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General experimental information

All the reactions were performed with the commercially available starting materials
without any further purifications. Proton nuclear magnetic resonance ("H NMR) spectra
were recorded using a BrukerBBFO (500 MHz) spectrometer (Fallanden, Switzerland).
Chemical shifts were recorded in parts per million (ppm, ) relative to chloroform (d =
7.26, singlet). 'H NMR splitting patterns are designated as singlet (s), doublet (d), triplet
(t), quartet (q), doublet of doublets (dd), multiplet (m), broad singlet (bs) ones, etc. Carbon
nuclear magnetic resonance (*C NMR) spectra were recorded using a BrukerBBFO (126
MHz) spectrometer. 3*C NMR data are reported with the solvent peak (CDCls =77.16) as
the internal standard. High-resolution mass spectral analysis (HRMS) was performed us-
ing Bruker Impact HD mass spectrometer. Analytical thin-layer chromatography (TLC)
was carried out on a Merck 60 F254 pre-coated silica gel plate (0.2 mm thickness) (Ontario,
Canada). Visualization was performed using a UV lamp. Melting points were recorded
with Deep vision melting point 935LED (Chennai, India). The instrument was calibrated
with benzoic acid before the measurement.

Synthesis of 1-(3-hydroxybenzo[b]thiophen-2-yl) ethanone (BP)



OH

Cro~
S Olsodium hydride (1.2 g, 4 equiv.) was added to a round bottom flask

containing 10 mL of dry tetrahydrofuran (THF), and to this solution, acetylacetone (1.9
mL, 2.2 equiv.) was added dropwise at 0 °C, and the mixture was stirred for 30 minutes.

Following that, freshly prepared dithiodibenzoyl chloride (2.8 g, 1 equiv.) was slowly
added to dry THF (15 mL), the mixture was allowed to warm to room temperature, and
stirring was continued for 4 days. After extracting the reaction mixture with ethyl acetate
(80 mL), the organic layer was washed with water (75 mL) and dried over anhydrous
Na:250.s. It was filtered, and the solvent was evaporated under reduced pressure, yield-
ing a residue that was chromatographed on silica gel in a gradient mode with
EtOAc/hexanes to yield the compound BP (650 mg; yield 84%). 1 H NMR (500 MHz,
CDCls) d 12.27 (bs, 1H), 7.98 (td, ] = 8.05, 0.9 Hz, 1H), 7.73 (td, 8.2, 0.7 Hz, 1H), 7.54 (ddd,
J=7.65,1.25,0.9 Hz, 1H), 7.41 (ddd, ] =7.65, 0.9, 0.9 Hz, 1H), 2.50 (s, 3H). 13C NMR (126
MHz, CDCls)  196.93, 161.74, 139.17, 130.54, 129.95, 124.90, 123.94, 123.41, 111.61, 28.35.
HRMS: m/z Calcd. for (C10HsO2S): 192.0318; Found: [M+H] 193.0321.

Synthesis of 2-acetylbenzo[b]thiophene-3-yl acetate (BN)

o)

4

(o)

O~
S o In a 25 mL round bottom flask, we dissolved BP (1 equiv.) in 3 mL di-

chloromethane (DCM) and stirred for 20 minutes at 0 °C with triethylamine (2 equiv.).
To this stirred solution, we added acetyl chloride (1.5 equiv.) and stirred until the start-

ing material disappeared (3-4h). Twenty-five mL of water was used to wash the reaction
mixture, and it was dried over anhydrous Na:SOs. It was filtered, and the filtered solvent
was concentrated under a reduced pressure to yield a residue that was chromato-
graphed on silica gel in a gradient mode using EtOAc/hexanes to obtain the compound
BN. 1 HNMR (500 MHz, CDCls)  7.81 (d, ] =8.2 Hz, 1H), 7.64 (td, ] = 8.2, 0.85 Hz, 1H),
7.51(ddd, J=7.75,1.2,1.2 Hz, 1H), 7.43 (ddd, ] =7.6, 0.9, 0.9 Hz, 1H),2.59 (s, 3H), 2.51 (s,
3H), 13C NMR (126 MHz, CDCI3) d 190.66, 168.27, 143.80, 138.17, 132.94, 129.32, 128.48,
125.36, 123.42, 122.81, 29.50, 20.95. HRMS: m/z Calcd. for (C12H100sS): 234.0423; Found:
[M+H] 235.0418.

