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Abstract: Human mitochondrial DNA (mtDNA) is a 16.9 kbp double-stranded, circular DNA,
encoding subunits of the oxidative phosphorylation electron transfer chain and essential RNAs
for mitochondrial protein translation. The minimal human mtDNA replisome is composed of
the DNA helicase Twinkle, DNA polymerase γ, and mitochondrial single-stranded DNA-binding
protein. While the mitochondrial RNA transcription is carried out by mitochondrial RNA polymerase,
mitochondrial transcription factors TFAM and TFB2M, and a transcription elongation factor, TEFM,
both RNA transcriptions, and DNA replication machineries are intertwined and control mtDNA
copy numbers, cellular energy supplies, and cellular metabolism. In this review, we discuss the
mechanisms governing these main pathways and the mtDNA diseases that arise from mutations in
transcription and replication machineries from a structural point of view. We also address the adverse
effect of antiviral drugs mediated by mitochondrial DNA and RNA polymerases as well as possible
structural approaches to develop nucleoside reverse transcriptase inhibitor and ribonucleosides
analogs with reduced toxicity.

Keywords: mitochondria; DNA replication; RNA transcription; human diseases; antivirals; HIV; HCV

1. Unique Replication Mechanism for Mitochondrial DNA

Human mitochondrial DNA (mtDNA) is approximately 16.6 kbp double-stranded,
circular DNA that codes 37 genes including a subset of components in the oxidative
phosphorylation electron transfer chain (ECT), tRNAs, and rRNAs that are essential for
mitochondrial protein translation [1]. The entire ECT is assembled with components coded
into the mitochondria and nucleus to couple oxygen consumption with ATP synthesis.
Enzymes that contact mtDNA replication, transcription, and mitochondrial ribosome
proteins are nuclear coded, thus coordination of gene expressions in the two organelles are
critical for cellular energy supply, cell cycle control, and metabolism [2]. Maintenance of
mtDNA has profound implications for human health and chronological aging [3–10].

Except for the 1 kbp control region, both strands of human mtDNA are gene-coding
without introns. The two strands are named H- and L-strand owing to their unequal
contents of purines and pyrimidines. The mitochondrial control region (CR) is a non-
coding DNA region with high variability. The CR contains two promoters, HSP and LSP,
for H-strand and L-strand transcription, respectively, and an origin for H-strand replication,
OH. The origin for L-strand replication is located about 8000 bp from OH (Figure 1) [11,12].
MtDNA replication is primarily carried out by a strand-displacement mechanism, which
differs from the canonical leading and lagging strand-coupled synthesis in nucleus where
two strands are synthesized in synchrony. In the strand-displacement replication model,
the H-strand is synthesized solely from the OH, generating a long, single stranded DNA
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D-loop. The L-strand synthesis begins only after the H-strand synthesis reaches the OL
when two-third of the H-strand has been synthesized (Figure 2) [13,14]. In recent years,
another mtDNA synthesis model called RITOLS has been suggested that may function
under special circumstances [15].
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In vitro, mtDNA replication can be reconstituted with a minimum replisome consist-
ing of the Twinkle DNA helicase, DNA polymerase gamma (Pol γ), and mitochondrial 
single-stranded DNA-binding protein (hmtSSB). Despite mitochondria’s bacterial origin, 
enzymes involved in mtDNA replication and RNA transcription are of high similarity to 
that of T7 bacteriophages. 

Twinkle helicase belongs to the helicase superfamily 4 (SF4) that includes well-stud-
ied T7 bacteriophage helicase (gp4) and E. coli DnaB [17,18]. SF4 helicases unwind double-
stranded DNA in a 5′-3′ direction, powered by nucleotides ATP, UTP, or dTTP hydrolysis 
[19]. 

Structurally, T7 gp4 adopts hexameric and heptameric ring configuration where the 
hexamer is thought to be the active form and the heptamer as the storage form [20–22]. 
Each subunit can be divided into the N-terminal domain (NTD) and C-terminal domain 
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Figure 2. mtDNA replication: initiation and completion of synthesis in strand-displacement fashion,
adopted from [16].

In vitro, mtDNA replication can be reconstituted with a minimum replisome consisting
of the Twinkle DNA helicase, DNA polymerase gamma (Pol γ), and mitochondrial single-
stranded DNA-binding protein (hmtSSB). Despite mitochondria’s bacterial origin, enzymes
involved in mtDNA replication and RNA transcription are of high similarity to that of T7
bacteriophages.

