3 being active within the nanomolar range against osteosarcoma
cells and osteosarcoma stem cells.
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Figure 23. The complexes presented in [93].

Assays were conducted also on non-cancerous cell lines—HEK 293T, MCF710A, BEAS-
2B and GMO7575. Complex 3 was significantly less potent against these. It manifested an
ability to enter osteosarcoma cell nuclei with a potential to damage genomic DNA and to
initiate caspase-dependent cell death.

A series of publications [85,94] describe promising antiproliferative activity of a
gallium(III) complexes with substituted 8-quinolinols. They are structural analogs of
tris(8-quinolinolato)gallium(III), also known as KP46 and AP-002 (Figure 24a)—a potential
metallodrug, currently undergoing clinical trials [94]. Gallium complexes of four struc-
tural analogs of KP46 (Figure 24b) were tested against several cancer cell lines—A2780,
MDA-MB-231 and HCT116. The non-cancerous MRC5pd30 line was also investigated.
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Figure 24. Structures of KP46 (a) and its analogues (b) presented in [94,95].

Complex 1 (with 5-chloro-substituted ligand) manifested the most pronounced antipro-
liferative effect (IC50 = 6.5–14.0 µM), comparable to that of the positive control cisplatin
with regard to the various cell lines. Non-cancerous cells were affected at 25–65 times
higher concentrations than cancer cells. The complex was significantly more active than
the ligand itself.

A different study [95] focused on KP46 (Figure 24a) itself. It was tested against a
variety of human cell lines: BJAB mock, including vincristine and doxorubicin-resistant;
Nalm-6, including vincristine, etoposide and methotrexate-resistant strains; SK-N-AS and
its vincristine-resistant subline; and K652. KP46 was found to induce apoptosis at a higher
percentage than doxorubicin after 72 h of incubation. The observed activity was partially
caspase-dependent, inducing processing of procaspases 3 and 9. The compound manifested
a significant antiproliferative effect against BJAB and its vincristine-resistant subline, while
the doxorubicin-resistant cells were unaffected. Mitochondrial membrane potential was
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decreased by about 64% at a 20 µM concentration. Increased pro-apoptotic Harakiri
protein expression was observed. The compound was found to possess not only intrinsic
antiproliferative properties, but also to be highly effective in combination treatments with
“established” anticancer agents against resistant cell lines. Synergies with cytarabine and
methotrexate, causing up to a four-fold increase of apoptotic cells when treating BJAB were
observed. Even a low concentration of 0.75 µM, in combination with daunorubibin, was
able to overcome daunorubicin resistance in the K652 strain—increases in the number of
apoptotic cells were three-fold.

Essential information on the Ga complexes’ structures, type of cancer cells suppressed
and biological activity has been summarized in Table 3.

Table 3. Summary of the gallium complexes presented.

Citation Number Metal Ion/Ligand Type Effective against Biological Activity
(If Investigated)

[9] Ga(III), salen HeLa, HepG 2, MCF-7, A549 Protein disulfide
isomerase inhibition

[84] Ga(III), hydrazone MCF-7; PC-3 n/a

[90] Ga(III), corrole DU145; SK-MEL-28;
MDA-MB-231; OVCAR-3 n/a

[91] Ga(III), benzoylpyridine
thiosemicarbazone HepG-2

Impaired mitochondrial function,
ferritin expression

downregulated, transferrin
receptor-1 upregulated, activated

caspase-3 increased ROS
[92] Ga(III), isonicotynoyl hydrazone HL-60; MCF-7; HCT-116; PC3 Reduced clonogenicity.

