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Abstract: New antioxidant agents are urgently required to combat oxidative stress, which is linked
to the emergence of serious diseases. In an effort to discover potent antioxidant agents, a novel
series of 2-thiouracil-5-sulfonamides (4–9) were designed and synthesized. In line with this approach,
our target new compounds were prepared from methyl ketone derivative 3, which was used as a
blocking unit for further synthesis of a novel series of chalcone derivatives 4a–d, thiosemicarbazone
derivatives 5a–d, pyridine derivatives 6a–d and 7a–d, bromo acetyl derivative 8, and thiazole deriva-
tives 9a–d. All compounds were evaluated as antioxidants against 2,2-diphenyl-1-picrylhydrazyl
(DPPH), hydrogen peroxide (H2O2), lipid peroxidation, and 15-lipoxygenase (15-LOX) inhibition
activity. Compounds 5c, 6d, 7d, 9b, 9c, and 9d demonstrated significant RSA in all three techniques
in comparison with ascorbic acid and 15-LOX inhibitory effectiveness using quercetin as a standard.
Molecular docking of compound 9b endorsed its proper binding at the active site pocket of the human
15-LOX which explains its potent antioxidant activity in comparison with standard ascorbic acid.

Keywords: sulfonamides; antioxidant; DPPH; 15-LOX; molecular docking

1. Introduction

Lipoxygenases (LOXes) are nonheme iron-containing enzymes that regio- and stereo-
specifically add oxygen to 1,4-polyunsaturated fatty acids to form the appropriate hy-
droperoxy derivatives [1,2]. Hydroperoxyeicosatetraenoic acid (HPETE) and hydroperox-
yoctadecadienoic acid (HPODE), respectively, are the main lipid peroxidation products
from arachidonic acid (AA) and linoleic acid (LA) [2]. These are easily transformed into the
related hydroxy fatty acids hydroxy eicosatetraenoic acid (HETE) and hydroxy octadeca-
dienoic acid (HODE). Plants, animals, and microorganisms all contain LOXes [3]. The
various isozymes are known as 5-, 12-, or 15-LOXes because they can add a hydroperoxy
moiety at carbons 5, 12, or 15 when arachidonic acid is the substrate. The 15-LOXes, LOX-1
and LOX-3, are lipoxygenases found in soybeans (Glycine max). Different mammalian
LOX isoforms, including 5-LOX, 12-LOX, and 15-LOX, were discovered to be implicated in
the etiology and development of numerous human disorders, which drew attention to the
development of new pharmacological candidates that may function as potential lipoxyge-
nase inhibitors [4]. The ability of the enzymes 15-LOX-1 and 15-LOX-2 to peroxide linoleic
and arachidonic acids differently in animals has been established. It has been established
that the aforementioned enzymes, as well as their metabolites hydroxy octadecadienoic
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acid (HODE), lipoxins, and eoxins, play a crucial role in the development of a number
of diseases.

It’s interesting to note that research has shown that 15-LOX plays a factor in cardio-
vascular issues, including atherosclerosis, because it affects how low-density lipoproteins
(LDL) are oxidized [5]. In addition, 15-LOX has been linked to the pathogenesis of neu-
rological conditions like Alzheimer’s disease [6], the development of specific cancer cell
types [7,8], and the production of pro-inflammatory and thrombotic mediators from the
oxidation of arachidonic and linoleic acids [9,10]. As a result, 15-LOX is unquestionably
a significant therapeutic target [11]. Therefore, LOXs are a viable target for the develop-
ment of mechanism-based inhibitors and rational drug design for the management of
inflammation, bronchial asthma, cancer, and autoimmune disorders.

Antioxidants act as a crucial line of defense against toxic effects generated by radicals
by protecting the damages caused by free radicals. In the prevention and treatment of
serious diseases like Alzheimer’s disease, atherosclerosis, cancer, diabetes, and stroke, an-
tioxidants are beneficial [12]. The applications of antioxidants are widespread in numerous
industries, including food, beverage, and cosmetics [13] etc. As more data is continuously
acquired connecting the development of human diseases to oxidative stress, there has been
an increase in interest in the application of antioxidants to medical treatment in recent years.
Any biological system needs to maintain a delicate balance between the production of
reactive oxygen and nitrogen species (ROS and RNS). ROS and RNS are produced regularly
by either excessive oxidative stress or normal organ functions. Superoxide (O2

−), hydrogen
peroxide (H2O2), nitrogen oxide (NO), peroxynitrite (ONO2

−), and hypochlorous acid
(HOCl) are reactive species that, in excess, can have harmful effects and destroy tissue [14].
Organs use a variety of defense mechanisms, including endogenous and exogenous an-
tioxidants, to protect themselves from the toxicity of excess ROS/RNS and maintain an
oxido/redox balance [15].

Three crucial enzymes in these endogenous mechanisms are glutathione reductase
(GSH), superoxide dismutase (SOD), and catalase. Exogenous antioxidants include sub-
stances that can scavenge free radicals, such as α-tocopherol, vitamin C, carotenoids, and
polyphenols with a herbal origin. In the context of normal physiologic conditions, these
enzymes and antioxidant substances balance the production and neutralization of free
radicals. The use of dietary antioxidants, whether they are organic or synthetic, can boost
defense against free radicals, enhance the quality of life by preventing numerous diseases,
and significantly reduce the cost of health care delivery. In case of overproduction of free
radicals in the body, they become inadequate or defective. Thus, the design and synthesis
of novel antioxidant agents with high efficiency and low toxicity to hold this balance again
is a growing research area in the field of medicinal chemistry [16,17].

Antioxidants can be divided into four main groups based on their mode of action [18,19]:

(i) Chelators of metal ions involved in catalyzing lipid oxidation;
(ii) Free radical scavengers;
(iii) Lipoxygenase inactivators;
(iv) Oxygen scavengers that react with oxygen in closed systems.

Most of the organic chemistry research globally focuses on heterocyclic chemistry.
Pyrimidines, well-known heterocyclic compounds, occupy a special role in our life. This
heterocyclic moiety is extremely important in biology and medicine. Numerous pyrimidine
medicines have a range of therapeutic properties like anticancer such as 5-fluorouracil
(5-FU), antiviral such as Idoxuridine and Trifluridine, anti-HIV such as Zidovudine and
Stavudine, antibacterial such as Trimethoprim, Sulphamethiazine, and Sulphadiazine, anti-
hypertensive such as Minoxidil and Prazosin, antithyroid such as Propylthiouracil, and
antibiotic such as Bacimethrine [20]. Pyrimidine is a crucial component of nucleic acids,
and it is used in pharmaceutics as a building block for the synthesis of anti-inflammatory,
anti-hypertensive, antioxidant, anti-SARS [21–23], antiviral [24], anticancer [25], and an-
tibacterial agents [26].
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Literature is enriched with different pyrimidines; all have high activity as antioxi-
dants [27–31]. As shown in Figure 1, pyrimidine derivatives I and II were reported to ex-
hibit promising antioxidant activity [27,28]; thiazolopyrimidine derivatives III and IV com-
bined with carbohydrazide, amino, and oxadiazol moieties possessed potential antioxidant
activities [29]. 2-Hydrazinyl-4-(3-methoxyphenyl)-1-methyl-6-oxo-1,6-dihydropyrimidine-
5-carb-onitrile V showed the most potent antioxidant activity by using scavenging of nitric
oxide radical method and scavenging of hydrogen peroxide method [30]. Pyrimidine
derivatives having sulfone moieties VI and VII were reported to have prominent antiox-
idant properties in both nitric oxide and DPPH methods [31] at a concentration of 100
µM. 4,6-Bisaryl-pyrimidin-2-amine derivative VIII showed good antioxidant activity as
compared with ascorbic acid [32].
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Figure 1. Pyrimidine-containing compounds as antioxidant agents.

Additionally, the exceptional antiviral, anticancer, and antibacterial properties of the
thiouracil derivatives make them of particular interest in medicinal chemistry [33–35].
2-Thiouracils IX, X, and XI proved to have promising antioxidant activities compared to
ascorbic acid [30,36]. Compound XII showed promising antioxidant activity with the IC50
of 0.6 mg/mL compared to gallic acid (IC50 = 0.0008 mg/mL) [37]. Compound XIII showed
more promising antioxidant activity in comparison to standard butylated hydroxy toluene
(Figure 2) [38].
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Figure 2. 2-Thiouracil-containing compounds with antioxidant activity.

