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Abstract: Multiwalled carbon nanotubes (MWCNTs) were modified by oxidation and acidification
with concentrated HNO3 and H2SO4, and the modified multiwalled carbon nanotubes (M-MWCNTs)
and raw MWCNTs were characterized by several analytical techniques. Then the demanganization
effects of MWCNTs and M-MWCNTs were well investigated and elucidated. The experimental data
demonstrated that the adsorption efficiency of Mn(II) could be greatly promoted by M-MWCNTs
from about 20% to 75%, and the optimal adsorption time was 6 h and the optimal pH was 6. The
results of the kinetic model studies showed that Mn(II) removal by M-MWCNTs followed the pseudo-
second-order model. Isothermal studies were conducted and the results demonstrated that the
experimental data fitted well with the three models. The reliability of the experimental results was
well verified by PSO–BP simulation, and the present conclusion could be used as a condition for
further simulation. The research results provide a potential technology for promoting the removal of
manganese from wastewater; at the same time, the application of various mathematical models also
provides more scientific ideas for the research of the mechanism of adsorption of heavy metals by
nanomaterials.

Keywords: M-MWCNTs; Mn(II) removal; kinetic model; isotherm model; PSO-BP model

1. Introduction

Manganese, a heavy metal, is abundant in nature and also plays a significant role
in many important industries [1,2]. However, due to factors such as artificial mining
of mineral resources, illegal discharge of pollutants from factories, and dissolution of
manganese minerals in aquifers caused by changes in ecological environment, the problem
of pollution has become increasingly prominent [3–5]. In recent years, the concentration
of manganese in underground wells in many countries has far exceeded the standards
of the World Health Organization [6–9]. Overexposure to manganese can cause a variety
of negative health effects for humans [10,11], and high manganese content in plants will
lead to crop necrosis and cotton wrinkling, thus affecting the food and textile industry [12].
Studies have shown that in manganese-polluted areas, the soil and groundwater are
usually containing acidic organic matter, so manganese mostly exists in the form of divalent
ions [13–15].

There have been some studies on methods for the removal of manganese from a
solution, such as the oxidation precipitation method [16], the ion exchange method [17],
the reverse osmosis method [18] and the adsorption method, which is the more commonly
used removal method [19–21]. Recently, with the development of nanomaterials, carbon
nanotubes have been reported as the new adsorbents for the removal of heavy metal and
organic pollution, such as chlorobenzenes, herbicides, heavy metal ions (Pb2+ and Ca2+),
and inorganic nonmetallic ions, including F− [22,23].

Due to lower synthesis and purification costs, and easy application to water treat-
ment, multi-walled carbon nanotubes (MWCNTs) are more widely used than single-walled
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carbon nanotubes (SWCNTs) [24]. To improve the removal of heavy metals by carbon
nanotubes, the original MWCNTs usually need to be modified. The ordinary modification
method is to use a strong oxidant to oxidize the MWCNTs under reflux or ultrasonic
conditions [25,26]. This oxidation endows carbon nanotubes with rich, oxygen-containing
groups and exposes the adsorption site [17,27]. Meanwhile, in order to solve complex non-
linear problems in practice, some neural network models, such as artificial neural networks
(ANN) and backpropagation-based training optimization neural networks (BPNN), have
been gradually applied in the field of pollutant removal [28–30].

It has been reported that MWCNTs can adsorb manganese [31], but the removal
efficiency, adsorption mechanism, and related experimental verification work have not
been clearly carried out. Therefore, the objectives of this work are as follows: (1) to modify
raw MWCNTs and to characterize the MWCNTs and M-MWCNTs by SEM, XPS, FT-IR, etc.;
(2) to study the effects of demanganization on MWCNTs and M-MWCNTs with varying pH,
contact time, and temperature; (3) to describe the characteristics of the Mn(II) removal by
the MWCNTs and M-MWCNTs with an adsorption kinetic model and an isotherm model;
and (4) to simulate the adsorption process by using PSO-BP modeling.

2. Results and Discussion
2.1. Characterization of MWCNTs and M-MWCNTs
2.1.1. FT-IR

The most important use of infrared spectroscopy (FTIR) is the structural analysis of
organic compounds [32]. In this research, FT-IR was used to verify the structural analysis of
MWCNTs and M-MWCNTs, and M-MWCNTs were modified by oxidation and acidification.
The FTIR spectra of Figure 1 illustrated that there were functional groups, −OH groups
(3200~3600 cm−1), −C=O− groups (1600 cm−1), and −C–C− groups (1150 cm−1), on
the external and internal surface of MWCNTs and M-MWCNTs [33]. The transmittance
(%) of the −OH groups and −C=O− groups in M-MWCNTs were stronger than in raw
MWCNTs; the modification increased the active sites on the surface and further altered
the surface polarity and charges. It is reported that the stretching vibration absorption
peak of −C=O− usually appears in 1755–1670 cm−1. In this study, an absorption peak of
−C=O− is observed at 1623 cm−1. This phenomenon has also shown up in the work of
other researchers [34], possibly because the conjugate effect of carbon nanotubes makes the
absorption of −C=O move to the shortwave direction [35].
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2.1.2. XPS

