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Abstract: An aneurysmal subarachnoid hemorrhage (aSAH) is a subtype of stroke with high mor-
bidity and mortality. The main causes of a poor prognosis include early brain injury (EBI) and
delayed vasospasm, both of which play a significant role in the pathophysiological process. As an
important mechanism of EBI and delayed vasospasm, oxidative stress plays an important role in
the pathogenesis of aSAH by producing reactive oxygen species (ROS) through the mitochondria,
hemoglobin, or enzymatic pathways in the early stages of aSAH. As a result, antioxidant therapy,
which primarily targets the Nrf2-related pathway, can be employed as a potential strategy for treating
aSAH. In the early stages of aSAH development, increasing the expression of antioxidant enzymes
and detoxifying enzymes can relieve oxidative stress, reduce brain damage, and improve prognosis.
Herein, the regulatory mechanisms of Nrf2 and related pharmacological compounds are reviewed,
and Nrf2-targeted drugs are proposed as potential treatments for aSAH.

Keywords: subarachnoid hemorrhage; oxidative stress; antioxidant therapy; Keap1-Nrf2 pathway;
brain injury

1. Introduction

Aneurysmal subarachnoid hemorrhage (aSAH) is a severe subtype accounting for
9.7% of strokes [1]. Despite being less common than ischemic stroke (IS) and intracerebral
hemorrhage (ICH), it mainly affects younger patients and leads to the loss of many years of
productive life [2]. When aSAH occurs, the direct toxic effect of heme on neuronal cells can
lead to oxidative stress, an inflammatory response, and neurological damage in patients,
usually with a poor prognosis. Survivors with cognitive impairments frequently experience
mood disorders, fatigue, long-term bed rest, comas, and even death [3]. There are still
many challenges related to the prevention of primary injury and secondary injury induced
by aSAH which must be overcome to achieve the best patient outcome.

Early brain injury (EBI) and delayed cerebral vasospasm (CVS) are the main patho-
physiological mechanisms of brain injury in aSAH. Additional investigations have been
conducted in light of its etiology, and it was found that oxidative stress plays a pivotal
role in the development of both types of pathophysiological process [4–6]. In the acute
phase of aSAH, blood components primarily enter the subarachnoid space, releasing oxy-
hemoglobin (oxyhb), which leads to mitochondrial dysfunction and overexpression of
peroxidase. This causes excessive reactive oxygen species (ROS) production that exceeds
the body’s antioxidant capacity, leading to EBI, including blood–brain barrier (BBB) dis-
ruption, neuroinflammation, and neuronal apoptosis, leading to long-term neurological
dysfunction [7]. In addition, oxidative stress can also result in degradation of the vas-
cular endothelium, leading to CVS and increasing the risk of delayed cerebral ischemia
(DCI). Recent studies have shown that delayed apoptosis, cortical diffusion ischemia,
microthrombosis, and microcirculatory disorders are also important causes of DCI [8].
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These components are linked together by neuroinflammation and oxidative stress damage
following aSAH.

As mentioned above, antioxidant therapy has important value in the treatment of
aSAH, including reducing ROS production and eliminating excessive ROS. As the key to
the antioxidant function of the body, the expression of antioxidant enzymes is related to
oxide content and regulated by different pathways. The nuclear factor-erythroid-2-related
factor 2 (Nrf2) and antioxidant response element (ARE) pathways plays pivotal roles in
the basal activity and corresponding induction of genes encoding several antioxidant and
phase II detoxifying enzymes and related proteins [9]. Hyperactivation of Nrf2 has been
shown to promote neurons survival and BBB protection in aSAH and improve long-term
prognosis [10]. Therefore, Nrf2-targeted therapy has considerable potential in the treatment
of aSAH. In this review, the research progress made in Nrf2 pathway-related drugs is
reviewed and summarized, and new insights are provided for the potential treatment of
antioxidant drugs.

2. The Mechanisms of Nrf2 Modulation

Nrf2 plays a vital role in maintaining cellular homeostasis, especially when cells
are exposed to oxidative stress [10]. Nrf2 target genes include antioxidant enzymes and
detoxification enzymes such as heme oxygenase-1 (HO-1), glutathione S-transferase (GST),
NADP(H), and quinine oxidoreductase (NQO) [11]. In animal models of aSAH, the Nrf2
is activated and enhanced in the brain, and Nrf2 activation can reduce oxidative stress,
neuroinflammation, and BBB disruption [7]. Several Nrf2 inducers have been reported,
and the mechanisms of Nrf2 activation include the classical Keap1-dependent pathway as
well as the Keap1-independent pathway [9]. Clarification of the regulation of Nrf2 will
help further our understanding of cellular defense mechanisms against oxidative stress
and may highlight potential Nrf2-targeted therapies for aSAH.