[93] Ga(III), polypyridine OSC; OSCs Damage to genomic
DNA, apoptosis

[94] Ga(III), substituted 8-quinolinol A2780, MDA-MB-231 and
HCT116

[95] Ga(III), 8-quinolinol BJAB mock; Nalm-6;
SK-N-AS; K652

Cell proliferation inhibition,
impaired mitochondrial

function, apoptosis

2.4. Gold Coordination Compounds

Gold has been used as a therapeutic since ancient times [96]. The earliest recorded
use of gold as a medicine dates back 2500 years in China. Over the past two centuries in
Europe, gold compounds have been used to treat “melancholy”, fevers, syphilis and tuber-
culosis [96]. Compared to platinum-based drugs, complexes with gold tend to be less toxic.
Such compounds have historically been applied with success in the treatment of rheuma-
toid arthritis (MyocrisinTM, SolganolTM, RidauraTM (auranofin), etc.) and malaria [97].
Chrysotherapy (therapy with gold-containing compounds) research in the field of oncology
has been ongoing for several decades now as a possible alternative to platinum-based
treatments and their numerous disadvantages in terms of severe side effects and cancer cell
resistance [96,98]. Gold complexes as antitumor agents tend to target thioredoxin reductase
(TrxR), and in general, proteins and enzymes bearing thiol groups [99]. Similar to ruthenium
and gallium, research of novel gold coordination compounds with antiproliferative proper-
ties is driven by the distinct deficiencies of modern platinum-based therapies. Alkynyl-gold
complexes are currently a subject of particular interest due to the particular stability of the
C-Au bond, making the gold ion more resistant to physiological reductants before reaching
its target. Additionally, modifying the ancillary ligand can impact the pharmacological
behavior of the investigated complex [98]. The authors would like to recommend the
following detailed reviews of Au(I)/(III)-complex applications in oncology [99–101]. The
most recent discoveries over the past three years are described below.

A number of halo and pseudohalo gold(I) complexes with 4,5-diarylimidazoles (Figure 25)
were synthesized and tested for antiproliferative activity against hepatocellular carcinoma
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strains HepG2, SMMC-7721 and Hep3B [102]. The study was an expansion on previous
work with similar compounds [103].
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auranofin being used as positive controls. All investigated substances manifested 
antiproliferative activity similar to that of the controls (IC50 values were up to 20μM). 
Complex 1 was the least active. Notably, the larger the halogen ligand (I > Br > Cl), the 
stronger the antiproliferative activity, a fact attributed by the authors to an increase in 
lipophilicity in the same order. Acetato-gold complexes were more active than cyanate-
gold complexes. The most active substance 6 was found to be stable in PBS, including in 
the presence of high concentrations of GSH (Au prefers “soft” S-ligands). It exhibited 
better selectivity than the positive controls toward hepatocellular carcinoma HCC cells 
compared to normal LO2 and H8 cells. TrxR, a prominent target for gold, was inhibited, 
intracellular ROS production was increased and mitochondrial function was impaired. 

Figure 25. The complexes presented in [102].

MTT assay was applied to measure the antiproliferative effect with cisplatin and
auranofin being used as positive controls. All investigated substances manifested antipro-
liferative activity similar to that of the controls (IC50 values were up to 20µM). Complex 1
was the least active. Notably, the larger the halogen ligand (I > Br > Cl), the stronger the
antiproliferative activity, a fact attributed by the authors to an increase in lipophilicity in
the same order. Acetato-gold complexes were more active than cyanate-gold complexes.
The most active substance 6 was found to be stable in PBS, including in the presence of high
concentrations of GSH (Au prefers “soft” S-ligands). It exhibited better selectivity than the
positive controls toward hepatocellular carcinoma HCC cells compared to normal LO2 and
H8 cells. TrxR, a prominent target for gold, was inhibited, intracellular ROS production
was increased and mitochondrial function was impaired.

Walther and coworkers [104] investigated two gold(I)-N-heterocyclic carbene com-
plexes for anticancer activity (Figure 26).
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ethynyl “bridging” ligand had very low activity against all tested strains. Both gold 
complexes behaved in a similar manner to the positive control cisplatin (IC50 varied at 18–
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improving their solubility—a common issue with alkynyl-gold compounds [111]. 

Figure 26. The complexes presented in [104].

IC50 values were within the nanomolar range (sulforhodamine B (SRB) assay) after 48 h
of incubation against OVCAR3, NCI-H522, HT29, T-47D and PC-3 lines (GI50 = 0.26–0.79 µM).
Growth of PC-3 derived xenograft tumors was inhibited, mammalian TrxR was suppressed
and nuclear protein Ki67 was reduced—a marker for inhibition of cell proliferation.