The development of 15-LOX inhibitors for medicinal purposes is of great interest. Some
heterocyclic substances significantly inhibit 15-LOX. Sulfonamides XIV (IC50 = 7 nM) [39];
XV (IC50 = 17 nM (LA), 50 nM (AA) [40,41], and XVI (IC50 = 10 µM) [39] showed potent
inhibition of human 15-LOX. Moreover, thiourea XVII (IC50 rabbit enzyme = 2 nM), thiazole
XVIII (IC50 = 0.096 µM), and isothiazolo derivative XIX (IC50 human = 0.12 µM) were found
to work as a potent 15-LOX-1 inhibitors [39] (Figure 3).
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The antioxidant and 15-LOX inhibitory activity shown by the above derivatives has
drawn our interest in the development of new antioxidant agents. The synthesis and
biological evaluation of new 2-thiouracil-5-sulfonamide derivatives incorporating other het-
erocyclic and non-heterocyclic derivatives are reported herein (Figure 4), which were tested
for their potential as antioxidant agents against 2,2-diphenyl-1-picrylhydrazyl (DPPH),
hydrogen peroxide (H2O2), lipid peroxidation and 15-lipoxygenase (15-LOX) inhibition
activity. Future studies will discover the necessary antioxidant parameters that are most
dependable in the design of 15-LOX inhibitors based on the in vitro antioxidant activity
of the newly designed hybrids and their 15-LOX inhibitory activity. These derivatives’
potential modes of action and the structure-activity relationship (SAR) were also examined.
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2. Results and Discussion
2.1. Chemistry

The literature review on the significance of 2-thiouracils, sulfonamides, and 2-thiouracil-
5-sulfonamides in biological systems [42,43] inspired us to design and synthesize a new
class of 5-substituted-2-thiouracil derivatives like the sulfonamide isosteres [44,45].

The synthetic route to prepare 2-thiouracil-5-sulfonamide derivatives (2–7a–e) is de-
picted in Schemes 1 and 2. The pyrimidine nucleus performs poorly in comparison to most
frequent electrophilic substitution processes, including nitration, sulphonation, chlorina-
tion, etc. The -I and -M effects of the two nitrogen atoms are thought to be responsible
for the relative inertness. The addition of groups that release electrons may enhance these
reactions. In 2-thiouracil, the presence of OH and SH groups counteract the deactivation
caused by the two nitrogen atoms. Consequently, 2-thiouracil undergoes chlorosulphona-
tion [42,43]. The reaction of 2-thiouracil 1 with chlorosulphonic acid [44] at 120 ◦C yielded
the targeted chlorosulfonyl analog 2. Further, 2-thiouracil-5-sulfonyl chloride 2 was intro-
duced in reaction with m-aminoacetophenone in absolute ethanol containing pyridine as
an acid scavenger [44], giving the sulfonamide derivative 3. Claisen-Schmidt condensation
of 3 with some aromatic aldehydes (namely, 3-nitro benzaldehyde,3-chlorobenzaldehyde,
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3-fluorobenzaldehyde and 3-methylbenzaldehyde) in 10% NaOH in ethanol, resulting in
chalcones 4a–c. Moreover, sulfonamide 3 also reacted with thiosemicarbazide, namely
methyl, ethyl, 4-methoy phenyl and 4-flurophenyl thiosemicarbazides in absolute ethanol
to provide the corresponding thiosemicarbazones 5a–c, respectively (Scheme 1).
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Furthermore, 3-cyanopyridin-2-one or 2-amino-3-cyanopyridine derivatives 6a–d
and 7a–d, respectively, were prepared from compound 3 via condensation with active
methylene, namely ethyl cyanoacetate or malononitrile, the appropriate aromatic aldehydes
and ammonium acetate [45]. The reaction of compound 3 with bromine in glacial acetic acid
afforded the bromo derivative 8, which was then utilized as a substrate for the synthesis of
the thiazole derivatives 9a–d by its reaction with several thiosemicarbazones (Scheme 2).
The structures of all the newly synthesized compounds (4–9) were completely consistent
with the achieved spectral and elemental analysis data.
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2.2. Molecular Modeling

Molecular docking was performed for the most active compound, 9b, along with
the redocking of protocatechuic acid and the substrate mimic that is cocrystallized in the
15-LOX-2 crystal (4RNE).

As previously detailed in the experimental section, protocatechuic acid interacts with
the Ile676, Glu369 and Leu374, whereas the larger size of the substrate mimic assuming a
U-shaped bioactive conformer that is further dipped into the active site by its two arms.
The inner part of the substrate mimic overlapping with protocatechuic acid interacts with a
structural water molecule that interacts directly with the iron cofactor. Interestingly, the
Ile676 interacts with the Fe+2 ion on the opposite side of the water molecule. Therefore, the
interaction between the substrate mimic and Ile676 is bridged by water and the Fe+2 ion
(Figure 5).

By studying the docking results of the synthesized molecules 9b, it reveals a binding
mode that coincides with the substrate mimic (Figure 6). Herein, we detail the analysis
for 9b since it is the most active compound and scoring −9.8 Kcal/mol, which is close to
the docking score of the co-crystallized substrate mimic of −10.9 Kcal/mol (Table 1). The
bridging sulphonamide group of 9b is located close to the structural water allowing for
similar interactions to those observed by the co-crystallized substrate mimic. The central
aromatic ring that is bonded to the sulphonamide group shows a π-π stacking with the
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His 378. The chlorophenyl moiety extends deep into the hydrophobic pocket, similar to
the substrate mimic, but slightly shorter resulting in a slightly higher affinity score, i.e.,
−9.8 Kcal/mol. The choro substituent is positioned close to the carbonyl of the Ala 606,
showing polar interaction, which might be attributed to the order of activity of 9b, 9c, and
9d, which possess chloro, fluoro, and methyl substituents, respectively.
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Table 1. Docking scores (in Kcal/mol) of the newly synthesized compound 9b and the co-crystallized
ligand in the active site of LOX enzyme (4NRE).

Compounds Docking Score

Substrate mimic −10.9

Protocatechuic acid −5.6

9b −9.8
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2.3. Biological Screening
2.3.1. In-Vitro Antioxidant Activity

Results of screening of newly synthesized 2-thiouracil-5-Sulfonamide derivatives 3–9
as antioxidant molecules tested using 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydrogen
peroxide scavenging activity (H2O2), and lipid peroxidation assays (Figure 7). Ascorbic
Acid (AA) was used as the antioxidant reference standard. The results of in vitro antioxidant
activities were expressed as IC50 values (Table 2).
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Table 2. In vitro antioxidant potential of compounds (3–9).

Compounds DPPH
IC50

a (µg/mL)
H2O2

IC50
a (µg/mL)

Lipid Peroxidation
IC50

a (µg/mL)

3 80.0 ± 0.70 >100 >100

4a 50.5 ± 0.79 >100 >100

4b 44.3 ± 1.67 95.0 ± 1.40 >100

4c 43.0 ± 0.50 >100 >100

4d 40.0 ± 1.70 80.0 ± 0.70 >100

5a 14.50 ± 0.72 41.0 ± 1.53 90.0 ± 1.45

5b 14.00 ± 0.22 40.0 ± 1.32 85.0 ± 1.03

5c 9.0 ± 1.10 45.05 ± 1.34 82.0 ± 1.40

5d 14.72 ± 1.11 47.0 ± 1.38 95.0 ± 1.42

6a 28.0 ± 1.06 31.0 ± 1.30 45.0 ± 1.52

6b 22.0 ± 1.18 30.0 ± 1.21 40.0 ± 1.63

6c 21.7 ± 0.7 29.0 ± 1.03 39.0 ± 1.46

6d 21.0 ± 0.5 28.8 ± 1.05 38.0 ± 1.42

7a 25.5 ± 1.16 26.0 ± 1.28 37.6 ± 1.2

7b 19.50 ± 1.06 25.0 ± 1.35 37.3 ± 1.3

7c 17.7 ± 1.4 24.0 ± 1.40 36.9 ± 1.72

7d 17.0 ± 1.63 23.9 ± 1.34 36.4 ± 1.33

8 70.27 ± 1.17 >100 >100

9a 15.0 ± 1.25 20.0 ± 1.40 22.0 ± 1.40

9b 11.9 ± 1.40 18.0 ± 0.72 21.0 ± 1.45

9c 10.0 ± 0.83 16.0 ± 1.20 20.5 ± 1.48

9d 7.55 ± 1.70 15.0 ± 0.89 20.0 ± 1.56

Ascorbic acid 12.80 ± 0.90 23.0 ± 1.37 36.0 ± 1.30
a IC50 values are expressed as a mean ± SEM of three experiments.

2.3.2. DPPH Scavenging Activity

The antioxidant potential of all target compounds (3–9) was determined using DPPH
radical scavenging assay in comparison with ascorbic acid (AA) as the control treatment.

The mechanism of antioxidants as DPPH radical scavengers is based on their hydrogen-
donation ability as hydrogen atoms or an electron transfer from the compound to the DPPH
to form DPPH-H. The results of DPPH reduction are presented in Table 2, Figure 7.

