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Abstract: Carbon-based polynuclear clusters are designed and investigated for geometric, electronic,
and nonlinear optical (NLO) properties at the CAM-B3LYP/6-311++G(d,p) level of theory. Significant
binding energies per atom (ranging from −162.4 to −160.0 kcal mol−1) indicate excellent thermo-
dynamic stabilities of these polynuclear clusters. The frontier molecular orbital (FMOs) analysis
indicates excess electron nature of the clusters with low ionization potential, suggesting that they are
alkali-like. The decreased energy gaps (EH-L) with increased alkali metals size revael the improved
electrical conductivity (σ). The total density of state (TDOS) study reveals the alkali metals’ size-
dependent electronic and conductive properties. The significant first and second hyperpolarizabilities
are observed up to 5.78 × 103 and 5.55 × 106 au, respectively. The βo response shows dependence on
the size of alkali metals. Furthermore, the absorption study shows transparency of these clusters in
the deep-UV, and absorptions are observed at longer wavelengths (redshifted). The optical gaps from
TD-DFT are considerably smaller than those of HOMO-LUMO gaps. The significant scattering hyper-
polarizability (βHRS) value (1.62 × 104) is calculated for the C3 cluster, where octupolar contribution
to βHRS is 92%. The dynamic first hyperpolarizability β(ω) is more pronounced for the EOPE effect
at 532 nm, whereas SHG has notable values for second hyperpolarizability γ(ω).

Keywords: polynuclear superalkali clusters; excess electrons; nonlinear optical response; dynamic
hyperpolarizability

1. Introduction

Nonlinear optical (NLO) materials are at the front line of research in interdisciplinary
science and laser-based technology due to their fundamental applications in the field of op-
toelectronics [1–4]. Photonic devices, laser-based technology, endoscope, and sensors are ex-
amples of well known technologies where NLO materials have possible applications [5–12].
To design and synthesize the NLO materials, much efforts are exerted to understand the
origin of nonlinearity in molecules and clusters in order to correlate NLO responses to
electronic structure and molecular geometry. Polarization, asymmetric charge distribution,
asymmetric crystal packing, and π-conjugated electron transport routes are all required
for NLO materials. Because of their high thermal stability and transparency, inorganic
nonlinear optical materials have been preferred over organic ones [13]. Some inorganic
borates crystals, such as KB5 (KB5O8H2O), BBO (-BaB2O4), and LiB3O5 (LBO), have been
investigated as good NLO materials, particularly in the ultraviolet range [13].

For obtaining high-performance NLO materials, several strategies were proposed,
which include bond length alternation (BLA) [14], doping metal atoms [15], push–pull
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mechanisms from donor to acceptor [16], modification of sp2 hybridized carbon nanomate-
rials [17], designing octupolar molecules [18], multidecker sandwich complexes [19], and
excess electron induction [20].

The introduction of excess electrons into molecules and clusters is the most viable
technique to escalate hyperpolarizability. The availability of loosely bound electrons pre-
dominantly decreases the excitation energies for the crucial transition [21–23]. Excess
electrons in molecules and crystals behave similarly to Rydberg orbitals, which are posi-
tioned outside the parent molecules and are held loosely [24–26]. Several studies have
demonstrated the substantial role of the diffuse excess electrons in compounds for develop-
ing NLO materials. Wei Chen et al. investigated the Li@calix[4]pyrrole electride complex,
which has a significant static hyperpolarizability (βo) value of up to 7.3 × 103 au, where
the presence of excess electrons has a significant role [27].

Theoretically designed compounds having excess electrons that are further classified
into [28] alkalides [29], alkaline-earthides [30], metalides [31], and electrides [32]. Alka-
lides are complex compounds in which alkali metals bear the negative charge (Li−, Na−,
K−) [33]. On the other hand, electride complexes have anionic sites occupied by the electron
inside the complexes [34]. Furthermore, the alkaline–earthides were recently introduced to
excess electrons compounds, where the alkaline earth metals hold a negative charge [35].
Interestingly, superalkali clusters are a new class of materials that can transport electrons,
making them useful for the fabrication of electro-optical materials [36].