Gulzar and coworkers [105] synthesized a series of NHC-gold(I)-thione complexes
(Figure 27) and tested them against the HCT-15, A549 and MCF7 cancer cell lines (MTT
assay, 24 h). Cisplatin was the positive standard.
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Figure 27. The complexes presented in [105].

IC50 values (74.26 to 102.17µM) were about 2–3 times higher than the those for cisplatin.
The authors concluded that thione ligands do not contribute to the antiproliferative activity
of such gold(I) complexes.

Alkynyl-gold complexes have been intensively studied in recent years for their an-
tiproliferative effect [98]. They tend to exhibit significant anticancer effects, associated with
TrxR inhibitory activity [106–109]. A number of investigations to that effect have been
carried out recently.

A phenanthrene bridge was substituted with two terminal alkynyl groups in order to
build potential anticancer complexes with two gold(I)-phosphine centers [110] (Figure 28).
The potential antiproliferative activity of both gold complexes was assessed against the
MCF-7, HEPG-2, PC-3 and MOLT-4 cancer cell lines (SRB, 72 h). The phenanthrene-ethynyl
“bridging” ligand had very low activity against all tested strains. Both gold complexes
behaved in a similar manner to the positive control cisplatin (IC50 varied at 18–28 µM with
all cancer cell lines). DNA binding was noted for both complexes and the ligand. The
authors of the study proposed that substituting the phenanthrene skeleton at positions
9 and 10 would allow for modification of lipophilicity of the complexes improving their
solubility—a common issue with alkynyl-gold compounds [111].
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Figure 28. The complexes presented in [110].

Another study [112] evaluated a number of alkynyl-gold(I)-triphenylphosphine com-
plexes against cancerous HT29, IGROV1, HL60 and non-malignant I407 cells. The most
active substance (Figure 29) exhibited antiproliferative activity in the low-micromolar range
(IC50 = 3.3–7.9 µM), similar to that of the positive standard auranofin. It, however, turned
out to be most toxic against the normal cell line (IC50 = 1.7 µM). Two other noteworthy
compounds inhibited proliferation in IGROV1 and HL60 cells, while being non-toxic to I407.
Both were binuclear complexes and their thioredoxine reductase inhibitory activity was
significantly stronger than in the rest of the experimental substances that were mononuclear.
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Figure 29. One of the complexes presented in [112].

Marmol and coworkers synthesized and tested alkynyl-gold(I)-substituted 3-hydroxyflavones
against a series of cancer cell lines [113]. Several alkyne-substituted ligands were coor-
dinated with Au(I), together with either triphenylphosphane (PPh3), or 1,3,5-triaza-7-
phosphaadamantane (PTA) (Figure 30). Their antiproliferative activity, expressed as IC50
against undifferentiated Caco-2/TC7 cells is within the micromolar range (IC50 = 1.5–7.68 µM,
MTT assay).
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Figure 30. One of the complexes presented in [113].

Lipophilicity was higher in the PPh3 compounds, compared to the PTA-containing
complexes. MTT and SRB assays were both utilized to measure cytotoxicity of all eight
gold complexes against MCF-7, HepG5 and Caco-2/TC7 cells. Selectivity was assessed
with the help of non-cancerous differentiated Caco-2 as a model of the intestinal barrier.
Cisplatin and auranofin were used as positive controls. All complexes manifested antipro-
liferative effects against the cancer cell lines within the micromolar range (IC50 is higher
than auranofin and lower than cisplatin). The more lipophilic series of PPh3-containing
compounds suppressed proliferation in Caco-2/TC7 and HepG2 to a greater extent com-
pared to the PTA series. This trend was reversed with MCF-7. Selectivity indices of the PTA
complexes were similar to those of auranofin and cisplatin. Those of the PPh3-complexes
were much improved. Complexes 1b and 2c were additionally examined. Complex 1b
inhibited COX-2, thioredoxine reductase, glutathione reductase, increased ROS levels and
triggered apoptosis after 24 h of incubation. Complex 2c inhibited COX-1, thioredoxine
reductase, glutathione reductase, increased ROS levels and triggered apoptosis after 48 h.