Twinkle helicase belongs to the helicase superfamily 4 (SF4) that includes well-studied T7
bacteriophage helicase (gp4) and E. coli DnaB [17,18]. SF4 helicases unwind double-stranded
DNA in a 5′-3′ direction, powered by nucleotides ATP, UTP, or dTTP hydrolysis [19].

Structurally, T7 gp4 adopts hexameric and heptameric ring configuration where the
hexamer is thought to be the active form and the heptamer as the storage form [20–22].
Each subunit can be divided into the N-terminal domain (NTD) and C-terminal domain
(CTD) connected by a linker [22,23]; the NTD contains primase activity, and CTD contains
helicase activity (Figure 3a).
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Figure 3. Structural comparison of human Twinkle helicase with T7 gp4 helicase (a) structure of apo
heptameric gp4, the NTD is colored in cyan and CTD in multi-color, (b) Alphafold-predicted human
helicase structure in similar color theme, (c) subunit structure of Twinkle (cyan) overlayed with T7
gp4 (grey), (d) Comparison of NTD structures of Twinkle (blue) and T7 gp4 (yellow).

Sequence analysis readily enables identification of high homology between mam-
malian Twinkle’s CTD and T7 gp4 helicase domain, whereas the NTD of the two helicases
are of less similarity. A low-resolution cryo-EM structure of a wild-type Twinkle [24,25]
as well as a high-resolution disease mutant (W315L) [25] have been determined. The
structures show that the Twinkle CTD adopts a nearly identical structure as that of the gp4
CTD, which is the main driving force for the ring configuration (Figure 3c).

Despite the NTDs of the two helicases being less conserved in sequence, they still
share structural similarity (Figure 3d). The T7 gp4 NTD contains primase activity, but
Twinkle is void of enzymatic activity. Structural comparison illustrated that the catalytic
residues for primase in gp4 are substituted with amino acids, explaining its lack of primase
activity (Figure 3d).

However, the two helicases differ in domain organization: in T7 gp4, the NTD and
CTD form head-to-tail interaction, whereas forming side-by-side configuration in Twinkle
(Figure 3a,b). Thus, the ring thickness of gp4 (~100 Å) is greater than that of Twinkle (~60 Å).
While T7 replisome shed many important lights on strand-coupled DNA replication, it may
not represent that in mitochondria. First, the domain arrangement suggests the replisome
structure of human mitochondria replisome might be different from that of the T7; second,
the T7 replisome consists of one gp4 helicase and two DNA polymerases (T7 DNAP),
where the gp4 NTD interacts with the lagging strand T7 DNAP and CTD with the leading
strand T7 DNAP. As mitochondrial dsDNA is replicated asymmetrically, mitochondrial
replisome could function sufficiently with one Twinkle helicase and one Pol γ, and the
NTD of Twinkle interacts with mtSSB.

Pol γ is the only DNA replicase in mitochondria. The holoenzyme consists of a catalytic
subunit Pol γA that contains active sites for 5′-3′ polymerization (pol) for DNA synthesis
and 3′-5′ exonuclease (exo) for proofreading to correct erroneously incorporated nucleotides,
and an accessory subunit Pol γB that is void of intrinsic enzymatic activity but can regulate
all activities of Pol γA. Pol γA belongs to the high-fidelity DNA Polymerase A family,
whose members include T7 DNA polymerase and E. coli Pol I. Like many members of this
polymerase family, Pol γA alone exhibits low processivity, i.e., lack of ability to replicate
long genome efficiently; the feature renders these polymerases unsuitable to function as
DNA replicases. Pol γA contains an additional large spacer domain sandwiched between
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pol and exo domains that constitutes a major binding site for the accessory subunit Pol γB.
Upon association with Pol γB, the processivity and catalytic rate of the Pol γ holoenzyme
is significantly increased [26,27]. Deletion of the spacer domain in drosophila Pol γA
drastically reduced subunit interaction and the processivity of the holoenzyme [28]. Pol
γ also contains a 5′-deoxyribose phosphate lyase activity which contributes to the base
excision repair, an important pathway in mtDNA repair and maintenance by reducing
mutation rates [29].