Superalkalis clusters with lower ionization energy (IE) than alkali metal elements are
well known due to their powerful reducing capabilities. The very first report about superal-
kalis was obtained in 1982 by Gutsev and Boldyrev for Li3O, Li2F, and Li4N clusters [37].
These clusters with unique qualities, such as tuneability in their electrical properties and
the ability to function as a bridge between micro and macro materials, are of great interest
to cluster science. Recent advances in cluster science show the potential applications of
superalkali clusters, i.e., the reductive materials, helium and hydrogen storage, catalysis,
supersalt formation, and nonlinear optics [38–41].

Superalkali clusters are excellent candidates for creating optical and NLO materials
because of their excellent tunable electronic and structural properties. The decreased ex-
citation energy may be responsible for electrons shifting from HOMO to LUMO, as they
are loosely bound. Based on the intriguing characteristics of superalkali clusters, these
were used to fabricate NLO materials. In this regard, two-dimensional materials doped
superalkali, and they play an essential role in triggering the hyperpolarizability response.
Sun et al. theoretically designed superalkali-based alkalides Li3+(calix[4]pyrrole)M−,
Li3O+(calix[4]pyrrole)M−, and M3O+(calix[4]pyrrole)K− (M = Li, Na, and K), where the
hyperpolarizability response is recorded up to 34 718 au [42]. Similarly, Faizan Ullah et al.
reported a noticeable enhancement in the NLO response of the A112P12 nanocluster by
using Li4N, Li2F, and Li3O superalkalis as the source of the excess electrons [43]. Further-
more, macrocyclic oligofurans ring doped with superalkali clusters were also reported as
a new kind of nonlinear optical material where a larger hyperpolarizability response is
attributed to the presence of loosely bound electrons [44].

Although a larger number of superalkali clusters were theoretically designed, very
limited studies have been conducted to show the possibility of using polynuclear super-
alkali (undoped) clusters as NLO materials. Srivastava et al. investigated the electronic
and nonlinear optical properties LinF (n = 2–5) and M2X small clusters as excess electron
compounds where the βo increases up to 105 au for Li2F [45,46]. Our group investigated
the static and dynamic hyperpolarizability response of M2OCN and M2NCO (M = Li, Na,
K) superalkali clusters as excess electrons candidates where the second hyperpolarizability
γ(ω) values were calculated up to 2.1 × 108 au [45].

Superalkali clusters can be mononuclear, bimetallic, and polynuclear based on their
rational design and elemental composition. We are interested to investigate carbon-based
polynuclear clusters for electronic and NLO properties. These clusters are more stable than
conventional mononuclear superalkali clusters and might possess better electronic and
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NLO properties. The previous development in the family of superalkalis and their tunable
electronic properties prompted us to further investigate polynuclear clusters for optical
and NLO properties. Polynuclear carbon-based clusters C3O[C(CN)2]2M3 (where M = Li,
Na, and K) are investigated using DFT.

2. Results and Discussion
2.1. Optimized Geometries and Thermodynamic Stabilities

The optimized geometries of carbon-based polynuclear superalkali clusters C3O[C(CN)2]2M3
(where M = Li, Na, and K) optimized at CAM-B3LYP/6-311++g(d,p) are given in Figure 1.
The studied polynuclear structures (C1 to C3) show C2V point group symmetry (Table 1).
These clusters are planar with a central carbon core. The determined bond distances be-
tween alkali metal and oxygen (d-M-O) are in increasing fashion with the increased size
of metals (Li to K). The calculated d-M-O bond distances for C1, C2, and C3 are 1.82, 2.24,
and 2.58 Å, respectively (Table 1). The observed geometric parameters (Supplementary
Materials) are very consistent with the previously reported study in the literature. Further-
more, these polynuclear clusters also show the increased bond distance between metals
and nitrogen (dM-N). The observed bond lengths (dM-N) are 1.89, 2.26, and 2.62 Å for C1,
C2, and C3 clusters. The observed monotonic increase in bond lengths from Li to K may be
attributed to increased metal size. The performed frequency calculation shows that there is
no imaginary frequency associated with these clusters, and these are true minima on the
potential energy surface.
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Table 1. Computed bond length between metal and O-atom (dM-O in Å), the bond length between
alkali metals and N-atom (dM-N in Å), binding energies per atom (Eb in kcal mol−1), NBO charges on
metals (QM), NBO charge on nitrogen (QN), NBO charge on oxygen atom (QO), VIE (in eV), and
VEA (in eV), of C1 to C3 clusters.