A series of mononuclear phosphane-Au(I)-alkynyl complexes (Figure 31) were synthe-
sized by Babgi and coworkers [114] with the aim to elucidate the impact of phenolic Schiff
base addition on biological activity, including antiproliferative (SRB assay), HSA binding
and thioredoxine reductase inhibition (in silico docking).
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Figure 31. One of the complexes presented in [114].

The aldehyde complexes (Figure 1-1,-2) suppressed the proliferation OVCAR-3 and
HOP-62 cells (IC50 in the 12–16 µM range). Changing the aldehyde group with a phenolic
Shiff base caused dramatic improvement of cytotoxicity (IC50 in the 5–9 µM range). The
p-hydroxy substituted complex 4 was much more effective against OVCAR-3, compared to
its o-hydroxy-substituted analogs. Within the scope of this investigation, substituting the
triphenylphosphine with a tricyclohexyl moiety did not impact biological activity. Molecu-
lar docking calculations showed that substituting the aldehyde group for a Schiff base may
change the binding site with human thioredoxin reductase. Changing triphenylphosphine
with tricyclohexanephosphine increased HSA binding. Adding a phenolic moiety had the
same effect.

An alkynyl-activated quinazoline carboxamide was synthesized in order to produce a
series of alkynyl-Au(I) complexes [115] (Figure 32). Quinazoline carboxamides tend to bind
to translocator protein 18kDa (TSPO), situated on the outer mitochondrial membrane [116].
They could be applied as chemo-/photo-sensitizers and diagnostic agents as TSPO is
overexpressed in a variety of cancer types.
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more active with T24 after 96 h. Cellular uptake decreased in the following way 2 > 1 > 3. 
Complexes 1 and 2 activated caspases, in the case of the latter with delayed timing. 
Thioredoxine reductase inhibition increased in the following order 1 > 2 > 3. 

Bian and coworkers [117] synthesized a series of alkyne-activated pentacyclic 
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thioredoxine reductase inhibition. All substances were tested against the MCF-7, HT-29, 
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significant (IC50 for A2780 was mostly between 25 and 40 μM). The oleanolic acid 
derivative (Figure 33) was found to have an IC50 against A2780 in the low micromolar 
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Romanova and coworkers synthesized a series of gold(I) complexes with alkynyl-
activated ibuprofen [119] (Figure 34) and tested them (MTT assay, 72 h) for 
antiproliferative activity against MCF-7, MDA-MB-231 and HT-29 cancer lines as well as 
MCF-10A non-cancerous cells. 

Figure 32. Some of the complexes presented in [115].

All three complexes were stable in PBS at 37 ◦C for over 72 h, including in culture
media. Their cytotoxicities were tested with the help of the XTT assay. Bladder cancer
lines 5637 and T24 were incubated with the complexes for 72 and 96 h. Compound 3
manifested modest activity against 5637 after 72 and 96 h. The IC50 values of complexes 1
and 2 were in the low micromolar to nanomolar ranges (IC50 = 0.17–12.40 µM). Complex 1
was more active than complex 2 with 5637 (72 and 96 h) and T24 (72 h). Complex 2
was more active with T24 after 96 h. Cellular uptake decreased in the following way
2 > 1 > 3. Complexes 1 and 2 activated caspases, in the case of the latter with delayed
timing. Thioredoxine reductase inhibition increased in the following order 1 > 2 > 3.

Bian and coworkers [117] synthesized a series of alkyne-activated pentacyclic triter-
pene derivatives (betulinic acid, ursolic acid, clycyrrhetic acid and oleanolic acid). Triter-
penes are known for their anticancer activity [118], attacking a multitude of targets.
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The authors tested whether conjugating such substances with gold(I) and PPh3 would
yield complexes with varied mechanisms of action beyond the expected thioredoxine
reductase inhibition. All substances were tested against the MCF-7, HT-29, HepG3 and
A2780 cancer cell lines (MTT assay) and were found to manifest moderate antiproliferative
activity against most cell lines, except A2780 where the impact was significant (IC50 for
A2780 was mostly between 25 and 40 µM). The oleanolic acid derivative (Figure 33) was
found to have an IC50 against A2780 in the low micromolar range (10 µM)—similar to the
positive controls cisplatin and auranofin. It inhibited thioredoxine reductase (both purified
enzyme and cellular-A2780) to a lesser extent than auranofin, impaired mitochondrial
function, increased cellular ROS production and induced endoplasmic reticulum stress.
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Romanova and coworkers synthesized a series of gold(I) complexes with alkynyl-
activated ibuprofen [119] (Figure 34) and tested them (MTT assay, 72 h) for antiproliferative
activity against MCF-7, MDA-MB-231 and HT-29 cancer lines as well as MCF-10A non-
cancerous cells.