Accessory subunit Pol γB structurally resembles the class II tRNA synthetases, specifi-
cally the threonyl tRNA synthetase [30–32]. The accessory subunit is a dimer in mammals,
a monomer in insects, and outright missing in single cell eukaryotes [31,33–37]. Never-
theless, the catalytic residues of synthetase are not conserved in Pol γB, explaining the
lack of catalytic activity. Each subunit of Pol γB performs separate functions: the proximal
monomer enhances DNA binding, while the distal monomer enhances processivity [38].
Interestingly, the origin OL is surrounded by tRNA genes, and it has been hypothesized
that the tRNA could serve as primers for replication of the L-strand.

Human mtSSB (hmtSSB) is a tetrameric protein that binds to the single-stranded DNA
generated by asymmetrical DNA synthesis from OH, reducing secondary structures of
the nascent DNA strand in serving for replication. However, hmtSSB appears to function
beyond passive DNA interaction, as it exerts synergy in the replisome with Pol γ and
Twinkle helicase [39,40]. Biochemical studies have shown that mtSSB stimulates both
polymerase and exonuclease activities in Pol γ via either protein-protein interaction or
organization of DNA topology [41–43]. In addition, mtSSB has been shown to play an
important role in optimizing RNA primer for DNA replication on both OH and OL [44].

Individually, human Pol γ holoenzyme and Twinkle do not have the desired activities
for replicating dsDNA: Pol γ lacks strand-displacement synthesis and can only replicate on
single-stranded DNA template, while Twinkle exhibits minimal DNA unwinding ability.
In fact, human Twinkle acts as a DNA annealer and its apparent ‘unwinding’ is due to its
DNA strand switching [45,46]. Nonetheless, the two proteins together are capable of repli-
cating dsDNA synthesis, suggesting the helicase and polymerase’s strand-displacement
synthesis are mutually stimulative. The addition of hmtSSB significantly enhances poly-
merase/helicase DNA synthesis at the replication fork [39,40]. When replicating a duplex
DNA template, the addition of mtSSB significantly increases the combined activity of the
polymerase and helicase, despite the lack of direct interaction between the proteins. This
behavior is similar to the replication systems in bacteria and bacteriophage.

Leading-strand mitochondrial DNA replication is done primarily by Pol γ, Twinkle,
and mtSSB. Under the strand-displacement model, Pol γ and Twinkle displaces the parental
strand and synthesizes the daughter strand, while mtSSB binds to the displaced strand.

2. Replication Initiation-Coupling of RNA Transcription with DNA Replication

In nucleus, initiation of DNA replication system begins with RNA from RNA primer
synthesis by a designated primase. However, primase has not been found in mammalian
mitochondria, thus making the short RNA primer transcribed by the mitochondrial RNA
polymerase (POLRMT) serve as a primer for DNA replication, similar to that of the bac-
teriophage systems. Although the exact switch mechanism between transcription and
replication priming is unknown, it has been suggested that the exonuclease activity in
POLRMT is required for replication priming in a fruit fly [47]. Pol γ begins DNA replication
on this RNA primer, creating an RNA-DNA hybrid which has been found in both human
and mouse cells [48]. This RNA portion of the hybrid is then efficiently processed by RNase
H1 and EXOG [49,50] as well as by FEN1, DNA2, and MGME1 to a lesser extent [51].

Both mtDNA strands code for genes and are transcribed from HSP and LSP, respec-
tively. Although transcription from the two promoters are symmetrical and transcribed
at the same rate [52], transcripts of the two strands have a different half-life: transcripts
of the HSP have a faster turnover and no accumulation relative to the transcripts from
LSP [53–56]. The L-strand transcription promoter (LSP) is located upstream to the OH in



Molecules 2023, 28, 1796 5 of 14

the D-loop. Persistent RNA/DNA hybrids formed with the L-strand corresponded almost
exclusively to the right half of the genome past the OH. By contrast, the hybrid involving
the H-strand appeared to be localized in half of the genome, particularly in the region
adjacent of OH [57]. Transcripts are usually polycistronic and near the length of the genome
and are subsequently processed, except that at three Consensus Sequence Blocks, CSBI,
CSBII, and CSB III. The POLRMT has a high probability of terminating transcription at the
CSBII, located between the LSP promoter and OH.

Mitochondrial RNA transcription system possesses hybrid features of prokaryotic and
eukaryotic systems. Mitochondrial RNA polymerases contain clear features of bacterio-
phages, specifically T7 and T3 [19,58,59]. However, unlike its single subunit bacteriophage
counterparts that sufficiently catalyze RNA transcription reaction, including promoter
recognition and unwinding, binding to nucleotides, formation of phosphodiester bond,
and transition from initiation to elongation transcription, POLRMT alone is unable to
recognize its promoters, thereby depending on its transcription factors, TFAM and TFMB2,
for promoter recognition and transition from initiation to elongation RNA synthesis.