Cluster dM-O dM-N Eb Q(M) Q(N) Q(O) VIE VEA

C1 1.82 1.89 −162.4 0.58 −0.485 −0.960 3.65 0.76

C2 2.24 2.26 −160.1 0.61 −0.521 −0.839 3.41 0.89

C3 2.58 2.62 −162.1 0.62 −0.523 −0.830 3.00 0.27

The thermodynamic stability of the studied polynuclear clusters is evaluated through
calculated binding energy per atom (Eb). Overall, the binding energies range from−160.1 to
−162.1 kcal mol−1 (Table 1), where the highest energy is found for C1, while the lowest is
observed for the C2 cluster. The obtained significant binding energies per atom suggests
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their thermodynamic stabilities. The calculated binding energies are higher in comparison
to previously reported superalkali clusters NM’M (where M = Li, Na and K), C3X3Y3
(X = O, S, and Y = Li, Na and K) and bimetallic superalkali clusters [47,48]. The trend of
binding energies per atom for studied clusters is also shown in Figure 2. Compared to
clusters C2 and C3, cluster C1 has a greater binding energy value. The computed binding
energies show high thermal stability of these clusters, which demonstrate that they can be
synthesized experimentally.
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2.2. Electronic Properties and Stability

The electronic stability and superalkali nature of these clusters can be observed from
calculated ionization potential and electron affinity. The obtained vertical ionization poten-
tial values are smaller than Cs-atom (3.89 eV), which shows the superalkali characteristics
of these clusters. These values are also significant and account for the electronic stabilities
of these clusters. The highest VIE value of 3.65 eV is found for C1, while the lowest value
(3.0 eV) is indicated for the C3 cluster (Table 1). A gradual decrease in VIE values with the
increased size of alkali metals can be seen in these clusters. On the other hand, the vertical
electron affinity (VEA) values range from 0.27 to 0.89 eV, where C3 shows the lowest value.
The reduced values of EA indicate the electropositive nature of these clusters.

To obtain reactivity and charge distribution, the computed NBO charges are given in
Table 1. The NBO charges (positive) on alkali metals slightly increase from Li to K metals.
The charge is transferred from alkali metals to electronegative atoms (oxygen and nitrogen)
within clusters. The NBO charges on alkali metals (QM) lie in the range of 0.58 to 0.62 e,
where C1 shows higher charge (positive magnitude) on metals. The charge transferred
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from alkali to O-atom is more pronounced as compared to the alkali to N-atom transition,
which may be attributed to the higher electronegativity of the oxygen atom. The calculated
NBO charges on O-atom (QO) lie in the range of −0.83 to −0.96 e and are higher for
small-sized metals.

2.3. Global Reactivity Descriptor

To characterize the reactivity of these clusters, we calculated global reactivity descrip-
tor, chemical hardness, softness, and chemical potential (Table 2). The chemical hardness
is measured as resistance to change in electronic distribution within clusters. The results
obtained show that the C3 cluster has the highest value (1.839 eV) of hardness, whereas
the C1 has the lowest value. The size of alkali metals is an obvious factor in controlling
the hardness of clusters. The decreased values show a correlation with increased atomic
size (Li to K), which guarantees soft nature and reactivity (Table 2). Similarly, the values of
chemical softness (S) increase from C1 to C3 and reach the maximum of 0.33 eV.

Table 2. Energies of HOMO (EHOMO in eV), LUMO energies (in eV), HOMO-LUMO gaps (EH-L in
eV), chemical hardness (η in eV), chemical, softness (S in eV), chemical potential (χ in eV), oscillator
strength (fo in au), excitation energies (eV), and maximum absorption (in nm) of C1 to C3 clusters.