Molecules 2023, 28, 1959 25 of 33 
 

 

 
Figure 34. One of the complexes presented in [119]. 

The activity of both complexes was comparable to the positive controls cisplatin and 
auranofin, where the IC50 was in the low micromolar range (0.98–3.42 μM), and selectivity 
was very much improved with regard to the non-cancerous cell line. The N-heterocyclic 
carbenium (NHC) complex had lower antitumor activity than the triphenylphosphine 
one, but manifested much better selectivity in relation to the non-neoplastic MCF-10A 
cells. TrxR and glutathione reductase inhibition was observed as well as an increase in 
ROS. 

Essential information on the Au complexes’ structures, type of cancer cells 
suppressed and biological activity has been summarized in Table 4. 

Table 4. Summary of the gold complexes presented. 

Citation 
Number 

Metal Ion/Ligand Type Effective against Biological Activity (If Investigated) 

[102] Au(I), 4,5-diarylimidazoles HepG2; SMMC-7721; Hep3B TrxR inhibition, ROS increase 

[104] Au(I), NHC OVCAR3; NCI-H522; HT29; 
T-47D; PC-3 

TrxR inhibition, nuclear protein Ki67 
reduction 

[105] Au(I), NHC HCT-15; A549; MCF7 n/a 

[110] Au(I), phosphine, 
alkynylphenanthrene 

MCF-7; HEPG-2; PC-3; 
MOLT-4 DNA binding 

[112] Au(I)-alkynyl, triphenylphosphane HT29; IGROV1; HL60 TrxR inhibition 

[113] 
Au(I)-alkynyl, 

triphenylphosphine/ PTA MCF-7; HepG5; Caco-2/TC7 
TrxR inhibition, COX-1/2 inhibition, 

increased ROS 
[114] Au(I)-alkynyl, phosphane OVCAR-3; HOP-62 HSA binding 
[115] Au(I)-alkynyl 5637; T24 TrxR inhibition 

[117] Au(I)-alkynyl-triterpene MCF-7; HT-29; HepG3; 
A2780 

TrxR inhibition, mitochondrial impairment, 
increased ROS, endoplasmic reticulum 

stress 

[119] Au(I)-alkynyl-ibuprofen MCF-7; MDA-MB-231; HT-
29 

TrxR and glutathione reductase inhibition, 
increased ROS 

2.5. Lanthanum Coordination Compounds 
Lanthanum is the first member of the lanthanide series of f-transition metals. Its 

typical oxidation state is +3 and its coordination number can vary between 6 and 12. In 
terms of ionic potential La(III) resembles a multitude of “biological” ions (Fe(III), Ca(II), 
Zn(II), Mg(II)) and is therefore able to competitively replace them in ion-binding proteins 
[120]. A number of studies have related La(III) toxicity to impairment of zinc- and iron-
dependent enzymatic systems, suppressing SOD, CAT and disrupting mitochondrial 
function [121–123]. Currently lanthanum is applied in medicine in the form of the 
phosphate binder lanthanum carbonate [124]. During the past decade, the popularity of 
La(III) complexes in cancer research has been steadily rising, mostly due to La’s ability to 
mimic biometals and to coordinate bioactive ligands [83]. As the search for La(III) 
complexes suitable for cancer therapy is slowly gaining traction [125], the authors would 
like to introduce the most prominent studies on this subject over the past three years. 

Figure 34. One of the complexes presented in [119].