XPS can be used to analyze elements present on the surface of the sample and bonding
species [36]. The XPS wide-scan spectrum (Figure 2a) shows that the elements present
on the surface of MWCNTs and M-MWCNTs were mainly C and O. New active sites are
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provided, as evidenced by the increased oxygen content of M-MWCNTs. This indicates
that the adsorption capacity of M-MWCNTs for heavy metals will be enhanced [37]. The
increase in O content (from 3.5% to 13.66%) showed that the modification was successful.
Figure 2b shows the fitted XPS spectra of the O1s of M-MWCNTs compared to the reference
XPS of MWCNTs and M-MWCNTs; the experimental data showed that −C=O− groups
(530.7 eV) and −C–O− groups (533.6 eV) were on the surface of the M-MWCNTs.

Molecules 2023, 28, x FOR PEER REVIEW 3 of 21 
 

 

2.1.2. XPS 
XPS can be used to analyze elements present on the surface of the sample and bond-

ing species [36]. The XPS wide-scan spectrum (Figure 2a) shows that the elements present 
on the surface of MWCNTs and M-MWCNTs were mainly C and O. New active sites are 
provided, as evidenced by the increased oxygen content of M-MWCNTs. This indicates 
that the adsorption capacity of M-MWCNTs for heavy metals will be enhanced [37]. The 
increase in O content (from 3.5% to 13.66%) showed that the modification was successful. 
Figure 2b shows the fitted XPS spectra of the O1s of M-MWCNTs compared to the refer-
ence XPS of MWCNTs and M-MWCNTs; the experimental data showed that −C = O − 
groups (530.7 eV) and −C − O −  groups (533.6 eV) were on the surface of the M-
MWCNTs. 

  
Figure 2. XPS spectra. (a) XPS of MWCNTs and M-MWCNTs (b) O1s XPS of M-MWCNTs. 

2.1.3. SEM 
The morphology investigation of MWCNTs and M-MWCNTs was performed using 

SEM (Figure 3). Figure 3b shows that the MWCNTs and M-MWCNTs were about 20 nm 
in diameter, M-MWCNTs were shorter than MWCNTs, and reunions were more likely to 
occur in M-MWCNTs particles, a phenomenon that was consistent with the Zeta potential 
results. 

Figure 2. XPS spectra. (a) XPS of MWCNTs and M-MWCNTs (b) O1s XPS of M-MWCNTs.

2.1.3. SEM

The morphology investigation of MWCNTs and M-MWCNTs was performed using
SEM (Figure 3). Figure 3b shows that the MWCNTs and M-MWCNTs were about 20 nm
in diameter, M-MWCNTs were shorter than MWCNTs, and reunions were more likely to
occur in M-MWCNTs particles, a phenomenon that was consistent with the Zeta potential
results.
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2.1.4. Zeta Potentials

The zeta potentials were measured as a function of pH to determine the pHPZC of
MWCNTs and M-MWCNTs [38]. The results (Figure 4) showed that the zeta potentials of
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MWCNTs and M-MWCNTs decreased with the increasing pH, whereas the zeta potentials
of M-MWCNTs became more negative after the treatment. The zeta potentials of M-
MWCNTs were all less than 0. It can be speculated that the reason for this phenomenon
was the influence of certain groups (−COOH, −OH) [31]. Surface negativity is favorable
for the adsorption of heavy metal ions from the solution by the adsorbent [39].
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2.1.5. Size

Figure 5 shows the size distribution of MWCNTs and M-MWCNTs at pH 6.2. In
general, the dynamic light-scattering results from MWCNTs represent agglomerations
rather than individual nanomaterials [40]. In the measurement process, the agglomeration
of the original MWCNTs leads to a wider particle size distribution and an increase in the
mean value (Figure 5a). This phenomenon becomes more obvious over time (Figure 5a
blue line). The average particle size of M-MWCNTs treated with mixed acid decreased,
and the result of the three measurements was close to 193.5, indicating that the stability of
carbon nanotubes in an aqueous solution was significantly improved. It is remarkable that,
compared with the raw M-MWCNTs, the particle size of the M-MWCNTs with adsorbed
Mn(II) was increased significantly; the average hydrated particle size increased from
193.5 nm to 320 nm.
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2.2. Effect of Contact Time

The effect of contact time was studied under the following conditions: agitation speed,
180 rpm; adsorbent, 20 mg; initial concentration, 5 mg/L; pH, 5.6; temperature, 25 ◦C; and
the mass ratio of adsorbent in solution was 1 g/L. The results are presented in Figure 6.
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It can be observed that the adsorption of Mn(II) onto the MWCNTs reached equilibrium
rapidly within 1 h, but the removal efficiency of Mn(II) was low (27.9%). The adsorption of
Mn(II) by M-MWCNTs increased rapidly in the first 30 min, then increased at a slower rate
and reached equilibrium at 6 h. This result is corroborated in the literature [31].
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2.3. Effect of pH