Cluster EHOMO ELUMO EH-L η S χ

C1 −4.70 −0.61 4.08 1.839 0.27 −1.81

C2 −3.24 −0.88 2.35 1.721 0.29 −1.72

C3 −2.80 −0.83 1.96 1.505 0.33 −1.50

The chemical potential values are also calculated and given in Table 2. The higher
chemical potential (χ) values show the escaping tendency of the electrons in clusters and
molecules. Obtained significant values (negative) indicate the stability of these polynuclear
clusters. These values also suggest that the clusters do not decompose spontaneously into
atoms and possess reasonable electronic stability.

2.4. FMO Analysis and Excess Electron Nature of Clusters

To provide deep insight into the electronic structures of the studied clusters, the
densities of the highest occupied molecular orbitals (HOMO) and virtual orbitals are
plotted, and their energy values are given in Table 2. The HOMO and LUMO are quite
important in quantum chemistry, as they allow the prediction of chemical stability and
reactivity of molecules. Imperatively, the small difference between HOMO-LUMO (EH-L) is
crucial for the description of reactivity of molecules. The smaller EH-L gaps depict greater
chemical reactivity with a high tendency to be polarized, as well as low kinetic stability.
The HOMO-LUMO gap values lie in the range of 4.08 to 1.96 eV, where the highest value
corresponds to C1 clusters, while the lowest values correspond for C3. One can note that
EH-L decreases with increased metals size (Li to K) within clusters. Furthermore, decreased
EH-L gaps for the studied clusters can be attributed to increased energies of occupied
orbitals where the energy of virtual orbitals goes on decreasing.

The reactivity and conducting qualities of these clusters are revealed by a significant
reduction in HOMO-LUMO gaps; there are excitable valence electrons (excess electrons)
with transition HOMO → LUMO. The excess electron nature is further justified by the
distribution of HOMO densities, and the electronic density cloud is mainly spread over
alkali metals, which indicates the excess electron character of these superalkali clusters. The
three-dimensional HOMO density of C1 is shaped as a s-orbital, while for C2 and C3, its
look like a diffuse p-orbital (Figure 3). The LUMO densities that are generated are spherical
and resemble s-orbitals.
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2.5. Electrical Conductivity (σ)

The electrical conductivity is also a crucial aspect to demonstrate the NLO properties
of molecules. The electrical conductivity (σ) is the function of energy gaps (EH-L); thus,
narrowing HOMO-LUMO gaps more will lead to higher electrical conductivity of materials.
In our designed clusters, the HOMO–LUMO gaps are significantly reduced from 4.08 to
1.96 eV. The electrical conductivity increases with increased size of alkali metals, which
might be attributed to ease in excitation of electrons (HOMO to LUMO).

2.6. TD-DFT Analysis

In the transparent region, the applications of nonlinear optical materials can be better
understood. The obtained TD-DFT parameters of crucial transitions and first allowed
transitions are given in Table 3. The percentage contribution of particular orbitals of these
clusters for both transitions are also given in Table 3, whereas spectra are shown in Figure 4.
The higher value of ε shows strong absorption at particular wavelength. Additionally,
a higher value of fo reveals the strong transition probability. The studied cluster C3 has
significant value of ε and oscillator strength at higher wavelength. The absorption maxima
(λmax) during crucial transition for C1, C2, and C3 are 758, 688, and 995 nm, respectively,
where the redshifted (i.e., bathochromic sift) in λmax is observed for C3 (Table 3). The
obtained excitation energies of crucial transition are 1.63, 0.92, and 1.24 eV for C1, C2, and
C3 clusters. On the other hand, the obtained optical gaps during allowed transitions are
1.63, 0.92, and 0.86 eV. The C1 cluster has same value for crucial excitation and optical gap,
while for C2 and C3, optical gaps (allowed transition) values are significantly reduced.
The excitation energies of allowed transition are decreasing monotonically from C1 to C3
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with increased metal size (Li to K). The absorption maxima (λmax) of allowed transition
are observed at longer wavelength as compared to absorption during crucial transition.
As a result, bigger alkali metals have a stronger influence on absorptions shift to higher
wavelengths. Furthermore, these clusters are completely transparent under the deep-UV
region and have broadband absorption in the near-Visible region (Figure 4). The highest
energy state TD-DFT parameters also reveal transparency in the deep-UV region, while
absorption is mostly in the UV-visible region (Table 3). Likewise, the gradual increase
in oscillator strength (f o) can also be seen for C1 to C3 clusters for crucial transition and
allowed transition, which suggest increased quantum chemical excitation probabilities in
higher-sized clusters.