Generally, 3–9 exerted remarkable free radical scavenging efficacies in the range of
7.55 ± 1.70 µg/mL to 80.0 ± 0.70 µg/mL of IC50 against DPPH radical. Out of the 22 tested
2-thiouracil-5-Sulfonamide derivatives, twenty exhibited moderate to potent activity, which
indicates their radical scavenging and their reducing activities.

The thiazole 2-thiouracils (9a–d) and 2- thiouracil thiosemicarbazones (5a–d) have
potent antioxidant activities, while chalcones (4a–d) have displayed moderate RSA.

The most active compounds were 9b, 9c, 9d, 5b, and 5c (IC50 = 11.9 ± 1.40, 10.0 ± 0.83,
7.55 ± 1.70, 14.00 ± 0.22, and 9.0 ± 1.10 µg/mL, respectively). They revealed potent RSA
compared to ascorbic acid (IC50 = 12.80 ± 0.90 µg/mL).

Among the tested series of compounds, thiazoles present the highest activity. It
was found that the presence of the pi-electron of excessive heterocycle thiazole enhances
the antioxidant activity by increasing their electron donor capacity. The thiazole has no
proton to donate to DPPH radical, but it is rich in electrons, and we proposed, due to its
structure, that it donates electrons to stabilize the DPPH radical. Moreover, good radical
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scavenger properties of S atom C=S and free NH that act as a hydrogen donor in 2-thiouracil
thiosemicarbazones showed potent DPPH RSA.

Compounds 9a, 5a, and 5d (IC50 = 15.0 ± 1.25, 14.50 ± 0.72, and 14.72 ± 1.11 µg/mL,
respectively) exhibited good RSA but lower than ascorbic acid. In addition, 3-cyanopyridin-
2-one 2-thiouracils 6a–d and 2-amino-3-cyanopyridine 2-thiouracils 7a–d exhibited good
activity in comparison to standard treatment AA. The lower DPPH RSA of chalcones (4a–d)
proves the significant role of pi electrons of thiazole and NH2 of pyridine in antioxidant
activity. All compounds (3–9) showed higher antioxidant RSA than their precursors, 2-
thiouracil-5-Sulfonamide (3), thus indicating that thiazole and pyridine rings enhance the
RSA of these compounds.

These data showed that compounds 6a–d display much better antioxidant activity
due to the introduction of pyridine rings. Moreover, it is obvious that the synergistic effect
of the amino group and pyridine would enhance the antioxidant activity of 2-thiouracil
derivatives. The results further confirm that the pyridine ring and amino group grafted
into compounds 7a–d contribute to the antioxidant action and consequently increase their
antioxidant activity.

The antioxidant results of the DPPH assay are consistent with the conclusion that
amino groups can enhance antioxidant activities [46]. The amino group in pyridine acts
as an electron donor to quench free radicals by providing an electron, conceivably via an
electron attack on the free radicals [47,48].

The SAR (Structure-Activity Relationship) study showed that the antioxidant activity
of compounds tested by DPPH assay depends on the type of heterocyclic pharmacophore
and also on substituents R/R− on the aromatic ring of chalcone, thiazole, thiosemicarbazone
and pyridine since antioxidant activity is related to electron or hydrogen donation capacity
to DPPH. Radicals (Figure 8).
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First, differences in the aromatic groups (thiazole, pyridine, and thiosemicarbazones)
may be enhanced the antioxidant potency as the order of free radical scavenging activity
(FRSA) was found to be: 9d > 5c > 7d > 6d.

Thiazoles 9 and thiosemicarbazones 5 have higher FRSA than amino pyridines 7
and pyridones 6. For compounds 9d and 5c, their potent antioxidant activity is due to
the presence of thiazole and semi-carbazones moiety [49,50]. While the introduction of
pyridones gives lower antioxidant activity, as shown in pyridone derivatives 6.
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Second, concerning substitution patterns of chalcone, thiazole, thiosemicarbazone and
pyridine, the order of antioxidant activity of compounds in descending order was found
to be:

4-CH3 (9d) > 4-F(9c) > 4-Cl (9b)> 4-NO2 (9a).
It was also observed that the presence of electron-donating groups (-CH3 and -OCH3)

led to an increase in antioxidant activity, while the presence of halogen atoms (Cl and F) on
the benzene rings led to a decrease in oxidant activity.

The alkylated compounds exhibited more significant DPPH RSA than the correspond-
ing halogenated compounds. 2-thiouracil derivatives 5c and 9d display the most potent
antioxidant activity, both having 4-CH3 or 4-OCH3 substituents on the phenyl ring, which
is in accordance with the reported results. It was found that the best antioxidant capacity
was found for the flavone substituted with a p-tolyl group on the thiazole ring [51].

During the DPPH assay, it was observed that the presence of electron-donating groups
such as OCH3 and CH3 are more beneficial than mono chloro or fluoro-substituted phenyl
ring and nitro compound, which may be due to +I and mesomeric effects [52]. These
suggest that electron-donating groups on the aromatic ring induce antioxidant activity by
the donation of electrons to the aromatic ring to activate it either by the resonance effect or
the inductive effect [53].

This all indicates that the physicochemical properties of the designed molecule re-
vealed an important role in the extent of its antioxidant activity. It is notable that the
calculated c Log P for these derivatives is high (more lipophilic) compared to the standard
treatment. In addition, these derivatives are cyclized heterocyclic analogs with fewer
rotatable bonds that make them more favorable for cellular permeability compared to
the standard treatment. It was found that the more electron donors substitutions on the
aromatic side chain of the heterocyclic ring, the more antioxidant activity was observed.

2.3.3. Hydrogen Peroxide Scavenging Activity

Hydrogen peroxide can inactivate a few enzymes directly, usually by oxidation of
essential thiol (-SH) groups, as it is a weak oxidizing agent [54]. H2O2 can cross cell
membranes rapidly, and it can react with Fe+2 and possibly Cu+2 inside the cell to form
hydroxyl radicals. The latter causes severe damage to biological systems [55]. Therefore,
scavenging H2O2 is very important for the protection of biological systems.

H2O2 assay is used to estimate the scavenging power of the target compounds (4–9)
to H2O2. The results recorded in Table 2 showed that thiazole 2-thiouracils 9a–d dis-
played higher H2O2 scavenging potential than the chalcone counterparts 4a–d when
compared to the ascorbic acid as a reference standard. Thiazole 2-thiouracil (9d) was
the most potent H2O2 scavenger (IC50 = 15.0 µg/mL) with 1.8-fold that of ascorbic acid
(IC50 = 23.0 µg g/mL) (Figure 5).

This signifies the role of electron-releasing group CH3 at the para-substituted group of
benzene over thiazole for the inhibition of free radicals. 2-thiouracil thiosemicarbazones
(5a–d) exhibited a moderate inhibitory effect in the hydrogen peroxide radical scavenging
activity. Additionally, aminopyridines (7a–d; IC50 = 26.0 ± 1.28, 25.0 ± 1.35, 24.0 ± 1.40,
and 23.9 ± 1.34 µg/mL, respectively) and pyridones (6a–d; IC50 = 31.0 ± 1.30, 30.0 ± 1.21,
29.0 ± 1.03 and 28.8 ± 1.05 µg/mL respectively) exhibited comparable H2O2 scavenging
activity to ascorbic acid. The significantly lower antioxidant activity of chalcones (4a–d)
confirms that chalcone moiety was not a favorable substitution over thiouracil ring for the
antioxidant potential of the tested compounds against the H2O2 assay.

2.3.4. Lipid Peroxidation Assay

Lipid peroxidation (LPO) caused by free radicals is supposed to be a primary mecha-
nism of cell membrane destruction and cell damage [56].

The damage to lipids (by lipid peroxidation) has been reported to occur in three stages:
initiation, propagation, and termination reactions. LPO may be initiated by radical species,
which are sufficiently reactive to abstract a hydrogen atom from the unsaturated fatty acids.
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This is the starting point for the lipid radical chain propagation reaction. The propagation
cycle is stopped by termination reactions (two radical species bond to form non-radical
final products) which result in the destruction of free radicals.

New target compounds (3–9) were evaluated for inhibition of microsomal lipid perox-
idation (LPO), where the ability of the compounds to scavenge free radicals was confirmed
by microsomal lipid peroxidation inhibition in a liposome model system [57]. In this assay,
lipid peroxidation is defined as the oxidative deterioration of polyunsaturated lipids [58],
where the 50% inhibitory concentrations (IC50) were calculated (Table 2). The obtained
results showed the ability of the tested compounds to exhibit significant antioxidant po-
tential. Compounds 9a–d exhibited pronounced antioxidant activity (IC50 = 22.0 ± 1.40,
21.0 ± 1.45, 20.5 ± 1.48, 20.0 ± 1.56, and 20.0 ± 1.56 µg/mL, respectively), which was
higher than the standard ascorbic acid (IC50 = 36.0 ± 1.30 µg/mL) against lipid perox-
idation. Meanwhile, the analogs 7a–d (IC50 = 37.6 ± 1.2, 37.3 ± 1.3, 36.9 ± 1.72, and
36.4 ± 1.33 µg/mL, respectively) were nearly equiactive to ascorbic acid. Compounds
5a–d have shown moderate inhibitory effects in the lipid peroxidation assay (Figure 7).