The effect of pH on the demanganization by MWCNTs and M-MWCNTs is shown
in Figure 7. The pH value varied from 2 to 9, contact time was 10 h, mass of adsorbent
was 20 mg, concentration of Mn(II) was 5 mg/L, agitation speed was 180 rpm, the mass
ratio of adsorbent in solution was 1 g/L, and the experimental temperature was 25 ◦C. The
results indicated that the removal efficiency of Mn(II) increased. When the pH value is
higher than 9, Mn(II) should be formed and Mn(OH)2 can even be precipitated [41]. In
addition, under acidic conditions, H+ ions compete for the active sites with Mn(II) ions.
As the pH increases, the concentration of H+ ions decreases, leaving more adsorption
sites for Mn(II) ions. As the pH continues to increase, the Mn(II) is hydrolyzed, forming
Mn(OH)+, Mn(OH)2, Mn2(OH)+

3, and Mn(OH)−4. When pH > 8, the Mn(II) begins to form
a precipitate [42].
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When pH < 3, the adsorption rate of Mn(II) onto raw MWCNTs is close to 0. In the
strong acid solution, the adsorption effect of raw MWCNTs on Mn(II) was inhibited, mainly
due to a competitive effect between H+ and Mn2+ at the active site. The zeta potential
results also support this conclusion; experimental zeta potential results showed that the
zeta potential of the raw MWCNTs was positive in a solution of pH < 3 [43].
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2.4. Kinetic Modeling

The results of the three kinetic models are shown in Figure 8a,b, and the parameters
are shown in Table 1. The results revealed that the adsorption of Mn(II) onto MWCNTs and
M-MWCNTs followed second-order kinetics, which suggests that the adsorption process
before both is chemical adsorption. The fitting line of the Weber–Morris model (Figure 8c)
showed that the adsorption of Mn(II) onto MWCNTs and M-MWCNTs could be described
in two or three stages, indicating that the Mn(II) adsorption process is controlled by some
diffusion mechanisms, probably including an intra-particle diffusion mechanism, bulk
diffusion, and film diffusion mechanisms.
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Table 1. Pseudo-first-order, pseudo-second-order and intra-particle diffusion model constants for
Mn(II) adsorption by MWCNTs and M-MWCNTs.

Model Parameter MWCNTs M-MWCNTs

qe.experiment 0.278 3.74

Pseudo-first-order
model

qe.calculate (mg/g) 0.229 1.16
kf (1/min) 0.0433 0.019

R2 0.889 0.898

Pseudo-second-order
model

qe.calculate (mg/g) 0.279 3.76
ks (1/min) 4.12 0.030

R2 0.999 0.999

Weber–Morris
kw / /
C / /
R2 / /

2.5. Isotherm Modeling

The results of experimental data fitting to three adsorption isotherm models for Mn(II)
are presented in Table 2 and Figure 9.

Table 2. Isotherm parameters and determination coefficients for Mn(II) adsorption by MWCNTs and
M-MWCNTs.

Model Parameter MWCNTs M-MWCNTs

Langmuir isotherm

qmax1 (mg/g) 0.585 5.78
b (L/mg) 0.249 1.19

RL (L/mg) 0.801 0.456
R2 0.989 0.999

Freundlich isotherm
Kf (mg/g (L/mg)1/n) 0.159 3.96

1/n 0.344 0.009
R2 0.978 0.872

Dubinin–
Radushkevich

qmax2 (mg/g) 1.4083 7.43
β 0.0030 0.0009

ES 12.95 23.64
R2 0.989 0.913
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The adsorption of Mn(II) by MWCNTs simultaneously conformed to three models; all
the values of R2 were >0.97 in the three isotherms. This indicated that the adsorption of
Mn(II) by MWCNTs was complex and contained a variety of mechanisms under experi-
mental conditions; the adsorption process had both monolayer and inhomogeneous surface
chemisorption. As for M-MWCNTs, the R2 of the Langmuir model was close to 1, which is
better than others. This indicated that the adsorption process of Mn(II) by M-MWCNTs was
monolayer adsorption. As the Mn(II) ions attached to the site of M-MWCNTs (−COOH,
−OH), no further adsorption occurred at that site [44]. Consequently, the adsorption
capacity reached the maximum when the monolayer adsorption of Mn(II) ions was com-
pletely formed on the surface. The value of theoretical adsorption capacity calculated for
M-MWCNTs is approximately 10 times higher than that of MWCNTs. The values of RL
were from 0 to 1 for the studied concentration range, which means the adsorption of Mn(II)
by M-MWCNTs is considered favorable.

Notably, the MWCNT and M-MWCNT results followed the D–R model well (R2 = 0.989
and 0.913, respectively). The value of ES indicated that the MWCNT adsorption process
was mainly ion-exchange adsorption, while that of M-MWCNTs was mainly chemical
adsorption [45].

2.6. PSO–BP Modeling

In this study, 35 and 39 sets of experiments were designed for MWCNTs and M-
MWCNTs, respectively, and each set of experiments was conducted thrice. All data (35 × 3,
39 × 3, Table A1) were used for model fitting in order to reveal the inherent mechanisms
in the process [46]. Imported data were normalized, randomly shuffled, and divided into
three groups for crossover verification (70% for training, 15% testing, and 15% validation).