The activity of both complexes was comparable to the positive controls cisplatin and
auranofin, where the IC50 was in the low micromolar range (0.98–3.42 µM), and selectivity
was very much improved with regard to the non-cancerous cell line. The N-heterocyclic
carbenium (NHC) complex had lower antitumor activity than the triphenylphosphine one,
but manifested much better selectivity in relation to the non-neoplastic MCF-10A cells.
TrxR and glutathione reductase inhibition was observed as well as an increase in ROS.

Essential information on the Au complexes’ structures, type of cancer cells suppressed
and biological activity has been summarized in Table 4.
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Table 4. Summary of the gold complexes presented.

Citation Number Metal Ion/Ligand Type Effective against Biological Activity
(If Investigated)

[102] Au(I), 4,5-diarylimidazoles HepG2; SMMC-7721; Hep3B TrxR inhibition, ROS increase

[104] Au(I), NHC OVCAR3; NCI-H522; HT29;
T-47D; PC-3

TrxR inhibition, nuclear protein
Ki67 reduction

[105] Au(I), NHC HCT-15; A549; MCF7 n/a

[110] Au(I), phosphine,
alkynylphenanthrene MCF-7; HEPG-2; PC-3; MOLT-4 DNA binding

[112] Au(I)-alkynyl,
triphenylphosphane HT29; IGROV1; HL60 TrxR inhibition

[113] Au(I)-alkynyl,
triphenylphosphine/ PTA MCF-7; HepG5; Caco-2/TC7 TrxR inhibition, COX-1/2

inhibition, increased ROS
[114] Au(I)-alkynyl, phosphane OVCAR-3; HOP-62 HSA binding
[115] Au(I)-alkynyl 5637; T24 TrxR inhibition

[117] Au(I)-alkynyl-triterpene MCF-7; HT-29; HepG3; A2780
TrxR inhibition, mitochondrial

impairment, increased ROS,
endoplasmic reticulum stress

[119] Au(I)-alkynyl-ibuprofen MCF-7; MDA-MB-231; HT-29 TrxR and glutathione reductase
inhibition, increased ROS

2.5. Lanthanum Coordination Compounds

Lanthanum is the first member of the lanthanide series of f -transition metals. Its
typical oxidation state is +3 and its coordination number can vary between 6 and 12.
In terms of ionic potential La(III) resembles a multitude of “biological” ions (Fe(III),
Ca(II), Zn(II), Mg(II)) and is therefore able to competitively replace them in ion-binding
proteins [120]. A number of studies have related La(III) toxicity to impairment of zinc- and
iron-dependent enzymatic systems, suppressing SOD, CAT and disrupting mitochondrial
function [121–123]. Currently lanthanum is applied in medicine in the form of the phos-
phate binder lanthanum carbonate [124]. During the past decade, the popularity of La(III)
complexes in cancer research has been steadily rising, mostly due to La’s ability to mimic
biometals and to coordinate bioactive ligands [83]. As the search for La(III) complexes suit-
able for cancer therapy is slowly gaining traction [125], the authors would like to introduce
the most prominent studies on this subject over the past three years.

Mohammed and coworkers synthesized a series of lanthanide complexes with two
ferrocene-substituted Schiff bases [126]. Both La(III) complexes with these two ligands
(1:1 metal ion:ligand molar ratio) manifested moderate antiproliferative activities (IC50
about 22 µM) against the MCF7 cell line (SRB, 48 h). Molecular docking studies suggested
interaction with the 3HB5 breast cancer receptor.

A tetradentate Schiff base ligand (Figure 35) was coordinated with La(III) [127]. Both
substances were tested for antiproliferative activity against MCF-7 and HepG2 (SRB, 48h
exposure) and yielded promising results (IC50 = 23–50 µM). Adding La(III) to the Schiff base
decreased anticancer activity against MCF-7 and dramatically improved it against Hep-G2.

Molecules 2023, 28, 1959 26 of 33 
 

 

Mohammed and coworkers synthesized a series of lanthanide complexes with two 
ferrocene-substituted Schiff bases [126]. Both La(III) complexes with these two ligands (1:1 
metal ion:ligand molar ratio) manifested moderate antiproliferative activities (IC50 about 
22 μM) against the MCF7 cell line (SRB, 48 h). Molecular docking studies suggested 
interaction with the 3HB5 breast cancer receptor. 