The results of the tested compounds (4–9) as antioxidants against LPO emphasized the
important role of thiazole in the antioxidant activity in this assay regardless the substitution
patterns were either 4-NO2 (9a) or 4-Cl (9b) or 4-F (9c) or4-CH3 (9d). Those derivatives
were even superior to ascorbic acid in the antioxidant potential. But the contribution of
pyridone and pyridine rings in controlling the activity of the generated hybrids couldn’t be
ignored. So, the lower activity upon removal of thiazole, pyridone and pyridine rings for
compounds (9d), (7d), and (6d) is highly expected according to the IC50 values reported
for the compounds. This is because the antioxidant activity appeared to be (9d) > (7d) >
(6d) to confirm the superiority of thiazole-thiouracil over both pyridone-thiouracil and
pyridine-thiouracil and infer the role of thiazole in discriminating the potential antioxidant
properties among potent compounds. This study also provides evidence that the presence
of C=O, CN, or NH2 groups in 7d and 6d could extend its reaction with free radicals and
terminate lipid peroxidation.

2.4. In Vitro 15-Lipoxygenase Inhibition Activity

All target compounds 3–9 were subjected to enzyme assay investigations against the
Soybean 15-LOX enzyme. Results for the in vitro enzyme inhibition assays, displayed
in Table 3, revealed that compounds 9a, 9b, 9c, and 9d exhibited potential 15-LOX in-
hibition activity when compared to quercetin (IC50 = 3.6 µM) as a reference inhibitor.
Thiazoles 9b and 9c, in which the phenyl ring is substituted with Cl or F group, were the
most potent compounds (IC50 = 1.80 ± 0.06 and 1.95 ± 0.06 µM, respectively) with 2.0-
and 1.84-fold greater activity than that of quercetin respectively. Moreover, thiosemicar-
bazone 5c (IC50 = 5.5 ± 0.02 µM), 5b (IC50 = 5.7 ± 0.03 µM), 5a (IC50 = 5.79 ± 0.01 µM), 5d
(IC50 = 5.9 ± 0.0 µM); pyridones 6d (IC50 = 7.5 ± 0.04 µM), 6b (IC50 = 7.6 ± 0.05 µM), 6c
(IC50 = 7.8± 0.02 µM), 6a (IC50 = 7.85± 0.01µM); amino pyridine 7d (IC50 = 6.6 ± 0.05 µM),
7b (IC50 = 6.7 ± 0.01 µM), 7c (IC50= 6.91 ± 0.02 µM), 7a (IC50 = 6.95 ± 0.07 µM respec-
tively), displayed good 15-LOX inhibitory activity but lower than quercetin. The results of
the tested compounds as 15-LOX inhibitors emphasized the important role of thiazoles,
thiosemicarbazone, pyridones and amino pyridine in this enzymatic assay. Those deriva-
tives were superior to quercetin in 15-LOX inhibition. 15-LOX inhibition appeared to be
(9b > 9c > 9d > 9a > 5c > 7d > 6d) to confirm the excel thiazole 2-thiouracil -5-sulfonamide
over thiosemicarbazone and pyridine for antioxidant activity of the tested compounds
against Soybean 15-LOX enzyme. It was also observed that halogenated derivatives showed
significant 15-LOX inhibition activity. This might be due to the better fitting of the deriva-
tive into the catalytic pocket of the 15-LOX enzyme. In summary, compounds 5c, 6d, 7d, 9a,
9b, 9c, and 9d exhibited significant RSA in all three methods in comparison with ascorbic
acid and 15-LOX inhibition potency using quercetin as standard. This suggests an impor-
tant influence of EDGs (CH3, OCH3) and halogens (Cl, F) in the benzene ring. Regarding
heterocyclic pharmacophore, thiazole 2-thiouracil-5-sulfonamide showed higher RSA and
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15-LOX inhibition potency than thiosemicarbazone and pyridine, and these observations
should be regarded in the future design of LOX inhibitors.

Table 3. 15-LOX inhibition activity of compounds 3–9.

Compounds 15-LOX IC50
a (µM)

3 ND b

4a ND

4b ND

4c ND

4d ND

5a 5.79 ± 0.01

5b 5.7 ± 0.03

5c 5.5 ± 0.02

5d 5.9 ± 0.06

6a 7.85 ± 0.01

6b 7.6 ± 0.05

6c 7.8 ± 0.02

6d 7.5 ± 0.04

7a 6.95 ± 0.07

7b 6.7 ± 0.01

7c 6.91 ± 0.02

7d 6.6 ± 0.05

8 ND

9a 2.9 ± 0.08

9b 1.80± 0.06

9c 1.95 ± 0.06

9d 2.50 ± 0.03

Quercetin 3.6
a IC50 values are expressed as a mean ± SEM of three experiments. b Not determined.

3. Materials and Methods
3.1. Instruments

Using the Electro-thermal IA 9100 equipment from Shimadzu, Kyoto, Japan, all melting
points were calculated and were uncorrected. On a PerkinElmer 1650 spectrophotometer,
FT-IR spectra were taken using potassium bromide pellets (USA). Utilizing a Varian Mer-
cury (300 MHz and 75 MHz, respectively) spectrometer (Varian, Crawley, UK), 1H-NMR
and 13C-NMR spectra were acquired in DMSO-d6, and chemical shifts were presented as
ppm from TMS as an internal reference. The 70 eV EI Ms-QP 1000 EX was used to record
mass spectra. The results of the microanalyses, which were carried out by the Organic
Microanalysis Unit, Faculty of Science, Cairo University, Cairo, Egypt, using the Vario and
Elementar apparatus, were within the calculated values’ acceptable range (0.40). Silica gel
60 was subjected to column chromatography at Merck, Darmstadt, Germany (particle size
0.06–0.20 mm).

3.2. Chemistry
3.2.1. 2-Thiouracil-5-sulphonyl Chloride (2): Prepared as in Literature [44]

A mixture of 2-thiouracil 1 (12.5 g, 0.055 mol) and chlorosulphonic acid (51 mL,
0.055 mol) was heated at 120 ◦C for 8 h. The reaction mixture was cooled and poured on a
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mixture of ice and acetic acid 1:1; the precipitate was filtered off, dried under suction, and
used as crude for subsequent work. Yield: 63%, m.p. 230 ◦C; as reported [44].

3.2.2. N-(3-Acetylphenyl)-4-oxo-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-sulfonamide (3):
Prepared as in Literature [59]

A mixture of pyrimidine-5-sulfonyl chloride 2 (1.13 g, 0.005 mol), 3-aminoacetophenone
(0.005 mol), and pyridine (0.4 mL, 0.005 mol) was refluxed in 25 mL absolute ethanol for
16–20 h, then cooled, filtered off, dried, and recrystallized from DMF/water. Yield: 78%;
m.p.: 318–320 ◦C; as reported [59].

3.2.3. General Procedure for the Preparation of Compounds (4a–d)

A mixture of 3 (1.01 g, 0.003 mol) and the suitable aldehyde (0.003 mol) in 50 mL
ethanolic sodium hydroxide solution was agitated at room temperature for 24 h before
being refluxed for one hour, cooled, and then poured into ice-cold water. The precipitate
that formed after neutralization with dil HCl was filtered out, washed with water, dried,
and recrystallized from DMF/water.

N-{3-[(2E)-3-(3-nitrophenyl)prop-2-enoyl]phenyl}-4-oxo-2-thioxo-1,2,3,4-tetrahydro
pyrimidine-5-sulfonamide: (4a).

Yield 67%, m.p. 240–242 ◦C. IR (KBr) v max (cm−1): 3236 (NH), 3170 (CH-Ar); 1670,
1695, (2C=O), 1553, 1348 (NO2), 1145, 1333 (SO2). 1H-NMR (300 MHz, DMSO-d6) 6.6, 6.8
(d, 2H, J = 6.4 Hz, CH=CH), 7.1–7.5 (m, 8H, Ar-H), 8.2 (s, 1H, pyrimidine), 10.1, 10.3, 11.1
(3 s, 3H, 3NH, D2O exchangeable). 13C-NMR (300 MHz, DMSO-d6) 103 (C-5 pyrimidine),
113.1–149.9 (SP2 carbon atoms), 150 (C-6 pyrimidine), 168.3, 187 (C=O), 183 (C=S); MS (EI):
m/z 458 [M+] (4.2%); Anal. Calcd. for C19H14N4O6S2 (458.46): C, 49.82; H, 3.08; N, 12.22;
Found: C, 49.81; H, 3.09; N, 12.27.