Table 3. TD-DFT parameters of crucial excited sates, first allowed transitions, and highest state for
C1 to C3 clusters.

Clusters TD-DFT Parameters from Crucial Transitions

∆E (eV) λmax (nm) fo (au) Major Orbital Contribution

C1 1.63 758 0.19 HOMO→LUMO+2 (82%)

C2 1.80 688 0.26 HOMO→LUMO+3 (36%)

C3 1.24 995 0.28 HOMO→LUMO+5 (67%)

TD-DFT Parameters from First Allowed Transitions

C1 1.63 758 0.19 HOMO→LUMO+2 (82%)

C2 0.92 1338 0.23 HOMO→LUMO+1 (99%)

C3 0.86 1441 0.25 HOMO→LUMO+1 (96%)

TD-DFT Parameters for Highest Energy States

C1 5.12 242 0.0018

C2 4.25 291 0.0005

C3 3.92 315 0.0002
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2.7. Dipole Moment (µo) and Change in Dipole Moment (∆µ)

For better comprehension of the electronic properties in these clusters, the dipole
moment (µo) and change in dipole moments (∆µ) values are also calculated. Overall, the
dipole moment and change in dipole moment (∆µ) values are quite significant, which
reveal asymmetric electronic distribution in these clusters (Table 4). The measured total
dipole moment indicate polarity in clusters and the values of µo are significant and range
from 1.49 to 4.11 au, where the highest value is observed for the C3 cluster. On the other
hand, the total change in dipole moment (∆µ) values are slightly smaller than those of
dipole moment, but C2 shows a significant value of 4.69 au (Table 4).

Table 4. Polarizabilities (αo in au), hyperpolarizabilities (βo in au), second hyperpolarizability (γo in
au), scattering hyperpolarizability (βHRS in au), vector part of hyperpolarizability (βvec in au), average
hyperpolarizability (<βJ=1> in au), average octupolar hyperpolarizability (<βJ=3> in au), % dipolar
contribution to hyperpolarizability Φβ(j = 1), and % octupolar contribution to hyperpolarizability
Φβ(j = 3) of C1 to C3 clusters.

Clusters αo βo γo βHRS βvec <βJ=1> <βJ=3> Φβ(j = 1) Φβ(j = 3)

C1 2.5 × 102 2.37 × 103 5.5 × 106 1.34 × 103 2.37 × 103 1.8 × 103 3.37 × 103 35% 65%

C2 5.07 × 102 4.46 × 103 1.2 × 106 4.87 × 103 4.46 × 103 3.28 × 103 1.49 × 104 18% 82%

C3 6.62 × 102 5.78 × 103 2.9 × 105 1.62 × 104 5.78 × 103 4.30 × 103 5.20 × 103 08% 92%

2.8. Linear and Nonlinear Optical (NLO) Properties

To investigate the influence of excess electrons on triggering the NLO properties
of studied polynuclear clusters, hyperpolarizability (βo) and second hyperpolarizability
(γo) are two crucial evaluation indices. The presence of excess electrons greatly increases
the hyperpolarizability and second hyperpolarizability values, as shown in a number of
studies [43,47–54]. We are interested in exploring the role of excess electrons in decreas-
ing excitation energies, which ultimately escalates hyperpolarizabilities. The calculated
linear and NLO parameters for the C3O[C(CN)2]2M3 (where M = Li, Na and K) at CAM-
B3LYP/6-311++g(d,p) clusters are given in Table 4. The αo values lie in the range of
2.5 × 102 to 6.62 × 102, and there is a slight increase with the increased size of alkali metals.
These values show liner optical properties of polynuclear clusters, and the presence of
polarizabilities is due to asymmetric electronic density distribution in these clusters.