Mitochondrial transcription can be reconstituted in vitro with POLRMT, transcription
factor A (TFAM), transcription factor B2 (TFB2M), and transcription elongation factor
(TEFM). POLRMT shares high sequence homology with T7 RNA polymerase. Unlike the
self-sustained T7 RNAP, POLRMT needs transcription factors for promoter recognition.
TFAM binds to the mitochondrial promoter’s sequence and creates a stable protein-DNA
complex but can also act as bender or DNA unwinder in non-specific DNA sequences [60].
TFAM and TFB2M works synergistically to support mitochondrial transcription initia-
tion [61]. TEFM has been shown to increase processivity of the transcription and to stop
premature transcription termination at CSB II [62,63]. Structures of the mitochondrial
transcription initiation and elongation complexes revealed the mechanism in which TFAM
recruits POLRMT, TFB2M opens the DNA duplex and stabilizes POLRMT, and TEFM
forms a sliding clamp to increase the processivity of POLRMT [64,65].

Previous investigations suggested that CSBII improves the stability of RNA-DNA
hybrid. This agrees with other experimental findings in which these hybrids are found
close to the CSB II region where the transition from RNA primers to DNA replication
occurs [66]. Over 95% of the H-strand transcription initiation synthesis are prematurely
terminated around 600 bp downstream of the initiation point [67]. Another study reports a
shorter, prematurely terminated product about 100 bp downstream of the LSP promoter that
coincides with the CSBI, CSB II, and CSB III region [68]. By using a mutational approach,
CSB II was discovered to play an important role in premature transcription termination
with little to no role from CSB I and CSB III [68].

The terminated RNA transcripts at CSBII can serve as primers for replication at OH
so that the Pol γ replaces the RNA polymerase and begins DNA synthesis from the RNA
primers; perhaps, DNA polymerase has higher affinity to the transcription bubble than
the RNA polymerase once POLRMT dissociates from the template. Thus, mitochondrial
RNA transcription and DNA replication are intertwined; both RNA transcription and
DNA replication machineries control mtDNA copy numbers, cellular energy supplies, and
cellular metabolism.

3. Mutations of Pol γ and Twinkle Implicated in Multi-System Human Diseases

Maintenance of mitochondrial DNA (mtDNA) homeostasis is critical in maintaining
cellular energy supplies and cell cycle controls. Mutations in nuclear genes involved in
mtDNA homeostasis, i.e., POLG and POLG2 (code for Pol γA and PolγB, respectively),
TWNK (codes for Twinkle helicase), and TYMP (codes for thymidine phosphorylase) result
in mtDNA depletion or deletions in post-mitotic tissues, leading to clinical presentations col-
lectively termed “mtDNA maintenance disorders.” The symptoms of mtDNA maintenance
disorders predominantly manifest as muscle weakness, central nerve system involvement,
and hepatic dysfunction.
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3.1. Pol γ Replication Fidelity and Aging

Mitochondrial DNA integrity is directly implicated in the aging process. Mutation in
Pol γ exonuclease active site would abolish the proofreading ability and increase replication
error [69,70]. Transgenic mice carrying an exonuclease-deficient (exo−) Pol γ variant
exhibited increased mtDNA mutations and premature aging syndromes [71]. Similar
observations were made in Drosophila carrying Pol γ exo− allele, but when polymerase-
deficient (pol−) Pol γ allele was expressed in trans with Pol γ exo−, it reversed the aging
characteristics [72], establishing a direct connection between Pol γ proofreading deficiency
and aging. Pol γ exo− variant has not been found in nature; nonetheless, oxidative stress
can selectively hamper wild-type Pol γ exonuclease activity, generating a phenotype similar
to the exo-deficient polymerase [73]. The study established a correlation between organelle
oxidative state and aging.

3.2. Pol γ Mutations Implicated in Diseases

Over 150 mutations in Pol γA have been reported from patients such as Alpers-
Huttenlocher Syndrome (AHS) [74–76], progressive external ophthalmoplegia (PEO) [77],
and childhood myocerebrohepatopathy spectrum (MCHS) [78]; the ataxia neuropathy
spectrum (ANS) [79]; sensory ataxic neuropathy and dysarthria (SANDO) [80] (Figure 3a).
A growing number of patients with POLG mutations resulted in multiple mtDNA deletions
respiratory chain deficiency, leading to co-segregation of PEO, parkinsonism [81].