A tetradentate Schiff base ligand (Figure 35) was coordinated with La(III) [127]. Both 
substances were tested for antiproliferative activity against MCF-7 and HepG2 (SRB, 48h 
exposure) and yielded promising results (IC50 = 23–50 μM). Adding La(III) to the Schiff 
base decreased anticancer activity against MCF-7 and dramatically improved it against 
Hep-G2. 

 
Figure 35. The ligand of the complex presented in [127]. 

A La(III)-5-fluorouracil complex (1:1 molar ratio) was synthesized and tested against 
the Caco-2 cell line (trypan blue exclusion assay). The presence of the La(III) coordination 
center significantly improved cytotoxicity, compared to 5-fluorouracil [128]. Molecular 
docking studies suggested interaction with site II of BSA. 

A La(III) complex with tyrosine (metal: ligand molar ratio is 1:3) was tested against 
MCF-7 cells [129]. After 72 h of incubation (MTT assay), the complex manifested 
antiproliferative activity (IC50 = 21 μM) similar to the positive control cisplatin. 
Furthermore, the compound was found to be non-toxic to non-cancerous ADSC cells. 

La(III) was complexed with N,N’-bis(2-aminoethyl)oxamide (Figure 36-1), 2,2′-
bipyridine (Figure 36-2), 1,l0-phenanthroline (Figure 36-3) and dipyrido(3,2-a:2′,3′-
c)phenazine (Figure 36-4)[130]. Four complexes were synthesized—[La(1)2(NO3)2](NO3), 
[La(1)(2)](NO3)3, [La(1)(3)](NO3)3 and [La(1)2(3)](NO3)3. All complexes manifested 
moderated cytotoxic activities (MTT assay against MCF-7), the highest activity being 
observed by [La(1)2(3)](NO3)3, with an IC50 = 22 μM. The bigger the aromatic planar 
structure of the ligand, the greater the cytotoxicity, attributed by the authors to DNA 
intercalation and cleaving. 

 
Figure 36. The ligands of the complexes presented in [130]. 

A mixed ligand La(III) complex with 2,2′-bipyridyl and 5,7-dibromo-8-quinolinol 
manifested significant activity against SK-OV-3/DDP, NCI-H460, HeLa and HL-7702 cells 
[131]. IC50 is within the low micromolar range (MTT assay). The strongest cytotoxicity was 
against HeLa—about 2 μM. 

Figure 35. The ligand of the complex presented in [127].



Molecules 2023, 28, 1959 26 of 33

A La(III)-5-fluorouracil complex (1:1 molar ratio) was synthesized and tested against
the Caco-2 cell line (trypan blue exclusion assay). The presence of the La(III) coordination
center significantly improved cytotoxicity, compared to 5-fluorouracil [128]. Molecular
docking studies suggested interaction with site II of BSA.

A La(III) complex with tyrosine (metal: ligand molar ratio is 1:3) was tested against
MCF-7 cells [129]. After 72 h of incubation (MTT assay), the complex manifested antiprolif-
erative activity (IC50 = 21 µM) similar to the positive control cisplatin. Furthermore, the
compound was found to be non-toxic to non-cancerous ADSC cells.

La(III) was complexed with N,N’-bis(2-aminoethyl)oxamide (Figure 36-1), 2,2′-bipyridine
(Figure 36-2), 1,l0-phenanthroline (Figure 36-3) and dipyrido(3,2-a:2′,3′-c)phenazine
(Figure 36-4) [130]. Four complexes were synthesized—[La(1)2(NO3)2](NO3), [La(1)(2)](NO3)3,
[La(1)(3)](NO3)3 and [La(1)2(3)](NO3)3. All complexes manifested moderated cytotoxic ac-
tivities (MTT assay against MCF-7), the highest activity being observed by [La(1)2(3)](NO3)3,
with an IC50 = 22 µM. The bigger the aromatic planar structure of the ligand, the greater
the cytotoxicity, attributed by the authors to DNA intercalation and cleaving.
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A mixed ligand La(III) complex with 2,2′-bipyridyl and 5,7-dibromo-8-quinolinol man-
ifested significant activity against SK-OV-3/DDP, NCI-H460, HeLa and HL-7702 cells [131].
IC50 is within the low micromolar range (MTT assay). The strongest cytotoxicity was
against HeLa—about 2 µM.