The hyperpolarizability values of studied clusters range from 2.37× 103 to 5.78 × 103 au,
where the highest value is obtained for C3, while the lowest value is for the C1 cluster. βo
values are increasing from Li to K metals within these clusters, which shows size depen-
dence. It can be seen that electronic properties significantly contribute to hyperpolarizability
response, and the larger the change in dipole moment, the higher the hyperpolarizabilities
are. Thus, βo values follow the increasing trend in these clusters, C1 < C2 < C3. Further-
more, the increased βo values have a good match with reduced ionization potential and
HOMO–LUMO gaps. The trend of size-dependent βo is also shown in Figure 5.

In addition, the static second hyperpolarizability (γo) values are also calculated and lie
in the range of 2.9 × 105 to 5.5 × 106 au (Table 4). Overall, γo values are significant where
the highest value (5.5 × 106 au) is obtained for the C1 cluster, while the lowest is for C3. It
is found that, with the increased size of alkali metals, the γo values decrease slightly from
Li to Na and then dramatically for K. These values follow decreasing trend of γo values in
order of C1 > C2 > C3. The calculated significant γo values guarantee the superior NLO
properties of polynuclear clusters. The calculated values of βo and γo are quite significant
as compared to previously reported M2OCN superalkalis [47], M2X (where M = Li, Na and
X = F, Cl) superalkali clusters, and lithium-based superalkalis Lin (n = 3, 5, and 7) [55].
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Furthermore, the βvec values are strongly correlated with total hyperpolarizability
(βo). The calculated βvec values are given in Table 4. These values range from 2.37 × 103 to
5.78 × 103 au. The βvec is the projection of hyperpolarizability on dipole moment vector
and shows close resemblance βo. However, good agreement between βo and βvec shows
that the direction of the dipole moment vector and the projection of hyperpolarizability are
in the same direction. The factor affecting βvec values might be the same for βo, where the
highest βvec values are obtained for higher-sized alkali metals (Table 4).

2.9. Scattering Hyperpolarizability (βHRS)

Density functional theory calculations have been carried out to find scattering hyper-
polarizability (βHRS), and values range from 1.34 × 103 to 1.62 × 104 au, where values are
increasing steadily from the C1 to C3 cluster. The computed highest value is (1.62 × 104 au),
found for C1 cluster, whereas the lowest value of 1.34× 103 au is for the C1 cluster (Table 4).
The βHRS is the most viable parameter to calculate the hyperpolarizability of centrosymmet-
ric molecules and clusters, even with zero change in dipole moment. There is an excellent
agreement of βHRS with βo where the βHRS show dependence on the size of alkali metals
(M). The increased size of alkali metals (Li to K) favors the excellent electronic properties.
Therefore, it also causes significantly enhanced βHRS values. Additionally, average dipolar
and octupolar hyperpolarizability, which are more prominent in C2 and C3 clusters, pro-
vide a notable contribution to βHRS. Moreover, these clusters are of octupolar molecules,
which can be seen by their highest octupolar contribution Φβ(j = 3) of 92 % for C3 (Table 4).

2.10. Frequency Dependent NLO Properties

We theoretically examined the incident–frequency (ω) effect on the first and second
hyperpolarizability at applied frequencies of 532 and 1064 nm. The frequency-dependent
first hyperpolarizability β(ω) is calculated with the electro–optical Pockel’s effect (EOPE)
and second harmonic generation (SHG), whereas the γ(ω) is expressed in terms of dc-Kerr
effect and second harmonic generation (SHG). Overall, the dynamic hyperpolarizabilities
values are higher than those of static hyperpolarizabilities. The significant EOPE effect
β(−ω;ω,0) was observed for the C3 cluster at 532 nm, while its SHG value increased up to
1.7 × 106 au (Table 5). It can be demonstrated that the dynamic hyperpolarizabilities are
higher at the smaller incident frequency (ω = 532 nm) and slightly decreased at the higher
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dispersion frequency (1064 nm). Strikingly, the β(ω) values are much more pronounced for
the EOPE effect at both frequencies.

Table 5. Hyperpolarizability (β0 in au), frequency-dependent hyperpolarizability β(ω) in terms of
electro-optic-Pockel’s effect (EOPE) β (−ω;ω, 0) in au, and electric field induced second harmonic
generation (EFSHG) β (−2ω;ω,ω) in au atω = 532 au.