The disease-causing Pol γ mutations are better understood using high resolution 3D
structures [82,83]. Their impact on the polymerase activity can be illustrated by the mutant
locations in functional domain. For instance, a mutation in the pol site of Pol γA directly
affect Pol γ DNA synthesis catalysis [84–87] (Figure 4a,b), and a mutation in the thumb
domain reduces DNA binding affinity [88] (Figure 4a,c). Another class of mutations are
located interface of the PolγA and PolγB (Figure 4d). The mutant holoenzyme showed
reduced subunit interaction, causing lower synthesis processivity and decreased synthesis.
Biochemical characterization of subunit interface mutation showed significantly reduced
polymerase’s DNA synthesis [89].
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3.3. Twinkle Disease Mutations

To date, over 40 Twinkle mutations have been associated with human clinical disor-
ders (Figure 5a), such as progressive external ophthalmoplegia and ataxia neuropathies
among other mitochondrial diseases. Disease variants of Twinkle helicase can lead to
increased mtDNA copy number [59], mtDNA depletion, and accumulation of replication
intermediates [90].

Molecules 2023, 28, x FOR PEER REVIEW 8 of 15 
 

 

The mutants manifested dysfunction, implying the functional necessity for domain inter-
actions. 

 
Figure 5. Twinkle disease-implicated mutations. (a) Linear depiction of Twinkle mutations impli-
cated in human diseases, adopted from [10], (b) subunit interface mutations (magenta), and (c) do-
main interface mutations (purple), where Twinkle subunit is colored in cyan, T7 gp4 in grey, and 
single-stranded DNA in red. 

4. Pol γ and POLRMT as Drug Adverse Reaction Targets 
Perhaps due to the homology to viral counterparts of mitochondrial DNA replication 

and transcription machineries, among all human polymerases, Pol γ and POLRMT are 
selectively inhibited by antiviral drugs. Pol γ cross-reacts with nucleoside analog drugs 
designed against human immunodeficiency virus reverse transcriptase (HIV RT) [96–98], 
whereas POLRMT cross-reacts with drugs against hepatitis C virus (HCV) RNA-depend-
ent RNA polymerase [99]. The main characteristic of nucleoside reverse transcriptase in-
hibitors (NRTIs) is the lack of 3′-OH group, which prevents further nucleotidyl-transfer 
reactions and acts as chain terminator for HIV RT. However, the earlier generation of nu-
cleoside analog inhibitors such as zalcitabine (ddC), didanosine (ddI), and stavudine 
(d4T) are particularly toxic to Pol γ because Pol γ is unable to discriminate against 2′,3′-
dideoxynucleotides (ddNTPs) and incorporates ddNTPs with nearly equal efficiency as 
the natural substrate, dNTPs [100,101]. The later generations of inhibitors displayed much 
reduced toxicity because the human polymerase appear to possess more stringent nucle-
otide selectivity toward nucleoside modifications than the viral counterpart [102]. Com-
pared to the HIV RT, Pol γ displays greater sensitivity and discrimination toward ribose 
modifications on NRTI. For example, 4′-ethynylstavudine (4′-Ed4T), which is a 4′-carbon-
substituted form of stavudine, effectively inhibit HIV RT with similar efficiency as stavu-
dine but with less cellular toxicity [103]. In pre-steady-state kinetic studies, stavudine was 
shown to be incorporated similarly to dTTP in both Pol γ and HIV RT, whereas 4′-Ed4T 
was highly discriminated (lower incorporation of nucleoside analog compared to regular 

W363

A359
E43

I367 S369

F478

R374

R265R313

D311

D509
Y508

P292

A318

P335

V507

T7 gp4 monomer
hTwinkle monomer

ssDNA

5’

3’

T7 gp4 CPD
hTwinkle CPD

T7 gp4 NTD

hTwinkle CPD

Subunit interface mutants

Domain interface mutants

a b

c

Figure 5. Twinkle disease-implicated mutations. (a) Linear depiction of Twinkle mutations implicated
in human diseases, adopted from [10], (b) subunit interface mutations (magenta), and (c) domain
interface mutations (purple), where Twinkle subunit is colored in cyan, T7 gp4 in grey, and single-
stranded DNA in red.