In Figure 10, two models were developed for adsorption of MWCNTs (Model A)
and M-MWCNTs (Model B), to choose the optimal network structure, 1–14 neurons were
applied in the hidden layer, RMSE and R2 were used to evaluate the effectiveness of PSO-BP,
and in the selected range, Figure 10 shows that the calculated results of the model were
consistent with the experimental data, and for the value of R2, 11 of the 14 neurons had
values around 0.95 in Figure 10a, and 12 of the 14 neurons of values ranged from 0.95 to 1.00
in Figure 10b. For the value of RMSE, in Figure 10a, 11 values were between 2.5–3, and in
Figure 10b, the 10 values ranged from 3–5. The parameters of the PSO–BP model are listed
in Table 3. With this fixed parameter, the optimal weights and biases obtained from the
two PSO–BP models are shown in Table A2. Figure A1 shows the comparison between the
input and output data of two models. The values of R for the training, testing, validation,
and all data of both models were better than 0.97, which demonstrated that the predicted
data agreed well with the experimental data using the PSO–BP model. Most of the data
were distributed on the line of Y = T, indicating good compatibility of the experimental
data with the PSO–BP-forecasted data. To further validate the performance of the model
predictions, the four non-linear statistics of the model were evaluated. The results of the
evaluation (Table 4) demonstrated that the predictions of both models were statistically
significant.
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Table 3. The parameters of the optimum PSO–BP model.

Parameter Model A: MWCNTs Model B: M-MWCNTs

Number of samples 117 105
Number of hidden layers 1 1

Hidden nodes 4 5
PSO swarm size 50 50

Cognitive component (c1) 1.5 1.49554
Social component (c2) 1.5 1.49554
Number of iterations 1000 1000

Table 4. Nonlinear statistical metrics for validating efficacy of model predictions.

Statistical Metric Model A: MWCNTs Model B: M-MWCNTs

R2 (train/test) 0.962/0.966 0.997/0.995
RMSE (train/test) 2.20/2.26 1.38/1.76
MAE (train/test) 1.404/1.58 0.769/0.909

MAPE 0.074/0.067 0.0202/0.0223

3. Materials and Methods
3.1. Materials

The raw MWCNTs were purchased from COCC (Chengdu Institute of Organic Chem-
istry, Chinese Academy of Science). Using carbon gas as the carbon source, this material
was produced via the CVD (catalytic vapor decomposition) method; its outer diameter
was between 5 and 15 nm, the surface area was in the range of 220–300 m2/g, and the
purity of the material was above 95%, with low metal impurity content and high electrical
conductivity.

Mn(II) stock solution (1000 mg/L) was prepared by dissolving 3.6010 g MnCl2•4H2O
(GR) in 1000 mL of deionized water. All the manganese-containing solutions in later exper-
iments were diluted from the stock solution. The concentration of Mn(II) was determined
by atomic absorption spectrometry (WFX120).

3.2. Preparation of M-MWCNTs

A total of 5 g of raw MWCNTs was added to a 120 mL mixture of HNO3 (68%) and
H2SO4 (98%) (v/v 1:3). The mixture was sonicated at 40 ◦C for 4 h and stirred at room
temperature for 24 h, so that the MWCNTs were fully in contact with the oxidant and
were oxidized. The resulting MWCNTs were separated from the solution using a 0.22 µm
membrane filter, rinsed thoroughly with deionized water to remove excess acid, and then
rinsed with anhydrous ethanol to accelerate drying. The obtained sample was dried at
65 ◦C for 24 h. Figure 11 shows the preparation of M-MWCNTs.
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3.3. Characterization Analysis Methods

The FT-IR spectra of the dried samples were determined by an IRTracer 100 FTIR
spectrometer (Shimadzu, Japan), using the potassium bromide powder method. The range
of scanning was 4000–350 cm−1 and the resolution was set to 4 cm−1.

XPS (X-ray photoelectron spectroscopy) was performed to investigate the creation
of ionic networks between MWCNTs and M-MWCNTs on ESCALAB Xi+. The main
parameters were spatial resolution (1 µm) and energy resolution (0.48 eV). The sample
needed to be pressed before testing.

SEM (scanning electron microscopy, Zeiss Ultra Plus) was used to detect the surface
morphology of the MWCNTs and M-MWCNTs [47] and the micro area constitution of
materials was analyzed using Oxford X-Max 50 mm Energy Disperse Spectroscopy (EDS).

A Malvern Zetasizer Ultra was used to measure the particle sizes and zeta potentials
of MWCNTs and M-MWCNTs. The samples were dispersed by ultrasonication for 20 min
before measurement.

3.4. Batch Experiments

Adsorption experiments. A total of 20 mg MWCNTs and 20 mg M-MWCNTs were
separately mixed with 20 mL of Mn(II) solution in a polypropylene centrifuge tube of
50 mL. The initial Mn(II) concentration was 5, 10, 20, 50, 80, and 100 mg/L, while the initial
pH value was from 5.6 to 5.2. The mixture was shaken for 10 h and 25 ◦C at 180 rpm, then
filtered using a 0.22 µm membrane filter.