N-{3-[(2E)-3-(3-chlorophenyl)prop-2-enoyl]phenyl}-4-oxo-2-thioxo-1,2,3,4-tetra
hydropyrimidine-5-sulfonamide: (4b).

Yield 69%, m.p. 283–285 ◦C. IR (KBr) v max (cm−1): 3242 (NH), 3183 (CH-Ar); 1678,
1696, (2C=O), 1144, 1337 (SO2). 1H-NMR (300 MHz, DMSO-d6) 6.5, 6.7 (d, 2H, J = 6.4 Hz,
CH=CH), 7.2–7.5 (m, 8H, Ar–H), 8.1 (s, 1H, pyrimidine), 10.0, 10.3, 11.1(3 s, 3H, 3NH, D2O
exchangeable). 13C-NMR (300 MHz, DMSO-d6) 103.3 (C-5 pyrimidine), 113.5–148.9 (SP2

carbon atoms), 150.2 (C-6 pyrimidine), 168.5, 187.2 (C=O), 183.2 (C=S); MS (EI): m/z 447
[M+] (10.3%), 449 (M+2, 3.6%); Anal. Calcd. for C19H14ClN3O4S2 (447.91): C, 50.95; H, 3.15;
N, 9.38; Found: C, 50.88; H, 3.17; N, 9.47.

N-{3-[(2E)-3-(3-fluorophenyl)prop-2-enoyl]phenyl}-4-oxo-2-thioxo-1,2,3,4-tetra
hydropyrimidine-5-sulfonamide: (4c).

Yield 65%, m.p. 270–272 ◦C. IR (KBr) v max (cm−1): 3259 (NH), 3193 (CH-Ar); 1675,
1690, (2C=O), 1140, 1336 (SO2). 1H-NMR (300 MHz, DMSO-d6) 6.7, 6.7 (d, 2H, J = 7.4 Hz,
CH=CH), 7.1–7.5 (m, 8H, Ar–H), 8.1 (s, 1H, pyrimidine), 10.1, 10.3, 11.1 (3 s, 3H, 3NH, D2O
exchangeable). 13C-NMR (300 MHz, DMSO-d6) 91.88 (C-5 pyrimidine), 111.41–147.20 (SP2

carbon atoms), 152.72 (C-6 pyrimidine), 68.12, 175.72 (C=O), 183.07 (C=S); MS (EI): m/z 431
[M+] (21.3%); Anal. Calcd. for C19H14FN3O4S2 (431.46): C, 52.89; H, 3.27; N, 9.74; Found:
C, 52.74; H, 3.31.; N, 9.73.

N-{3-[(2E)-3-(3-methylphenyl)prop-2-enoyl]phenyl}-4-oxo-2-thioxo-1,2,3,4-tetra
hydropyrimidine-5-sulfonamide: (4d).

Yield 61%, m.p. 287–289 ◦C. IR (KBr) v max (cm−1): 3243 (NH), 3187 (CH-Ar); 1671,
1692, (2C=O), 1143, 1339 (SO2). 1H-NMR (300 MHz, DMSO-d6) 2.5 (s, 3H, CH3), 6.6, 6.8
(d, 2H, J = 7.4 Hz, CH=CH), 7.1–7.7 (m, 8H, Ar–H), 8.1 (s, 1H, pyrimidine), 11.1, 11.4, 11.6
(3 s, 3H, 3NH, D2O exchangeable). 13C-NMR (300 MHz, DMSO-d6), 21.2 (CH3), 103.5 (C-5
pyrimidine), 113.7–148.7 (SP2 carbon atoms), 150.5 (C-6 pyrimidine), 168.6, 187.7 (C=O),
183.3 (C=S); MS (EI): m/z 427 [M+] (19.9%); Anal. Calcd. for C20H17N3O4S2 (427.49): C,
56.19; H, 4.01; N, 9.83; Found: C, 56.23; H, 4.09; N, 9.76.
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3.2.4. General Procedure for the Preparation of Compounds (5a–d)

A mixture of 3 (1.1 g,0.003 mol) and the suitable substituted thiosemicarbazide
(0.003 mol) was refluxed in 30 mL absolute ethanol for 12–15 h, followed by cooling,
filtering out, drying, and recrystallization from DMF/water.

N-{3-[(1E)-N-(methylcarbamothionyl)ethanhydrazonoyl]phenyl}-4-oxo-2-thioxo-
1,2,3,4-tetrahydropyrimidine-5-sulfonamide (5a).

Yield 74%, m.p. 305–307 ◦C. IR (KBr) v max (cm−1): 3285 (NH), 3197 (CH-Ar) 2980,
(CH-sp3), 1687 (C=O), 1271 (2C=S), 1141, 1335 (SO2). 1H-NMR (300 MHz, DMSO-d6) 2.0,
2.5 (s, 6H, 2CH3), 7.0–7.5 (m, 4H, Ar–H), 8.5 (s, 1H, pyrimidine), 9.5, 10.0, 10.5, 11.4, 11.5 (5 s,
5H, 5NH, D2O exchangeable). 13C-NMR (300 MHz, DMSO-d6) 18.3 and 33.7 (2 CH3), 103.1
(C-5 pyrimidine), 117.1–146.4 (SP2 carbon atoms), 150.0 (C-6 pyrimidine), 155.5 (C=N), 168.1
(C=O), 183.0, 184.1 (C=S); MS (EI): m/z 412 [M+] (4.4%); Anal. Calcd. for C14H16N6O3S3
(412.51): C, 40.76; H, 3.91; N, 20.37; Found: C, 40.75; H, 3.81; N, 20.42.

N-{3-[(1E)-N-(ethylcarbamothionyl)ethanhydrazonoyl]phenyl}-4-oxo-2-thioxo-
1,2,3,4-tetrahydropyrimidine-5-sulfonamide (5b).

Yield 74%, m.p. 310–312 ◦C. IR (KBr) v max (cm−1): 3283 (NH), 3179 (CH-Ar) 2967,
(CH-sp3), 1680 (C=O), 1271 (2C=S), 1140, 1336 (SO2). 1H-NMR (300 MHz, DMSO-d6) 2.1 (s,
3H, CH3), 2.3(q, 2H, CH2), 1.9(t, 3H, CH3), 7.2–7.4 (m, 4H, Ar–H), 8.1 (s, 1H, pyrimidine),
10.0, 10.1, 11.0, 11.1, 11.2 (5 s, 5H, 5NH, D2O exchangeable). 13C-NMR (300 MHz, DMSO-d6)
15.5, 18.3 (CH3), 47.4 (CH2), 103.3 (C-5 pyrimidine), 117.3–146.6 (SP2 carbon atoms), 150.1
(C-6 pyrimidine), 155.5 (C=N), 168.6 (C=O), 183.1,184.4 (C=S); MS (EI): m/z 426 [M+] (14.3%);
Anal. Calcd. for C15H18N6O3S3 (426.53): C, 42.24; H, 4.25; N, 19.70C; Found: C, 42.35; H,
4.35; N, 19.71.

N-{3-[(1E)-N-(4-methoxycarbamothionyl)ethanhydrazonoyl]phenyl}-4-oxo-2-
thioxo-1,2,3,4-tetrahydropyrimidine-5-sulfonamides: (5c).

Yield 78%, m.p. 307–309 ◦C. IR (KBr) v max (cm−1): 3293 (NH), 3165 (CH-Ar) 2950,
(CH-sp3), 1680 (C=O), 1271 (2C=S), 1141, 1337 (SO2). 1H-NMR (300 MHz, DMSO-d6) 2.5 (s,
3H, CH3), 3.5 (s, 3H, OCH3), 7–7.5 (m, 4H, Ar–H), 8.1 (s, 1H, pyrimidine), 9.0, 9.5, 10.0, 11.2,
11.5 (5 s, 5H, 5NH, D2O exchangeable). 13C-NMR (300 MHz, DMSO-d6) 15.2 (CH3), 56.0
(OCH3), 103.4 (C-5 pyrimidine), 117.5–146.5 (SP2 carbon atoms), 150.2 (C-6 pyrimidine),
155.5 (C=N), 168.7 (C=O), 183.3, 184.5 (C=S); MS (EI): m/z 504 [M+] (14.3%); Anal. Calcd.
for C20H20N6O4S3 (504.6): C, 47.60; H, 3.99; N, 16.65; Found: C, 47.58; H, 3.86; N, 16.71.

N-{3-[(1E)-N-(4-fluorocarbamothionyl)ethanhydrazonoyl]phenyl}-4-oxo-2-
thioxo-1,2,3,4-tetrahydropyrimidine-5-sulfonamides: (5d).