Cluster
ω = 0 ω = 532 nm ω = 1064 nm

β (0;0,0) β (−ω;ω,0) β (2-ω;ω,ω) β (−ω;ω,0) β (−2ω;ω,ω)

C1 2.5 × 102 8.1 ×103 2.2 × 105 8.1 × 105 2.9 × 105

C2 5.0 × 102 1.0 × 105 4.2 × 105 2.7 × 106 1.6 × 105

C3 6.6 × 102 1.2 × 107 1.7 × 106 5.0 × 105 4.5 × 103

Furthermore, the γ(ω) values are higher than γo, and the highest dc-Kerr value
increased up to 2.6 × 109 au for C3 at 1064 nm (Table 6). The γ(ω) response becomes
significant at the higher dispersion frequency (1064 nm), where SHG values are notable
at both frequencies. The obtained higher values of the dc-Kerr effect reveal the nonlinear
change in the refractive index of studied clusters. Hence, studied clusters have excellent
NLO properties and can be used to design high-performance SHG devices.

Table 6. Static second hyperpolarizability (γo in au), frequency-dependent second-hyperpolarizability
γ(ω) in term of electro-optic-pockel’s effect (EOPE) γ (−ω; ω, 0) in au, and electric field-induced
second harmonic generation (efshg) γ (2-ω;ω,ω) in au atω = 532 au.

Clusters
ω = 0 ω = 532 nm ω = 1064 nm

γ (0;0,0,0) γ (−ω;ω,0,0) γ (−2ω;ω,ω,ω) γ (−ω;ω,0,0) γ (−2ω;ω,ω,ω)

C1 5.5 × 106 3.0 × 108 6.0 × 107 1.0 × 106 1.2 × 108

C2 1.2 × 106 2.4 × 108 2.3 × 107 2.3 × 107 5.0 × 107

C3 2.9 × 105 4.9 × 107 1.7 × 108 2.6 × 109 2.0 × 109

3. Computational Details

All density functional theory (DFT) calculations are performed in the gas phase with
Gaussian 09 software, whereas visualization is achieved using the GaussView 5.0 pro-
gram [56,57]. Geometries of all polynuclear C3O[C(CN)2]2M3 (where M = Li, Na, and
K) clusters are optimized at CAM-B3LYP/6-311++G(d,p) functionality [58]. The quan-
tum mechanics-based Coulomb attenuating method (CAM-B3LYP) is a hybrid exchange-
correlation functional that combines B3LYP’s hybrid features with the CAM functional’s
long-range corrected parameter. It was found that this long-range corrected density func-
tional substantially reduces the overestimation seen with conventional techniques and
typically provides results that are comparable to those of coupled cluster calculations.
Previous research has demonstrated that this method is well recognized for examining
molecules and clusters, as well as for determining NLO properties [59,60]. Besides, the
choice of a suitable basis set is crucial for obtaining reliable results. Thus, the CAM-B3LYP
method with 6-311+G(d,p) split valence basis set is a reliable level of theory for geometry
optimization and accuracy in results for electronic properties [61–65].

To determine whether the presented structures are true minima on the potential energy
surface, frequency calculations are carried out. For thermodynamic stability, we calculated
binding energy per atom for these clusters. Electronic stability and superalkali nature are
validated through computed ionization energies (IE) and electron affinities (EA). To further
explore the electronic properties, we performed frontier molecular orbital (FMO) analysis.
Natural bonding orbitals (NBO) study is carried out to explore the charge distribution on
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atoms within superalkali clusters [66]. The binding energy per atom (EB) is given by the
following relations:

EB = [ET(X)− EA(X)
0]/n (1)

where ET is the total electronic energy of studied (X) superalkali clusters, EA(X) is the total
energy of individual atoms within clusters, and n is the total number of atoms. The vertical
ionization energy, electron affinity, and electrical conductivity (σ) can be represented by
the equation:

VIE = EX
+ − EX

0 (2)

VEA = EX
0 − EX

− (3)

σ ∝ exp
−EG
2kT (4)

where VIE and VEA are vertical ionization energies and electron affinities of studied
clusters. In Equation (4), σ, EG, k, and T represent the electrical conductivity, energy
gap, Boltzmann constant, and temperature, respectively. To further explore the electronic
properties of studied clusters, we also performed total density of state (TDOS) analysis at
the same method by using the GaussSum software [67]. The following equation can be
used to explain the molecules under the static electric field.