Two La(III) complexes (Figure 37) with pyridine-2,6-dicarboxylate were tested against
the HL60, HepG2, HT29 and normal HFF cell lines [132]. Oxaliplatin was used as a positive
control. The complexes were more potent than the ligands themselves.
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Complex 1 manifested a stronger antiproliferative effect compared to complex 2
against all cell lines (MTT assay). Complex 1 was particularly effective against HL60
(IC50 = 0.69 µM). Activity against Hep-G2 and HT-29 was moderate (IC50 = 20.76 and
90.34 µM, respectively). Both compounds were non-toxic against HFF. Complexes 1 and 2
increased ROS levels in HL 60 by 211% and 141%, respectively, the result being higher than
that for the positive control oxaliplatin.

A La(III) complex with 2,2′-bipyridine [133] was tested against the MCF-7, A549 and
the non-cancerous HFB cell lines (MTT test, 24 h). Molecular docking suggested interaction
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with site III in BSA. 5-FU and methotrexate were used as positive controls. The complex
manifested a promising antiproliferative effect. IC50 was about ten-fold lower than the
positive controls (3.25-3.99 versus 27.5–47.8 µM). Additionally, cytotoxicity against the
healthy cell line was about two times lower than methotrexate and 5-FU.

Essential information on the La complexes’ structures, type of cancer cells suppressed
and biological activity has been summarized in Table 5.

Table 5. Summary of the lanthanum complexes presented.

Citation Number Metal Ion/Ligand Type Effective against Biological Activity
(If Investigated)

[126] La(III), ferrocene-substituted
Schiff base MCF-7 Molecular docking: 3HB5 breast

cancer receptor
[127] La(III), tetradentate Schiff base MCF-7, HepG2 n/a
[128] La(III), 5-fluorouracil Caco2 n/a

[129] La(III), tyrosine MCF-7 Molecular docking: interaction
with site II of BSA

[130] La(III), polypyridine,
1,10-phenanthroline MCF-7 DNA intercalation, DNA

cleaving

[131] La(III), bipyridyl SK-OV-3/DDP; NCI-H460; HeLa;
HL-7702 n/a

[132] La(III),
pyridine-2,6-dicarboxylate HL60; HepG2; HT29 ROS increase

[133] La(III), bipyridine MCF-7; A-549 Molecular docking: interaction
with site III of BSA

3. Discussion and Conclusions

Metal-based drugs are continually gaining ground in modern medicine, particularly
in the field of oncology. Platinum, ruthenium, gold, lanthanum and gallium coordination
compounds provide promising perspectives in the constant search for novel anticancer
drugs. The research reviewed here helped the authors draw a number of conclusions:

• Depending on the element serving as coordination center, the complexes under review
exhibit their antiproliferative activity via different pathways: DNA impairment via
inter-/intra-strand crosslinks, mitochondrial function impairment, generation of ROS
and apoptosis/necrosis. These effects result from a variety of biochemical and physico-
chemical mechanisms: DNA/protein binding, ionic mimicry, competitive inhibition of
enzymes and photosensitization. This multitude of possible metal-dependent modes
of anticancer action allows for consideration of potential combination therapies that
improve effectiveness, avoid therapy resistance and reduce systemic toxicities;

• The activities of the metal coordination centers can be modified with a suitable choice
of ligands. High cytotoxicity against tumors is not enough, unless it goes hand in
hand with good selectivity and/or a suitable cancer cell targeting mechanism;

• Physicochemical mechanisms such as photoactivation, as in photodynamic therapy,
allow for targeting specific areas of the body with the aid of a photosensitizer with low
systemic toxicity. Developing transition metal complexes with suitable photophysical
properties seems to be a suitable direction, both logical and necessary, in the search of
novel anticancer treatments.
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