Yield 77%, m.p. 313–315 ◦C. IR (KBr) v max (cm−1): 3294 (NH), 3177 (CH-Ar) 2989,
(CH-sp3), 1686 (C=O), 1271 (2C=S), 1141, 1337 (SO2). 1H-NMR (300 MHz, DMSO-d6) 2.3
(s, 3H, CH3), 7.1–7.4 (m, 8H, Ar–H), 8.1 (s, 1H, pyrimidine), 10.1, 10.2, 11.0, 11.0, 11.1
(5 s, 5H, 5NH, D2O exchangeable).13C-NMR (300 MHz, DMSO-d6) 15.23 (CH3), 93.88 (C-5
pyrimidine), 103.65–142.47 (SP2 carbon atoms), 164.04 (C-6 pyrimidine), 158.04 (C=N),
168.02 (C=O), 172.03, 180.11 (C=S); MS (EI): m/z 492 [M+] (20.6%); Anal. Calcd. for
C19H17FN6O3S3 (492.57): C, 46.33; H, 3.48; N, 17.06.; Found: C, 46.43; H, 3.46; N, 17.15.

3.2.5. General Procedure for the Preparation of Compounds (6a–d)

A mixture of 3 (1.1 gm, 0.003 mol), the necessary aldehydes (0.003 mol), ammonium
acetate (1.89 gm, 8 mol), and ethyl cyanoacetate (0.35 gm, 0.003 mol) in 50 mL absolute
ethanol was refluxed for 8–10 h. The reaction mixture was concentrated to equal its half
volume, filtered off, the filtrate was placed into ice/water, and the precipitate was filtered
off, dried, and recrystallized from DMF/water.

N-{3-[5-cyano-4-(3-nitrophenyl)-6-oxo-1,6-dihydropyridin-2-yl]phenyl}-4-oxo-2-
thioxo-1,2,3,4-tetrahydropyrimidine-5-sulfonamide (6a).

Yield 65%, m.p. 266–268 ◦C. IR (KBr) v max (cm−1): 3267 (NH), 3186 (CH-Ar), 2220
(CN), 2971, (CH-sp3), 1680, 1694 (2C=O), 1271 (C=S), 1141, 1337 (SO2). 1H-NMR (300 MHz,
DMSO-d6) 7.2–7.5 (m, 8H, Ar–H), 7.9 (1H, s, pyridone), 8.1 (s, 1H, pyrimidine), 9.5, 10.0,
10.1, 11.0 (4 s, 4H, 4NH, D2O exchangeable).13C-NMR (300 MHz, DMSO-d6) 103.1 (C-5
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pyrimidine), 117.1 (CN), 112.1–169.4 (SP2 carbon atoms), 150.1 (C-6 pyrimidine), 162.9,
168.3 (2C=O), 178.2(C=S); MS (EI): m/z 522 [M+] (10.3%); Anal. Calcd. for C22H14N6O6S2
(522.51): C, 50.57; H, 2.70; N, 16.08.; Found: C, 50.68; H, 2.80; N, 16.11.

N-{3-[5-cyano-4-(3-chlorophenyl)-6-oxo-1,6-dihydropyridin-2-yl]phenyl}-4-oxo-2-
thioxo-1,2,3,4-tetrahydropyrimidine-5-sulfonamide: (6b).

Yield 65%, m.p. 272–274 ◦C. IR (KBr) v max (cm−1): 3283 (NH), 3183 (CH-Ar) 2973
(CH-sp3), 2226(CN), 1682, 1697(2C=O), 1271 (C=S), 1143, 1332 (SO2). 1H-NMR (300 MHz,
DMSO-d6) 7.1–7.6 (m, 8H, Ar–H), 7.9 (1H, s, pyridone), 8.1 (s, 1H, pyrimidine), 9.6, 10.1,
10.2, 11.1 (4 s, 4H, 4NH, D2O exchangeable). 13C-NMR (300 MHz, DMSO-d6) 95.78 (C-5
pyrimidine), 115.28 (CN), 98.48–169.48 (SP2 carbon atoms), 159.66 (C-6 pyrimidine), 162.42,
168.51 (2C=O), 175.72 (C=S); MS (EI): m/z 511 [M+] (15.3%), 513 (M+2, 4.4%).; Anal. Calcd.
for C22H14ClN5O4S2 (511.96): C, 51.61; H, 2.76; N, 13.68.; Found: C, 51.69; H, 2.80; N, 13.57.

N-{3-[5-cyano-4-(3-fluorophenyl)-6-oxo-1,6-dihydropyridin-2-yl]phenyl}-4-oxo-2-
thioxo-1,2,3,4-tetrahydropyrimidine-5-sulfonamide (6c).

Yield 64%, m.p. 287–289 ◦C. IR (KBr) v max (cm−1): 3267 (NH), 3191 (CH-Ar) 2987
(CH-sp3), 2222 (CN), 1686, 1695 (2C=O), 1271 (C=S), 1141, 1330 (SO2). 1H-NMR (300 MHz,
DMSO-d6) 7.2–7.6 (m, 8H, Ar–H), 7.9 (1H, s, pyridone), 8.1 (s, 1H, pyrimidine), 9.8, 10.1,
10.2, 11.1 (4 s, 4H, 4NH, D2O exchangeable). 13C-NMR (300 MHz, DMSO-d6) 103.6 (C-5
pyrimidine), 117.1 (CN), 100.3–169.6 (SP2 carbon atoms), 150.2 (C-6 pyrimidine), 162.3,
168.3 (2C=O), 178.7 (C=S); MS (EI): m/z 495 [M+] (19.7%); Anal. Calcd. for C22H14FN5O4S2
(495.50): C, 53.33; H, 2.85; N, 14.13; Found: C, 53.39; H, 2.70; N, 14.09.

N-{3-[5-cyano-4-(3-methylphenyl)-6-oxo-1,6-dihydropyridin-2-yl]phenyl}-4-oxo-
2-thioxo-1,2,3,4-tetrahydropyrimidine-5-sulfonamide: (6d).

Yield 61%, m.p. 282–284 ◦C. IR (KBr) v max (cm−1): 3287 (NH), 3187 (CH-Ar) 2985
(CH-sp3), 2222 (CN), 1684, 1696 (2C=O), 1271 (C=S), 1143, 1332 (SO2). 1H-NMR (300 MHz,
DMSO-d6) 3.5 (3H, s, CH3), 7.3–7.6 (m, 8H, Ar–H), 7.9 (1H, s, pyridone), 8.1 (s, 1H, pyrimi-
dine), 9.7, 10.0, 10.1, 11.1 (4 s, 4H, 4NH, D2O exchangeable). 13C-NMR (300 MHz, DMSO-d6)
21.1 (CH3), 103.5 (C-5 pyrimidine), 117.1 (CN), 100.2–169.9 (SP2 carbon atoms), 150.2 (C-6
pyrimidine), 162.3, 168.3 (2C=O), 178.3 (C=S); MS (EI): m/z 491 [M+] (13.3%); Anal. Calcd.
for C23H17N5O4S2 (491.54): C, 56.20; H, 3.49; N, 14.25; Found: C, 56.36; H, 3.50; N, 14.31.

3.2.6. General Procedure for the Preparation of Compounds (7a–d)

A mixture of 3 (1.1 gm, 0.003 mol), the necessary aldehydes (0.003 mol), ammonium
acetate (1.89 gm, 8 mol), and malononitrile (0.2 gm, 0.003 mol) in 50 mL absolute ethanol
was refluxed for 8–10 h. The reaction mixture was concentrated to equal its half volume.
After being filtered off, the filtrate was placed into ice/water, and the precipitate was
filtered off, dried, and recrystallized from DMF/water.

N-{3-[6-amino-5-cyano-4-(3-nitrophenyl)pyridine-2-yl]phenyl}-4-oxo-2-thioxo-
1,2,3,4-tetrahydropyrimidine-5-sulfonamides: (7a).

Yield 62%, m.p. 251–253 ◦C. IR (KBr) v max (cm−1): 3292 (NH), 3183 (CH-Ar) 2983
(CH-sp3), 2225 (CN), 1684 (C=O), 1350, 1550 (NO2), 1271 (C=S), 1141, 1337 (SO2). 1H-NMR
(300 MHz, DMSO-d6) 7.2–7.5 (m, 9H, Ar–H), 8.1 (s, 1H, pyrimidine), 9.1, 10.1, 10.2, 11.1
(4 s, 5H, 4NH, D2O exchangeable). 13C-NMR (300 MHz, DMSO-d6) 93.0 (C-5 pyrimidine),
114.0 (CN), 90.5–164.7 (SP2 carbon atoms),152.0 (C-6 pyrimidine), 168.5 (C=O), 178.0 (C=S);
MS (EI): m/z 521 [M+] (10.4%)); Anal. Calcd. for C22H15N7O5S22 (521.52): C, 50.67; H, 2.90;
N,18.80; Found: C, 50.68; H, 2.86; N, 18.78.

N-{3-[6-amino-5-cyano-4-(3-chlorophenyl)pyridine-2-yl]phenyl}-4-oxo-2-thioxo-
1,2,3,4-tetrahydropyrimidine-5-sulfonamides: (7b).