Adsorption thermodynamics experiments. The temperature was set at 25, 35, 45, and
55 ◦C, and the contact time for adsorption kinetics was controlled from 5 min to 24 h.
To study the effect of pH, the pH value was adjusted using sodium hydroxide solution
(0.01~0.1 mol/L) and hydrochloric acid solution (0.01~0.1 mol/L).

3.5. Theory
3.5.1. Kinetic Modeling

The pseudo-first-order model, pseudo-second-order model, and Weber–Morris model
were the kinetic models used to describe the mechanism of Mn(II) adsorption onto MWC-
NTs and M-MWCNTs. The pseudo-first-order kinetic model can be used to fit the materials
with fewer active sites, higher initial adsorption concentration and the adsorption process
in the early stage, while the pseudo-second-order kinetic model is just the opposite [48].
Pseudo-first-order and pseudo-second-order dynamics models belong to empirical models.
They are simple to calculate, but they fail to explain the adsorption process in terms of
mechanism. A Weber–Morris dynamics model has been put to use in the adsorption of
metal ions by many scholars [49]. It can be used to analyze the rate-controlling steps of the
adsorption reaction, which can guide the adsorption process.
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The pseudo-first-order model, which is widely used in kinetic adsorption simulation,
is based on the assumption that adsorption is controlled by diffusion steps [50]. Equation (1)
describes this model, where qe is the equilibrium absorption capacity, qt is the absorption
capacity at time t, and k f is the rate constant. Equation (2) is the integrated form.

(dqt)/dt = k f (qe − qt) (1)

log(qe − qt) = log(qe)− k f t/2.303 (2)

The pseudo-second-order kinetic model assumes that the adsorption rate is deter-
mined by the square value of the number of vacant adsorption spots on the adsorbent
surface, and the adsorption process is controlled by the chemisorption mechanism, which
involves electron sharing or electron transfer between the adsorbent and the adsorbate [51].
Equation (3) describes this model, in which qe is the equilibrium absorption capacity, qt
is the absorption capacity at time t, and ks is the constant. Equations (4) and (5) are the
integrated forms.

(dqt)/dt = ks(qe − qt)
2 (3)

1/(qe − qt) = 1/qe + kst (4)

t/qt = 1/ksqe
2 + t/qe (5)

The Weber–Morris dynamics model is a particle diffusion model (Equation (6)) [52,53].
The model is the most suitable for describing the dynamics of the material diffusion process
inside the particle, but it is often not suitable for describing the diffusion process outside
the particle and inside the liquid film.

qt = kwt1/2 (6)

In Equation (6), qt is the absorption capacity and kw is the rate constant.

3.5.2. Isotherm Modeling

The adsorption isotherm model is a mathematical model that expresses the relationship
between the adsorption capacity and the solution concentration under the condition of fixed
temperature. Different types of mathematical expression have been proposed and each has
its own scope of application; commonly used expressions are the Langmuir, Freundlich,
and Dubinin–Radushkevich isotherm models.

The Langmuir model assumes that the appearance of the adsorbent is uniform and
there is no interaction between adsorbents. The adsorption is monolayer adsorption, and
the adsorption occurs only on the outer surface of the adsorbent. The Langmuir isothermal
adsorption model was the first model to vividly describe the adsorption mechanism [54].
Equations (7) and (8) describe the linearized form [55], where qe is the equilibrium ab-
sorption capacity, Ce is the equilibrium concentration, qm is the maximum equilibrium
absorption capacity, and b is the Langmuir rate constant.

qe =
qmbCe

1 + bCe
(7)

Ce

qe
=

1
qmb

+
1

qm
Ce (8)

Equation (9) is the essential expression for the Langmuir model, and it is easy to
estimate the characteristics of adsorption.

RL =
1

1 + bC0
(9)

RL is a dimensionless constant and C0 is the concentration of the Mn(II) solution. RL
values between 0 and 1 indicate favorable adsorption [56].



Molecules 2023, 28, 1870 11 of 22

The Freundlich model can be applied to monolayer adsorption and heterogeneous
surface adsorption. Not only can the Freundlich adsorption equation describe the ad-
sorption mechanism of an uneven surface, it is also more suitable for adsorption at low
concentrations. It can explain the experimental results over a wider range of concentration.
The Freundlich isotherm (Equations (10) and (11)) [57] can be expressed as:

qe = K f Ce
1/n (10)

lnqe = lnK f +
1
n

lnCe (11)

where qe is the equilibrium absorption capacity, Ce is the equilibrium concentration, K f is
the Freundlich constant, and the n value ranges from 1 to 10.

In order to describe the relative pressure–adsorption capacity characteristics of mi-
croporous filling, Dubinin and Radushkevich proposed a method, based on the Polanyi
adsorption potential theory, to calculate the adsorption characteristics based on the adsorp-
tion isotherm in the low-pressure region. The Dubinin–Radushkevich (D-R) isotherm is
shown in Equation (12) [58]:

lnqe = lnqm − Kε2 (12)

ε = RTln(1 + 1/Ce) (13)

where qe is the absorption capacity, qm is the theoretical adsorption capacity, Ce is the
equilibrium concentration, and K is the D-R constant.