E(F) = E0 − µiFi −
1
2
αijFiFj −

1
6
βijkFiFjFk −

1
24
γijklFiFjFkFl . . . (5)

where F is an external applied electric field, Fi is the component of field along i direction,
E0 is the total energy of the superalkali clusters without a static electric field, and µi, αij,
βijk, and γijkl are dipole moment, polarizability, hyperpolarizability, and second-order
hyperpolarizability, respectively. The mean dipole moment (µo), change in dipole moment
(∆µ), static polarizability (αo), and static first hyperpolarizability (βo) are calculated to
illustrate the NLO response and associated responsible factors.

αo = 1/3 (αxx + αyy + αzz) (6)

βo = (βx
2 + βy

2 + βz
2)1/2 (7)

where βx = βxxx + βxyy + βxzz, βy = βyyy + βyzz + βyxx and βz = βzzz + βzxx + βzyy.

µo = (µx
2 + µy

2 + µz
2) 1/2 (8)

To obtain absorption behaviors and excited state parameters of studied clusters, we
performed TD-DFT simulations. We considered 30 states for getting excited states param-
eters. The Gaussian band shape and the absorption spectra were obtained by using the
following relation, ϑ:

εo
(
ϑ
)
= εi

max exp

−(ϑ− ϑi
σ

)2
 (9)

where the i subscript represents the electronic excitation of interest. The other symbols in
the equation have the following meanings:

• ϑi, shows the excitation energy (in wavenumbers) corresponding to the required
electronic excitation in TD-DFT

• εi
max is the value of at the maximum of the band shape

• Sigma (σ) is a wavenumber representation of the standard deviation that is related to
the simulated band’s width.

The second static hyperpolarizability (γo) and the projection of hyperpolarizability
on the dipole moment vector (βvec) are also calculated for our studied superalkali clusters
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at the same level of theory. Static second hyperpolarizability (γo) and vector part of
hyperpolarizability (βvec) are expressed as:

< γ > = 1/5 (γxxxx + γyyyy + γzzzz + γxxyy + γxxzz + γyyxx + γyyzz + γzzxx) (10)

βvec = r ∑ µiβi/|µ| (11)

Moreover, the molecular parameters relevant to electro-optical Pockel’s effect (EOPE)
and second harmonic generation (SHG) are calculated at externally applied frequencies
(532 and 1064 nm).

4. Conclusions

In summary, we presented the geometric, electronic, and nonlinear optical proper-
ties of polynuclear carbon-based clusters at CAM-B3LYP/6-311++G(d,p) level. These
clusters are thermodynamically stable, and their binding energies per atom range from
−160.07 to −162.07 kcal mol−1. The electronic stability and superalkali nature are charac-
terized through calculated ionization potential (IP) and FMO analyses. Small ionization
potential further suggests their superalkali nature. NBO charge analysis reveals excellent
charge separation within clusters. The performed DOS analysis shows size-dependent
electronic and conductive properties, where C3 is a potential candidate. The significant
first and second hyperpolarizabilities, up to 5.78 × 103 and 5.55 × 106 au, respectively,
are calculated for the clusters. The βo response shows dependence on the size of alkali
metals. Furthermore, the absorption study shows their transparency in the deep-UV region
for NLO applications and absorption at longer wavelengths. The significant scattering
hyperpolarizability (βHRS) value is (1.62 × 104), calculated for the C3 cluster, where oc-
tupolar contribution to βHRS is 92%. The dynamic first hyperpolarizability β(ω) is more
pronounced for the EOPE effect at 532 nm, whereas SHG is more prominent for second
hyperpolarizability γ(ω).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28041827/s1, Figure S1: DOS spectra of clusters; Table S1:
Optimized geometries of clusters.
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