Synthesis of 1-(3-hydroxybenzo[b]thiophen-2-yl) propan-1-one hydrate (EP)

Sodium hydride (1.2 g, 4 equiv.) was added to a round bottom
flask containing 10 mL of dry tetrahydrofuran (THF), and to this solution, ethyl acetoace-
tate (2.6 mL, 2.2 equiv.) was added dropwise at 0 °C, and the mixture was stirred for 30
minutes. Following that, freshly prepared dithiodibenzoyl chloride (2.8 g, 1 equiv.) was
slowly added to dry THF (15 mL), and the mixture was allowed to warm to room temper-
ature, and stirring was continued for 4 days. After extracting the reaction mixture with
ethyl acetate (80 mL), the organic layer was washed with water (75 mL) and dried over
anhydrous Na2SOxs. It was filtered, and the solvent was evaporated under a reduced pres-
sure, yielding a residue that was chromatographed on silica gel in a gradient mode with
EtOAc/hexanes to yield the compound EP (850 mg; yield 94 %)."H NMR (500 MHz, CDCls)
0 10.20 (bs, 1H), 7.94(td, ] = 8.0, 0.9 Hz, 1H), 7.73 (d, ] = 8.2 Hz, 1H), 7.50 (ddd, ] =8.2, 1.1,



1.2 Hz, 1H), 7.40(ddd, J= 7.1, 0.9,0.9 Hz, 1H), 4.42 (q, ] = 7.1 Hz, 2H), 1.42 (t, ] = 7.1 Hz, 3H),
13C NMR (126 MHz, CDCl3) b 167.47, 159.59, 138.93, 130.57, 128.91, 124.52, 123.25, 123.06,
102.12, 61.52, 14.46. HRMS: m/z Calcd. for (C1iH1005S): 223.0435; Found: [M+H] 223.0428.

Synthesis of 1-(3-methoxybenzo[b]thiophene-2-yl) propan-1-one (EN)

In a 25 mL round bottom flask, we dissolved EP (100 mg 1
equiv.) in 3 mL acetone and K2COs (103 mg 2 equiv.) and stirred for 20 minutes at room
temperature. To this stirred solution, we added methyl iodide (55 uL 2 equiv.) and stirred
until the starting material disappeared (2 h). Then, the reaction mixture was filtered, and
the filtered solvent was concentrated under reduced pressure, then the crude was chro-
matographed on silica gel in a gradient mode using EtOAc/hexanes to obtain the com-
pound EN.'H NMR (500 MHz, CDCls) o 7.88 (d, ] =8.0 Hz, 1H), 7.74 (d, ] = 8.1 Hz, 1H),
7.47 (t, ] =7.5 Hz, 1H), 7.40 (t, ] = 7.5 Hz, 1H), 4.39 (q, ] = 7.1 Hz, 2H), 4.16 (s, 3H), 1.41 (t, |
=7.1 Hz, 3H), ®*C NMR (126 MHz, CDCls)  162.02, 156.86, 138.18, 133.93, 128.02, 124.62,
123.96, 123.06, 115.64, 62.80, 61.38, 14.45. HRMS: m/z Calcd. for (Ci2H120sS): 237.0580;
Found: [M+H] 237.0588.
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Figure S1. '"H NMR spectrum of BP in CDCls.
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Figure S2. ®*C NMR spectrum of BP in CDCls.
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Figure S3. 'H NMR spectrum of BN in CDCls.
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Figure S4. ®*C NMR spectrum of BN in CDCls.
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Figure S5. '"H NMR spectrum of EP in CDCls.
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Figure S6. °*C NMR spectrum of EP in CDCls.
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Figure S7. '"H NMR spectrum of EN in CDCls.
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Figure S8. 3C NMR spectrum of EN in CDCls.
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Figure S9. HRMS spectrum of BP.
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Figure S12. HRMS spectrum of EN.
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Figure S13. Molecular simulation dynamics of CYP1A2 (Grey) and DYRK1A (Red) protein and lig-
and BP. A. Minimum distance and B. Total interaction around 3.5 A of CYP1A2 and DYRK1A pro-
tein relative to the starting complexes during 10000 ps MD test.
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Figure S14. Energetic components by MD simulation show a better interaction of BP with CYP1A2
than with DYRKI1A.