In order to describe the calculation results of this model more easily, the relationship
between the free adsorption energy, Es, and the constant, K, is given as Equation (14). The
value of Es determines the mechanism of isothermal adsorption.

Es = (2K)−0.5 (14)

If the value of Es is between approximately 8 and 16 kJ/mol, it shows that the main
process of adsorption is ion exchange, whereas if the value Es is more than 18 kJ/mol, it
means the adsorption is chemisorptive in nature.

3.5.3. PSO-BP Modeling

Since Warren McCulloch and Walter Pitts introduced the concept of artificial neural
networks (ANN) in 1943, ANN have evolved rapidly and have been successfully applied
in many fields [59]. Backpropagation-based training-optimization neural networks (BPNN)
are the most extensively utilized neural networks in practice and are capable of solving
complex nonlinear problems. BPNN also have a wide range of applications in the field of
pollutant removal [28–30]. BPNN require constant exploration of different combinations of
weights and biases to obtain ideal results. Particle swarm optimization (PSO) algorithms are
widely used for this work. PSO is a stochastic search algorithm that simulates the predatory
behavior of birds. A set of optimal solutions was obtained from the PSO algorithm by
tracking the constantly moving particles.

In this study, a BPNN model optimized by PSO (PSO–BP) was used to predict the
adsorption of Mn onto two carbon materials. This process was implemented with Mat-
lab2016a software. A standard BPNN network with one input layer, one hidden layer,
and one output layer was created by calling on the software’s own “newff” function. The
backpropagation algorithm, which was applied to determine the most favorable network
structure, selected Levenberg–Marquardt (trainlm) with 1000 iterations. The input layer
contains four neurons (pH, manganese concentration, time, and temperature). The output
is the percentage of Mn(II) removed. Owing to the small amount of data, the network
uses just one hidden layer to avoid overfitting [60] and uses a tangent sigmoid function
(tansig) as the activation function, whereas the output layer uses a linear function (purlin)
as the transfer function. PSO uses the weights and MSE of the network as the particle and
fitness functions, respectively, to learn and iterate. After each iteration, the new particles are
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transformed into the weights of the neural network; the network computes a new MSE and
continues to iterate until the result is ideal or the number of iterations reaches a maximum.

The results of the model calculations are evaluated by the following equations
(Equations (15)–(18)):

R2 = 1 −
∑n

i=1

(
yprd,i − yexp,i

)2

∑n
i=1

(
yprd,i − ym

)2 (15)

RMSE =

√
1
n∑n

i=1

(
yprd,i − yexp,i

)2
(16)

MAE =
1
n∑n

i=1

∣∣∣yprd,i − yexp,i

∣∣∣ (17)

MAPE =
100%

n ∑n
i=1

∣∣∣∣∣yprd,i − yexp,i

yexp,i

∣∣∣∣∣ (18)

where yprd,i is the value calculated using the PSO–BP model, yexp,i is the experimental
value, n is the number of data, and ym is the average of the experimental value.

4. Conclusions

Compared with previous studies, the Mn(II)-removal performance by M-MWCNTs
was improved [31]. Through the comparative analysis of several analytical techniques
results before and after modification, as well as the fitting of thermodynamic and kinetic
adsorption models, it was concluded that the increased number of adsorption sites (carboxyl
groups and hydroxyl groups) after modification was the key to improving the removal rate.
Additionally, the simulation verification of the experimental results by PSO–BP model also
provided a scientific guarantee for the reliability of the entire research work.

Author Contributions: Conceptualization, Y.D.; methodology, Y.D.; software, Y.Z. and Y.H.; valida-
tion, Y.D. and Y.Z.; investigation, Y.M. and J.B.; data curation, Y.Z., Y.H. and R.W.; writing—original
draft preparation, Y.Z. and Y.H.; writing—review and editing, R.W. and Y.D.; visualization, Y.Z.;
supervision, Y.D.; project administration, Y.D.; funding acquisition, Y.D. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Science Foundation of Shaanxi Province, grant
number 2021SF-443, and the College Students’ Innovative Entrepreneurial Training Plan Program,
grant number S202210710227.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: We can provide the data of this journal through the corresponding
author’s email.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the compounds are available from the authors.



Molecules 2023, 28, 1870 13 of 22

Appendix A

Table A1. (a) Data used for model A. (b) Data used for model B.