Yield 67%, m.p. 257–259 ◦C. IR (KBr) v max (cm−1): 3267 (NH), 3186 (CH-Ar) 2987
(CH-sp3), 2222 (CN), 1680 (C=O), 1271 (C=S), 1140, 1338 (SO2). 1H-NMR (300 MHz,
DMSO-d6) 7.2–7.6 (m, 9H, Ar–H), 8.1 (s, 1H, pyrimidine), 9.2, 10, 10.2, 11.1 (4 s, 5H, 4NH,
D2O exchangeable). 13C-NMR (300 MHz, DMSO-d6) 103.3 (C-5 pyrimidine), 117.7 (CN),
100.1–165.5 (SP2 carbon atoms), 150.5 (C-6 pyrimidine), 168.6 (C=O), 178.7 (C=S); MS (EI):
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m/z 510 [M+] (14.7%) 512 (M+2, 4.9%); Anal. Calcd. for C22H15ClN6O3S2 (510.97): C, 51.71;
H, 2.96; N, 16.45; Found: C, 51.68; H, 2.88; N, 16.58.

N-{3-[6-amino-5-cyano-4-(3-fluorophenyl)pyridine-2-yl]phenyl}-4-oxo-2-thioxo-
1,2,3,4-tetrahydropyrimidine-5-sulfonamides: (7c).

Yield 72%, m.p. 268–270 ◦C. IR (KBr) v max (cm−1): 3283 (NH), 3181 (CH-Ar) 2972
(CH-sp3), 2222 (CN), 1679 (C=O), 1271 (C=S), 1140, 1338 (SO2). 1H-NMR (300 MHz,
DMSO-d6) 7.2–7.7 (m, 9H, Ar–H), 8.1 (s, 1H, pyrimidine), 9.0, 10, 10.3, 11.6 (4 s, 5H, 4NH,
D2O exchangeable). 13C-NMR (300 MHz, DMSO-d6) 103.3 (C-5 pyrimidine), 117.1 (CN),
100.3–165.6 (SP2 carbon atoms), 150.1 (C-6 pyrimidine),168.5 (C=O), 178.5 (C=S); MS (EI):
m/z 494 [M+] (10.6%); Anal. Calcd. for C22H15FN6O3S2 (494.52): C, 53.43; H, 3.06; N, 16.99.;
Found: C, 53.49; H, 3.10; N, 16.82.

N-{3-[6-amino-5-cyano-4-(3-methylphenyl)pyridine-2-yl]phenyl}-4-oxo-2-thioxo-
1,2,3,4-tetrahydropyrimidine-5-sulfonamides: (7d).

Yield 70%, m.p. 264–266 ◦C. IR (KBr) v max (cm−1): 3281 (NH), 3172 (CH-Ar) 2969
(CH-sp3), 2222 (CN), 1680 (C=O), 1271 (C=S), 1141, 1338 (SO2). 1H-NMR (300 MHz, DMSO-
d6) 3.6 (s,3H, CH3), 7.1–7.7 (m, 9H, Ar–H), 8.1 (s, 1H, pyrimidine), 9.1, 10, 10.2, 11.5 (4 s,
5H, 4NH, D2O exchangeable). 13C-NMR (300 MHz, DMSO-d6) 21.1 (CH3),103.5 (C-5
pyrimidine), 117.1 (CN), 100.2–165.5 (SP2 carbon atoms), 150.1 (C-6 pyrimidine), 168.6
(C=O), 178.5 (C=S); MS (EI): m/z 490 [M+] (14.7%); Anal. Calcd. for C23H18N6O3S2 (490.55):
C, 56.31; H, 3.70; N, 17.13; Found: C, 56.40; H, 3.80; N, 17.28.

N-[3-(bromoacetyl)phenyl]-4-oxo-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-
sulfonamide (8).

A mixture of 3 (1.13 g, 0.005 mol) and bromine (0.005 mol) in 30 mL glacial acetic
acid was stirred at room temperature for 48 h, then filtered. The filtrate was neutralized
with ammonia, and the precipitate was collected, filtered, dried, and recrystallized from
DMF/water.

Yield 80%, m.p. 305–307 ◦C. IR (KBr) v max (cm−1): 3295 (NH), 3197 (CH-Ar) 2958
(CH-sp3), 1680, 1685 (2C=O), 1275 (C=S), 1140, 1330 (SO2). 1H-NMR (300 MHz, DMSO-d6)
3.8 (2H, s, CH2), 6.5–7.3 (m, 4H, Ar–H), 7.5 (s, 1H, pyrimidine), 10, 11, 11.5 (3 s, 3H, 3NH,
D2O exchangeable). 13C-NMR (300 MHz, DMSO-d6) 43.2 (CH2), 96.2 (C-5 pyrimidine),
112.7–144.1 (SP2 carbon atoms), 150.8 (C-6 pyrimidine), 168.3, 189.7 (C=O), 175.3 (C=S); MS
(EI): m/z 404 [M+] (15.3%), 406 (M+2, 15%); Anal. Calcd. for C12H10BrN3O4S2 (404.25): C,
35.65; H, 2.49; N, 10.39; Found: C, 35.79; H, 2.55; N, 10.32.

3.2.7. General Procedure for the Preparation of Compounds (9a–d)

A mixture of 8 (1.1 g, 0.003 mol) and the appropriate thiosemicarbazone derivatives
(0.003 mol) in 40 mL absolute ethanol was refluxed for 15–18 h, then the reaction mixture
was cooled, and the formed solid was filtered off, dried and recrystallized from DMF/water.

N-(3-{2-[(2E)-2(3-nitrobenzylidene)hydrazine]-1,3-thiazol-4-yl}phenyl)-4-oxo-thioxo-
1,2,3,4-tetrahydropyrimidine-5-sulfonamides: (9a).

Yield 64%, m.p.: 316–318 ◦C. IR (KBr) v max (cm−1): 3293 (NH), 3190 (CH-Ar) 2963
(CH-sp3), 1683 (C=O), 1275 (C=S), 1351, 1555 (NO2), 1140, 1335 (SO2). 1H-NMR (300 MHz,
DMSO-d6) 6.7 (s, 1H, CH=N), 6.8–7.4 (m, 8H, Ar–H), 7.7 (1H, s, thiazole), 8.1 (s, 1H, pyrimi-
dine), 6.5, 9.5, 10.7, 10.8 (4 s, 4H, 4NH, D2O exchangeable). 13C-NMR (300 MHz, DMSO-d6)
103.0 (C-5 pyrimidine), 113.5–158.2 (SP2 carbon atoms), 150.0 (C-6 pyrimidine),155.3 (C=N),
168.3 (C=O), 178.0 (C=S); MS (EI): m/z 529.57 [M+] (8.7%); Anal. Calcd. for C20H15N7O5S3
(529.57): C, 45.36; H, 2.85; N, 18.; Found: C, 45.70; H, 2.79; N, 18.62.

N-(3-{2-[(2E)-2(3-chlorobenzylidene)hydrazine]-1,3-thiazol-4-yl}phenyl)-4-oxo-
thioxo-1,2,3,4-tetrahydropyrimidine-5-sulfonamides: (9b).

Yield 60%, m.p.: 320–322 ◦C. IR (KBr) v max (cm−1): 3287 (NH), 3195 (CH-Ar) 2978
(CH-sp3), 1680 (C=O), 1270 (C=S), 1141, 1338 (SO2). 1H-NMR (300 MHz, DMSO-d6) 6.8
(s, 1H, CH=N), 6.9–7.7 (m, 8H, Ar–H), 7.7 (1H, s, thiazole), 8.2 (s, 1H, pyrimidine), 6.4,
11.0, 11.4, 11.56 (4 s, 4H, 4NH, D2O exchangeable). 13C-NMR (300 MHz, DMSO-d6) 93.9
(C-5 pyrimidine), 104.8–159.7 (SP2 carbon atoms), 152.0 (C-6 pyrimidine), 154.8 (C=N),
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164.0 (C=O), 170.0 (C=S); MS (EI): m/z 518 [M+] (9.3%), 520 (M+2, 3.1%); Anal. Calcd. for
C20H15ClN6O3S3 (519.01): C, 46.28; H, 2.91; N, 16.19; Found: C, 46.31; H, 2.95; N, 16.28.

N-(3-{2-[(2E)-2(3-fluorobenzylidene)hydrazine]-1,3-thiazol-4-yl}phenyl)-4-oxo-
thioxo-1,2,3,4-tetrahydropyrimidine-5-sulfonamides: (9c).