Structural analyses provide in-depth understanding of the defects of Twinkle mutants.
The oligomeric structure of wild-type Twinkle is regulated by salt concentration, Mg2+.
and ATP; the latter strengthens Twinkle’s hexameric ring configuration [45]. Using T7 gp4
hexameric structure from a replisome and AlphaFold2 [91], a hexameric human Twinkle
was constructed by superposition of the C-terminal helicase domain of the two proteins,
which provide a structural basis for analyses of the disease mutations.

One class of mutants is in the subunit interface. These include in-frame duplication
of amino acids 353–365, which caused large mtDNA deletion and familial parkinsonism
and ophthalmoplegia (PEO) [92], R374Q [93]; and mutations in the linker region (A359T,
I367T, S369P, R374Q and L381P), which reduce ATP hydrolysis and abolish DNA helicase
activity [94,95]. These disease mutants are located at the subunit interface (Figure 5b), and
their substitutions could disrupt subunit interface and alter the oligomeric states of the
helicase. Some disease-associated mutants that are not located on the subunit interface
in the predicted structure still altered oligomeric states, e.g., W318 induces formation of
heptamer and octamer [25,94]. The above mutants displayed altered Twinkle oligomeric
state, to distorted heptamer (R334Q) to mixture of hexamers, heptamers, octamers, and
monomers (P335L) [10,94]. The mutations imply that the maintenance of proper hexametric
structure is critical to its correct function.
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Another class of mutants are in the Twinkle NTD and CTD interface. Twinkle domain
interface is more extensive than that in T7 gp4. NTD mutants (R265C, A318T, R334Q, and
P335L) and CTD mutations (V507I and Y508C) are located at the domain interface, and their
interactions are potentially important in stabilizing the domain structures (Figure 5c). The
mutants manifested dysfunction, implying the functional necessity for domain interactions.

4. Pol γ and POLRMT as Drug Adverse Reaction Targets

Perhaps due to the homology to viral counterparts of mitochondrial DNA replication
and transcription machineries, among all human polymerases, Pol γ and POLRMT are
selectively inhibited by antiviral drugs. Pol γ cross-reacts with nucleoside analog drugs
designed against human immunodeficiency virus reverse transcriptase (HIV RT) [96–98],
whereas POLRMT cross-reacts with drugs against hepatitis C virus (HCV) RNA-dependent
RNA polymerase [99]. The main characteristic of nucleoside reverse transcriptase inhibitors
(NRTIs) is the lack of 3′-OH group, which prevents further nucleotidyl-transfer reactions
and acts as chain terminator for HIV RT. However, the earlier generation of nucleoside
analog inhibitors such as zalcitabine (ddC), didanosine (ddI), and stavudine (d4T) are partic-
ularly toxic to Pol γ because Pol γ is unable to discriminate against 2′,3′-dideoxynucleotides
(ddNTPs) and incorporates ddNTPs with nearly equal efficiency as the natural substrate,
dNTPs [100,101]. The later generations of inhibitors displayed much reduced toxicity
because the human polymerase appear to possess more stringent nucleotide selectivity
toward nucleoside modifications than the viral counterpart [102]. Compared to the HIV RT,
Pol γ displays greater sensitivity and discrimination toward ribose modifications on NRTI.
For example, 4′-ethynylstavudine (4′-Ed4T), which is a 4′-carbon-substituted form of stavu-
dine, effectively inhibit HIV RT with similar efficiency as stavudine but with less cellular
toxicity [103]. In pre-steady-state kinetic studies, stavudine was shown to be incorporated
similarly to dTTP in both Pol γ and HIV RT, whereas 4′-Ed4T was highly discriminated
(lower incorporation of nucleoside analog compared to regular nucleotide) by Pol γ while
showing similar incorporation efficiency as stavudine on HIV RT [104]. Another example of
ribose modification influencing nucleotide incorporation is zidovudine (AZT). Zidovudine
has 3′-substitution with azido group, replacing the 3′-OH. HIV RT incorporates zidovu-
dine only slightly less than dTTP, whereas Pol γ discriminated zidovudine by roughly
37,000-fold [105,106]. In addition, different nucleoside analogs show different excision rates
by the exonuclease activity [106,107]. Mutations in human Pol γ relaxed its selectivity and
increased its incorporation of nucleotide inhibitors [108]. A clinical study conducted with
AIDS patients revealed that patients with elevated drug toxicity carried significantly higher
Pol γ mutations, suggesting Pol γ genotype should be a critical factor in the treatment of
HIV infection. Thus, understanding the mechanisms behind differential incorporation and
excision of nucleoside analogs based on modifications and the effect of Pol γ mutations is
important for developing NRTI with reduced toxicity.