2.1. Keap1-Dependent Regulation

Keap1 is the main mechanism responsible for the regulation of Nrf2 [12]. This pro-
tein has 624 amino acids with three functional domains, including the broad complex/
tramtrack/bric-a-brac (BTB) domain, the intervening region (IVR), and the double glycine/
Kelch domain [9]. There are also more than 20 free sulfhydryl groups in the constituent
cysteine residues of the BTB and IVR domains. These highly reactive functional groups act
as stress sensors, and various oxidative stresses can modify these residues [13,14]. The BTB
domain is responsible for the dimerization of the two Keap1 molecules, while the Kelch
repeat contains regions that are responsible for binding Nrf2. BTB and Kelch domains are
connected via the IVR domain and regulate the activity of Keap1 [9]. Nrf2 contains 605
amino acids divided into seven domains (Neh1-7). Among them, the Neh2 domain at the
N-terminal is the main regulatory domain [15]. The Neh2 domain includes seven lysine
residues and two binding sites (ETGE and DLG motifs), which are the main binding sites
with Keap1, and it participates in the ubiquitination regulation of Nrf2 [16].

Under normal conditions, Keap1 binds to the Neh2 domain of Nrf2 in the cytoplasm
and promotes ubiquitin-dependent degradation, thereby maintaining Nrf2 at low levels and
preventing constitutive activation of oxidative stress [9]. Each Kelch domain of the Keap1
homodimer is linked to the Nrf2 protein by a low-affinity DLG motif and a high-affinity
ETGE motif, with the former having 1/100 of the affinity of the latter [15]. The hinge and
latch hypothesis proposes that the ETGE binding site acts as a hinge, while the DLG binding
site acts as a latch [16]. When bound at both sites, Nrf2 is perfectly positioned to undergo
ubiquitination and subsequent proteasome degradation via the 26S proteasome [9]. When
in a state of oxidative stress, the cysteine residue of Keap1 is modified, and this modification
causes conformational changes in the protein, resulting in the release of Nrf2 from the
low-affinity site and disturbing the transfer of ubiquitin [9]. Thus, the degradation of Nrf2
is reduced and free Nrf2 accumulates in the cytoplasm. Subsequently, Nrf2 translocates
into the nucleus and binds to ARE, activating the transcription of antioxidant genes. As an
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oxidative stress sensor, Keap1 opens up many opportunities to explore the importance of
the role of its residues in the regulation of the Nrf2 pathway.

2.2. Keap1-Independent Regulation

Although Keap1 plays a dominant role in regulating Nrf2, there is substantial evi-
dence that there are alternative mechanisms used to activate Nrf2 that are independent of
Keap1 [17]. The expression and function of Nrf2 can be regulated at multiple levels, includ-
ing transcriptional, post-transcriptional, protein modification, and subcellular localization.
The promoter region of Nrf2 contains DNA binding sites (ARE/XRE), which means that
Nrf2 can activate its own expression to form a positive feedback loop, thereby enhancing
the cell’s defense against oxidative stress [18]. The miRNAs are also involved in the regula-
tion of Nrf2 protein expression. Studies have shown that mi-144 is negatively correlated
with Nrf2, and miR-144 overexpression can decrease the Nrf2 level, reduce glutathione
regeneration, and alter the antioxidant capacity of cells [19]. In addition, Nrf2 contains
many serine, threonine, and tyrosine residues, and phosphorylation of these residues by
various kinases can also regulate the exclusion and degradation of Nrf2. Several kinase
pathways that are involved in the regulation of Nrf2 have also been identified. Rojo et al.
found that nordihydroguaiaretic acid (NDGA) activates Nrf2 via MAPK and PI3K path-
ways and identified GSK-3β as an integrator of these pathways and a gatekeeper of Nrf2
stability at the Neh6 phosphorylation level [20]. Huang et al. found that PKC-catalyzed
phosphorylation of Nrf2 at Ser-40 is a critical signaling event leading to ARE-mediated
cellular antioxidant response [21].