Yield 63%, m.p.: 317–319 ◦C. IR (KBr) v max (cm−1): 3285 (NH), 3195 (CH-Ar) 2985
(CH-sp3), 1689 (C=O), 1270 (C=S), 1145, 1340 (SO2). 1H-NMR (300 MHz, DMSO-d6) 6.5
(s, 1H, CH=N), 6.6–7.5 (m, 8H, Ar–H), 7.7 (1H, s, thiazole), 8.2 (s, 1H, pyrimidine), 6.7,
9.1, 10.3, 10.8 (4 s, 4H, 4NH, D2O exchangeable). 13C-NMR (300 MHz, DMSO-d6), 103.5
(C-5 pyrimidine), 113.8–159.8 (SP2 carbon atoms), 150.0 (C-6 pyrimidine), 155.2 (C=N),
168.8 (C=O), 178.8 (C=S); MS (EI): m/z 502 [M+] (10.3%); Anal. Calcd. for C20H15FN6O3S3
(502.56): C, 47.80; H, 3.01; N, 16; Found: C, 47.79; H, 3.18; N, 16.83.

N-(3-{2-[(2E)-2(3-methylbenzylidene)hydrazine]-1,3-thiazol-4-yl}phenyl)-4-oxo-
thioxo-1,2,3,4-tetrahydropyrimidine-5-sulfonamides: (9d).

Yield 63%, m.p.: 326–328 ◦C. IR (KBr) v max (cm−1): 3283 (NH), 3192 (CH-Ar) 2983
(CH-sp3), 1686 (C=O), 1270 (C=S), 1143, 1340 (SO2). 1H-NMR (300 MHz, DMSO-d6) 3.5
(s, 3H, CH3), 6.6 (s, 1H, CH=N), 6.7–7.4 (m, 8H, Ar–H), 7.7 (1H, s, thiazole), 8.1(s, 1H,
pyrimidine), 6.8, 9.3, 10.5, 10.7 (4 s, 4H, 4NH, D2O exchangeable). 13C-NMR (300 MHz,
DMSO-d6) 20.1 (CH3), 103.5 (C-5 pyrimidine), 113.5–159.8 (SP2 carbon atoms), 150.0 (C-6
pyrimidine), 155.7 (C=N), 168.6 (C=O), 178.8 (C=S); MS (EI): m/z 498 [M+] (10.8%); Anal.
Calcd. for C21H18N6O3S3 (498.60): C, 50.59; H, 3.64; N, 16.86.; Found: C, 50.60; H, 3.58;
N, 16.88.

3.3. Biological Evaluation
3.3.1. In-Vitro Assays for Biological Antioxidant Activity
Chemicals

The analytical grade chemicals necessary for all experiments were purchased from
Sigma-Aldrich Chemicals Co., in St. Louis, MO, USA.

3.3.2. DPPH Scavenging Method

The DPPH scavenging activity of all novel synthesized compounds (3–9) was mea-
sured as previously described [60] (see Supplementary Materials).

3.3.3. Scavenging of Hydrogen Peroxide

The hydrogen peroxide (H2O2) scavenging activity of all novel synthesized com-
pounds 3–9 was measured as previously reported [61] (see Supplementary Materials).

3.3.4. Lipid Peroxidation Assay

The Lipid peroxidation activity of all novel synthesized compounds 3–9 was measured
as previously reported [62] (see Supplementary Materials).

3.4. In-Vitro Lipoxygenase Inhibition Activity

All target thiouracil analogs 3–9 were further tested for 15-LOX inhibitory activity
using Cayman’s Lipoxygenase Inhibitor Screening Assay Kit (Catalog No. 760700, Cayman
Chemical, USA.

90 µL of 15-LOX was pipetted into a 96-well plate quickly. The test chemical was
then dissolved in DMSO in 10 µL portions at concentrations of 2.5 µM, 5.0 µM, and 10 µM
and added to each well. Arachidonic acid, a 110 µL substrate, was added to start the
reaction, and the plate was shaken for at least five minutes. In order to interrupt enzyme
catalysis and advance the reaction, 100 µL of chromogen was added to each well and made
in accordance with the manufacturer’s instructions. In blank wells, 100 µL of assay buffer
(0.1 M Tris-HCl, pH 7.4) was utilized. The positive control and 100% beginning activity
were Quercetin and DMSO, respectively. The solution’s absorbance was determined at λ
490–500 nm. The percentage inhibition was calculated according to the following equation:
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% inhibition = [(IA − Ainhibitor sample)/IA] × 100 (1)

where (IA) is the 100% initial activity and (Ainhibitor sample) is the absorbance of the test sam-
ple. A dose-response curve was plotted between % inhibition and the drug concentration.
The non-linear dose-response curve was used for calculating drug concentration showing
50% enzyme inhibition.

3.5. Molecular Modeling

Molecular docking was performed for the most active compound 9b to elucidate the
mode of binding and explain their activity. The available crystal structure of the human
15-LOX-2 allows for a reliable prediction of intermolecular interactions [63]. Furthermore,
previous crystallography studies on solutions of quercetin and LOX protein from soybeans
revealed that protocatechuic acid (3,4-dihydroxybenzoic acid) positions the catechol OH
groups towards Ile857 (forming an H-bond) and the carboxyl group between Gln514 and
Trp519. The H-bond between Ile857 and the OH of protocatechuic acid [64] is possible, as
this is actually the carboxylic terminus of the protein which interacts with the iron cofactor
(see Supplementary Materials).

4. Conclusions

The present study introduced the synthesis of a novel series of 2-thiouracil-5-
sulphonamides 4–9, and their spectral and elemental analyses proved chemical structures.
The antioxidant activity of all synthesized compounds was screened against 2,2-diphenyl-1-
picrylhydrazyl (DPPH), hydrogen peroxide (H2O2), lipid peroxidation and 15-lipoxygenase
(15-LOX) inhibition activity. The most active compounds were 9b, 9c, 9d, 5b, and 5c
(IC50 = 11.9 ± 1.40, 10.0 ± 0.83, 7.55 ± 1.70, 14.70 ± 0.22, and 9.0 ± 1.10 µg/mL, respec-
tively). They revealed more potent RSA than ascorbic acid (IC50 = 12.80 ± 0.90 µg/mL)
against DPPH radical. The SAR (Structure-Activity Relationship) study showed that
the order of free radical scavenging activity (FRSA) was found to be: (9d > 5c > 7d >
6d). It was also observed that the presence of electron-donating groups (-CH3, -OCH3)
led to an increase in antioxidant activity, while the presence of halogen atoms (Cl, F)
on the benzene rings led to a decrease in oxidant activity. Chalcone 5c and thiazole
derivative 9d show the most potent antioxidant activity, both having 4-CH3/or 4-OCH3
substituents on the phenyl ring, which is in accordance with the reported results. Thia-
zole (9d) was the most potent H2O2 scavenger (IC50 = 15.0 µg/mL) with 1.8 folds that of
ascorbic acid (IC50 = 23.0 µg g/mL). Compounds 9a–d exhibited pronounced antioxidant
activity (IC50 = 22.0 ± 1.40, 21.0 ± 1.45, 20.5 ± 1.48, 20.0 ± 1.56, and 20.0 ± 1.56µg/mL,
respectively), which was higher than the standard ascorbic acid (IC50 = 36.0 ± 1.30 µg/mL)
against lipid peroxidation. Compounds 9b, 9c, and 9d displayed potential 15-LOX inhibi-
tion activity when compared to quercetin (IC50 = 3.34 µM) as a reference inhibitor. Thiazoles
9b and 9c, in which the phenyl ring is substituted with a Cl or F group, were the most
potent compounds (IC50 = 1.80 ± 0.06 and 1.95 ±0.06 µM, respectively) with 1.85 and 1.71
folds that of quercetin respectively. Moreover, thiosemicarbazone 5c (IC50 = 5.5 ± 0.02 µM),
pyridones 6d (IC50 = 7.5 ± 0.04 µM), amino pyridine 7d (IC50 = 6.6 ± 0.05 µM, respec-
tively) displayed good 15-LOX inhibitory activity but lower than quercetin. In summary,
compounds 5c, 6d, 7d, 9b, 9c, and 9d showed significant RSA in all three methods in
comparison with ascorbic acid and 15-LOX inhibition potency using quercetin as standard.
This suggests an important influence of EDGs (CH3, OCH3) and halogens (Cl, F) in the
benzene ring. Regarding heterocyclic pharmacophore, thiazole showed higher RSA and
15-LOX inhibition potency than thiosemicarbazone and pyridine, and these observations
should be regarded in the future on the designed LOX inhibitors. Molecular docking for
the most active compound 9b was carried out in order to understand the possible binding
mode with the lipoxygenase enzyme. The binding pose of compound 9b was perfectly
correlated with the biological data and served to justify the observed antioxidant effect. In
conclusion, the obtained results suggest that these potent compounds may serve as lead
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candidates for 15-LOX inhibitors. Furthermore, the designed thiouracil hybrid scaffold is
an interesting antioxidant pharmacophore and is considered a novel lead scaffold for any
future optimization.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28041925/s1, Biological Evaluation Details; Molecular
Modeling as well as representative spectral data; Figures S1–S16.
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