(a)

No. pH C/mg/L Time/h T/K Adsorption
Rate %

1 2.18 5 180 298 0.4

2 3.23 5 180 298 0.6

3 4.17 5 180 298 20.4

4 5.15 5 180 298 23.5

5 6.17 5 180 298 28.5

6 7.18 5 180 298 28.31

7 8.25 5 180 298 30.4

8 5.58 1 180 298 58

9 5.58 2 180 298 42

10 5.58 5 180 298 28.6

11 5.58 10 180 298 9.6

12 5.58 20 180 298 11

13 5.58 50 180 298 6.5

14 5.58 5 5 298 22.2

15 5.58 5 10 298 25.8

16 5.58 5 20 298 26.8

17 5.58 5 30 298 28

18 5.58 5 60 298 27

19 5.58 5 180 298 28.6

20 5.58 5 180 298 28.2

21 5.58 10 180 298 15.99

22 5.58 20 180 298 11.01

23 5.58 50 180 298 5.45

24 5.58 5 180 308 29.34

25 5.58 10 180 308 16.61

26 5.58 20 180 308 12.38

27 5.58 50 180 308 5.89

28 5.58 5 180 318 29.6

29 5.58 10 180 318 18.01

30 5.58 20 180 318 14.95

31 5.58 50 180 318 6.7

32 5.58 5 180 328 32.45

33 5.58 10 180 328 18.59

34 5.58 20 180 328 15.22

35 5.58 50 180 328 7.03

36 2.18 5 180 298 0.4

37 3.23 5 180 298 0.58
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Table A1. Cont.

(a)

No. pH C/mg/L Time/h T/K Adsorption
Rate %

38 4.17 5 180 298 19.4

39 5.15 5 180 298 23.18

40 6.17 5 180 298 27.5

41 7.18 5 180 298 28.5

42 8.25 5 180 298 31

43 5.58 1 180 298 59

44 5.58 2 180 298 43

45 5.58 5 180 298 26.2

46 5.58 10 180 298 29.6

47 5.58 20 180 298 10.75

48 5.58 50 180 298 6

49 5.58 5 5 298 26.4

50 5.58 5 10 298 25.2

51 5.58 5 20 298 23.8

52 5.58 5 30 298 27.6

53 5.58 5 60 298 27

54 5.58 5 180 298 26.2

55 5.58 5 180 298 27.8

56 5.58 10 180 298 15.45

57 5.58 20 180 298 11.05

58 5.58 50 180 298 5.59

59 5.58 5 180 308 28.5

60 5.58 10 180 308 17.12

61 5.58 20 180 308 12.51

62 5.58 50 180 308 6.05

63 5.58 5 180 318 29.8

64 5.58 10 180 318 17.8

65 5.58 20 180 318 14.5

66 5.58 50 180 318 6.58

67 5.58 5 180 328 32.5

68 5.58 10 180 328 18.51

69 5.58 20 180 328 15.1

70 5.58 50 180 328 7.22

71 2.18 5 180 298 0.4

72 3.23 5 180 298 0.51

73 4.17 5 180 298 24.2
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Table A1. Cont.

(a)

No. pH C/mg/L Time/h T/K Adsorption
Rate %

74 5.15 5 180 298 23.8

75 6.17 5 180 298 28.1

76 7.18 5 180 298 28.2

77 8.25 5 180 298 31.6

78 5.58 1 180 298 49

79 5.58 2 180 298 40.5

80 5.58 5 180 298 28.6

81 5.58 10 180 298 8.6

82 5.58 20 180 298 11.5

83 5.58 50 180 298 4

84 5.58 5 5 298 25.6

85 5.58 5 10 298 24.8

86 5.58 5 20 298 27

87 5.58 5 30 298 24.8

88 5.58 5 60 298 29.6

89 5.58 5 180 298 28.6

90 5.58 5 180 298 27.6

91 5.58 10 180 298 16.5

92 5.58 20 180 298 10.9

93 5.58 50 180 298 5.5

94 5.58 5 180 308 28.2

95 5.58 10 180 308 16.98

96 5.58 20 180 308 12.63

97 5.58 50 180 308 6.09

98 5.58 5 180 318 28.6

99 5.58 10 180 318 17.1

100 5.58 20 180 318 14

101 5.58 50 180 318 6.04

102 5.58 5 180 328 32.49

103 5.58 10 180 328 18.58

104 5.58 20 180 328 14.8

105 5.58 50 180 328 7.31

(b)

No. pH C/mg/L Time/h T/K Adsorption
Rate %

1 2.36 5 1440 298 5.6

2 3.38 5 1440 298 37.8

3 4.32 5 1440 298 57

4 5.31 5 1440 298 74.3
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Table A1. Cont.

(b)

No. pH C/mg/L Time/h T/K Adsorption
Rate %

5 6.3 5 1440 298 76.1

6 7.37 5 1440 298 75.6

7 8.32 5 1440 298 77.8

8 5.58 5 1440 298 75.8

9 5.58 10 1440 298 48.8

10 5.58 20 1440 298 27.6

11 5.58 50 1440 298 12.4

12 5.58 80 1440 298 11.8

13 5.58 100 1440 298 5.69

14 5.58 5 5 298 38.2

15 5.58 5 10 298 39.2

16 5.58 5 20 298 53.6

17 5.58 5 30 298 64

18 5.58 5 60 298 64.4

19 5.58 5 180 298 68.8

20 5.58 5 300 298 69.8

21 5.58 5 420 298 75.8

22 5.58 5 600 298 75.8

23 5.58 5 1440 298 75.8

24 5.58 5 1440 298 75.1

25 5.58 10 1440 298 47.1

26 5.58 20 1440 298 27.5

27 5.58 50 1440 298 11.4

28 5.58 5 1440 308 77.2

29 5.58 10 1440 308 49.8

30 5.58 20 1440 308 29

31 5.58 50 1440 308 12.4

32 5.58 5 1440 318 80.4

33 5.58 10 1440 318 50.9

34 5.58 20 1440 318 30

35 5.58 50 1440 318 12.4

36 5.58 5 1440 328 81

37 5.58 10 1440 328 52

38 5.58 20 1440 328 30.4

39 5.58 50 1440 328 13

40 2.36 5 1440 298 7.6

41 3.38 5 1440 298 38.6

42 4.32 5 1440 298 58.4

43 5.31 5 1440 298 73.8
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Table A1. Cont.