3. Nrf2 Activator in the Treatment of aSAH

Nrf2-related aSAH drugs mainly exert their neuroprotective effects by upregulating
Nrf2 expression through the Keap1-dependent or Keap1-independent pathway (Figure 1).
When activated, Nrf2 is transferred from the cytoplasm to the nucleus. It further initiates
gene expression; increases the expression of antioxidant enzymes and detoxification en-
zymes such as HO-1, GST, NQO, UGT, γ GCS, SOD, etc.; reduces oxidative stress and
neuroinflammation; reduces the disruption of the BBB; and improves EBI [22]. At the same
time, studies have shown that Nrf2-related pathways can enhance mitophagy and reduce
oxidative stress. Upregulation of Nrf2 in endothelial cells can improve vasospasm and
reduce the occurrence of DCI. In addition, studies have also shown that Nrf2-related drugs
can improve cognitive impairment after aSAH and have certain values for the long-term
prognosis of patients with aSAH [23].

3.1. Compounds Activate Nrf2 through the Keap1-Dependent Pathway

Under basic conditions, Nrf2 is isolated in the cytosol by the Keap1 homodimer, which
promotes ubiquitination of Nrf2 and proteasome degradation. When cells are damaged
by chemical or oxidative stress, Keap1 leads to the release of Nrf2 from a Keap1 molecule
through conformational changes mediated by its reactive cysteine residues. Nrf2 can no
longer be ubiquitinated and degraded, so Keap1 is completely saturated by Nrf2, allowing
newly synthesized Nrf2 to accumulate and transport to the nucleus [17]. Pharmacological
activation of Nrf2 by various compounds such as allyl sulfides, dithiophenones, flavonoids,
isothiocyanates, polyphenols, and triterpenes has been proposed to prevent many diseases
related to oxidative stress (Table 1). In the past, there have been many studies on the mech-
anism of Nrf2 in treatment of various cancers, such as breast cancer [24–28], but the impact
of Nrf2 modulation in the treatment of SAH has not been deeply studied. In recent years,
researchers have further studied the therapeutic intervention value of Keap1-dependent
Nrf2 expression regulatory compounds for aSAH. Moreover, animal studies have shown
that implementing drug regulation of Keap1 to increase Nrf2 expression can not only
improve the prognosis of aSAH in the acute phase but can also improve the long-term
prognosis. Various Keap1-dependent Nrf2 activators have been studied in the treatment of
aSAH, including aloperine (ALO), andrographolide (Andro), astaxanthin (ATX), oleanolic
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acid (Oleanolic), sulforaphane, dimethyl fumarate, and tert-butyl hydroquinone [23,29–34].
After the onset of aSAH, these treatments mainly follow the Keap1-Nrf2-ARE pathway
and regulate the antioxidant enzymes and detoxification enzymes associated with aSAH,
increasing the expression of antioxidant enzymes and detoxification enzymes such as
heme oxygenase-1 (HO-1), glutathione S transferase (GST), NADP (H), and quinine ox-
idoreductase (NQO), and then inhibiting EBIs caused by high levels of ROS production
in aSAH.
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Figure 1. Mechanisms of Keap1-dependent and Keap1-independent pharmacological modulation of
Nrf2 in aSAH. Created by Figdraw. (Sal B: salvianolic acid B; ISL: isoliquiritigenin; ALO: aloperine;
Andro: adrographolide; ATX: astaxanthin; MF: mangiferin; EPO: erythropoietin; SAL A: salvianolic acid
A; MDF: dimethyl fumarate; tBHQ: tert-butyl hydroquinone; LUT: luteolin; AS-IV: astragaloside; SAH:
subarachnoid hemorrhage; ROS: reactive oxygen species; Nrf2: nuclear factor erythroid 2-related factor
2; Keap 1: kelchlike ech-associated protein 1; PHB2: prohibitin2; OPA1: optic atrophy 1; SIRT1: sirtuin 1;
HO-1: heme oxygenase-1; NQO-1: quinine oxidoreductase-1; SOD: superoxide dismutase).

It should be noted that, in addition to interfering with the expression of related
antioxidant enzymes and detoxification enzymes, studies have shown that some Nrf2
inducers acting on the Keap1-dependent pathway can improve cerebral vasospasm after
aSAH [35]. When oleanolic acid RTA408 was administered in mice with early aSAH, it
alleviated the inhibition of Nrf2 expression in the basilar artery induced by aSAH and
inhibited the expression of NF-κ B and iNOS in the basilar artery of mice after aSAH, and
then alleviated cerebral vasospasm [35]. Moreover, RTA408 can reduce the inflammatory
response in the hippocampus after aSAH. Whether this is related to the long-term cognitive
impairment of aSAH patients still requires further investigation. In addition, it has been
proven that erythropoietin EPO can also activate the Keap1-Nrf2-ARE pathway. For the
animal model of aSAH, erythropoietin EPO promotes the production of endothelial nitric
oxide NO from vascular endothelium, promotes the activation of Nrf2, and alleviates the
cerebral vasospasm after aSAH [36,37].