The success in the development of a cure for HCV infections is based on ribonucleoside
inhibitors. Unlike NRTI, ribonucleoside inhibitors contain 3′-OH and are non-obligate
chain terminators, yet they terminate HCV RNA-dependent RNA polymerase by sterically
hindering further elongation of RNA synthesis. Many ribonucleoside inhibitors exhibit
cross inhibition of POLRMT; interestingly, these inhibitors do not interact with Pol γ.
Considering abnormalities in mitochondria as prominent features of HCV clinical disease,
where ultrastructural changes, electron transport are altered, and excess reactive oxygen
species (ROS) are produced [109,110], reducing mitochondrial toxicity is fundamental to
successful anti-HCV drug design.

Although Pol γ and POLRMT are adverse reaction targets to antivirals, they are also a
good drug target for other diseases. For instance, inhibiting Pol γ with Congo red resulted
in reduced mitochondrial base-excision repair, which selectively suppressed MutL homolog
1 (MLH1)-deficient tumor growth [111]. Additionally, toxicity toward antivirals has been
taken advantage of to reduce tumor growth. Zalcitabine (ddC), one of the earlier NRTIs that
was later withdrawn due to high mitochondrial toxicity, preferentially inhibited mtDNA
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replication in acute myeloid leukemia (AML) cells with 10-fold less concentration of zal-
citabine required to inhibit mtDNA replication in HEK 293 cells [112]. Similarly, inhibiting
POLRMT with 2′-C-methyladenosine (2-CM), a potent inhibitor of HCV RNA-dependent
RNA polymerase that also targets POLRMT, reduced mitochondrial gene expression in
conjunction with AML tumor growth in a concentration-dependent manner [113]. Similar
trend was also observed in following cancer cells: chronic myelogenous leukemia, leukemic
monocyte lymphoma, non-Hodgkin lymphoma, and promyelocytic leukemia [113]. Inhibit-
ing mtDNA maintenance at replication, repair, or transcription level ultimately impairs
oxidative phosphorylation, which is detrimental to cancer cells.

Structural work on human Pol γ and POLRMT in complex with corresponding nucle-
oside inhibitors are scarce but necessary to complement the biochemical and kinetic data
available on antivirals to ultimately design nucleoside inhibitors with little-to-no toxicity.
This approach will also allow better design of antivirals to target drug-resistant mutants
that are still discriminated by human polymerases as we gain better knowledge of the
discrimination mechanism in each enzyme.

5. Concluding Remarks and Futures Perspectives

Mitochondrial genome integrity is essential for cellular energy supply, cell cycle, and
metabolism. Aberrant human mitochondrial replication has been associated with neurologi-
cal, muscular, and cardiovascular diseases, as well as aging. Mitochondrial gene replication
and transcription machineries possess combined features of that from prokaryotes and
eukaryotes. The unique combination diverges the mitochondrial system from its nuclear
counterpart. Future investigations are needed to reveal the unique mechanisms governing
human mitochondrial DNA replication, transcription, and maintenance. Specifically, the
synergy between Pol γ, Twinkle helicase, and single-stranded DNA binding protein in
DNA replication and the signals that switch DNA Pol γ between replication and repair,
and POLRMT between mRNA gene transcription and short RNA primers synthesis. The
functional condensation is reminiscent of that in prokaryotes. Perhaps for these reasons,
nucleoside/nucleotide analog antiviral drugs designed against viral polymerases are specif-
ically inhibitory to mitochondrial polymerases; the resulted drug toxicity imposes a major
hurdle for development of safe antiviral reagents.

Recent viral epidemics and pandemics imposed severe threats to public health. Ef-
fective and low-toxic antiviral drugs are in urgent need. Nucleoside/nucleotide analog
inhibitors are among the most effective antiviral reagents. Nevertheless, their efficacy must
be balanced with low toxicity to human mitochondrial polymerases. Understanding and
eventually eliminate drug toxicity are critical steps of drug design. Future structural and
functional studies of antiviral interactions with a viral polymerase should be combined
with the host enzymes to guide development of effective and low-toxic drugs.
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