(b)

No. pH C/mg/L Time/h T/K Adsorption
Rate %

44 6.3 5 1440 298 76.3

45 7.37 5 1440 298 75.4

46 8.32 5 1440 298 77.9

47 5.58 5 1440 298 77

48 5.58 10 1440 298 47

49 5.58 20 1440 298 27.4

50 5.58 50 1440 298 10.4

51 5.58 80 1440 298 10.2

52 5.58 100 1440 298 5.8

53 5.58 5 5 298 37.8

54 5.58 5 10 298 39.2

55 5.58 5 20 298 62.4

56 5.58 5 30 298 61.8

57 5.58 5 60 298 63.5

58 5.58 5 180 298 68.5

59 5.58 5 300 298 72

60 5.58 5 420 298 72.5

61 5.58 5 600 298 74.2

62 5.58 5 1440 298 74.2

63 5.58 5 1440 298 74.8

64 5.58 10 1440 298 47.8

65 5.58 20 1440 298 27.29

66 5.58 50 1440 298 11.41

67 5.58 5 1440 308 77.8

68 5.58 10 1440 308 49.8

69 5.58 20 1440 308 28.8

70 5.58 50 1440 308 11.9

71 5.58 5 1440 318 79.8

72 5.58 10 1440 318 51.2

73 5.58 20 1440 318 30.1

74 5.58 50 1440 318 12.5

75 5.58 5 1440 328 81.5

76 5.58 10 1440 328 51.1

77 5.58 20 1440 328 30.5

78 5.58 50 1440 328 13.1

79 2.36 5 1440 298 6.4

80 3.38 5 1440 298 39.2

81 4.32 5 1440 298 58.2

82 5.31 5 1440 298 74.5

83 6.3 5 1440 298 75.9



Molecules 2023, 28, 1870 18 of 22

Table A1. Cont.

(b)

No. pH C/mg/L Time/h T/K Adsorption
Rate %

84 7.37 5 1440 298 75.2

85 8.32 5 1440 298 77.8

86 5.58 5 1440 298 74.6

87 5.58 10 1440 298 46.2

88 5.58 20 1440 298 28

89 5.58 50 1440 298 11.3

90 5.58 80 1440 298 10.6

91 5.58 100 1440 298 5.71

92 5.58 5 5 298 39.2

93 5.58 5 10 298 39.6

94 5.58 5 20 298 53

95 5.58 5 30 298 63.6

96 5.58 5 60 298 64.4

97 5.58 5 180 298 69

98 5.58 5 300 298 71.6

99 5.58 5 420 298 74.6

100 5.58 5 600 298 74.4

101 5.58 5 1440 298 74.5

102 5.58 5 1440 298 74.9

103 5.58 10 1440 298 47.1

104 5.58 20 1440 298 27.5

105 5.58 50 1440 298 11.39

106 5.58 5 1440 308 77.3

107 5.58 10 1440 308 49.8

108 5.58 20 1440 308 29.1

109 5.58 50 1440 308 11.7

110 5.58 5 1440 318 78.9

111 5.58 10 1440 318 51

112 5.58 20 1440 318 30

113 5.58 50 1440 318 12.3

114 5.58 5 1440 328 81.2

115 5.58 10 1440 328 51.6

116 5.58 20 1440 328 30.6

117 5.58 50 1440 328 13.1
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Table A2. (a) Model A 4-4-1 topology—optimal weights and biases. (b) Model B 4-5-1 topology—
optimal weights and biases.

(a)

Input (4)-Hidden Layer (4) Hidden Layer (4)-Output (1)

Weights Bias Weights Bias

−0.0021 −0.0998 0.0628 0.1912 −0.4088 −0.5668

−0.1690
−0.3308 −0.3013 0.0358 −0.0908 −0.3962 0.2999
−0.1177 0.7891 0.1748 0.2355 −0.3528 −0.3022
−0.2683 0.1825 0.0773 −0.4901 0.1691 −0.0722

(b)

Input (4)-Hidden Layer (5) Hidden Layer (5)-Output (1)

Weights Bias Weights Bias

0.8852 −0.6705 −0.3712 0.0612 0.2464 0.1556

−0.3376
0.2801 0.1780 0.1084 −0.4348 0.3055 1
−0.1308 0.4948 −0.0209 0.0709 −0.0502 0.3046
−0.9012 −0.2605 −0.4838 −0.8644 0.2783 −0.4782
0.6520 −1 −0.7253 0.1455 0.6593 −0.2843
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