In addition to suppressing CVS, the regulation of mitochondrial function has also
been one of the focuses of research on prognosis interventions for aSAH in recent years.
Mitoquinone (MitoQ) is a mitochondrial-targeted drug [38,39], which can better prevent
mitochondrial dysfunction than non-targeted antioxidants. Previous studies have shown
that MitoQ can alleviate vascular calcification through the Keap1-Nrf2-ARE pathway [40],
which proves that Nrf2 is one of the targets of MitoQ in vivo therapy. Early breakdown of
the BBB in aSAH is one of the important mechanisms leading to poor prognosis in aSAH
patients [41,42]. Recent studies have shown that mitochondrial dysfunction is the potential
cause of BBB breakdown in early brain injury [43], and mitochondrial improvement can
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prevent neurological deficit after aSAH [44,45]. Therefore, MitoQ has stronger pertinence
for EBI treatment after aSAH. Nrf2 has been identified as the main target of BBB destruction
in various diseases and aSAH models [39,46], and prohibitin2 (PHB2) is a receptor located
in the inner membrane of mitochondria, which is related to mitochondrial dynamics [47,48].
Optic atrophy 1 (OPA1), a protein downstream of PHB2, may improve mitochondrial fusion
in the central nervous system, thus playing a neuroprotective role in neurodegeneration [49],
and it has been demonstrated that Nrf2 and PHB2 genes are combined and expressed [50].
This experiment proves that MitoQ can weaken the BBB destruction of EBI after aSAH
and improve neurological function injury through the Nrf2-PHB2-OPA1 pathway. MitoQ
can promote mitophagy through the Keap1-Nrf2-PHB2 pathway, reduce neuronal death
related to oxidative stress, and improve brain injury after aSAH [51]. Therefore, promoting
mitophagy through the Keap1-Nrf2-PHB2 pathway and then reducing ferroptosis after
aSAH may be the main mode of action of Nrf2-related drugs.

EBI following aSAH results in early neurological impairment, and the majority of
aSAH patients experience long-term cognitive impairments, which cause the poor prog-
nosis in the late stage. DMF and tBHQ are Nrf2 pathway-related medications that can
lessen post-aSAH cognitive impairment. In addition to the increase in antioxidant enzyme
expression against ROS overproduction, iron deposition and lipid peroxide accumulation
are inhibited, thus inhibiting the ferroptosis process. It is conceivable that medications
targeting the Nrf2 pathway may enhance the cognitive performance of aSAH patients via
the Keap1-Nrf2-PHB2 pathway, since the improved mitochondrial function can prevent
neurological impairment after aSAH. Drugs targeting the Nrf2 pathway not only allevi-
ate EBI following aSAH but also potentially treat progressive cognitive dysfunction in
aSAH patients. Additional research is still required to determine the precise therapeutic
effect and whether there are any other therapeutic targets besides the enhancement of
mitochondrial function.

Therefore, Keap1-dependent-Nrf2-modulating compounds mainly improve the EBI
and functional prognosis after aSAH in three different ways: (1) regulation of antioxidant
enzyme expression, (2) regulation of mitochondrial function, and (3) inhibiting vasospasm
after aSAH.

Table 1. Compounds directly acting on Keap1-dependent regulation signaling pathway and their
therapeutic effects.

Compounds Brief Introduction Therapeutic Effects Literature

Aloperine (ALO) Isolated from the legume
plant Sophora alopecuroides L.

Upregulates the expression of Nrf2 and
improves oxidative stress during EBI. [29]

Andrographolide (Andro)

A diterpenoid of the labdane
family extracted from the

Asian plant
Andrographis paniculate.

Increases HO-1 expression and improves
oxidative stress during EBI. [30]

Astaxanthin (ATX) A carotenoid widely present
in algae and aquatic animals.

Increases the expression of antioxidant
enzymes and detoxification enzymes such as

HO-1, NQO-1, and GST-α 1.
[31,52–55]

Oleanolic Oleanolic botanical
triterpenoids

Increases HO-1 expression and inhibits
ROS production [32]

Sulforaphane - Inhibits neuroinflammation and alleviates
cerebral vasospasm after aSAH [33]

Dimethyl fumarate (DMF) -
Alleviates oxidative stress and

neuroinflammation through the
Keap1-Nrf2-ARE pathway

[34]

Tert-butyl hydroquinone
(tBHQ) -

reduces EBI after experimental aSAH by
enhancing Nrf2-independent autophagy, in
addition to activating Keap1-Nrf2 signaling

pathway, and improves cognitive dysfunction.

[23,56]
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Table 1. Cont.

Compounds Brief Introduction Therapeutic Effects Literature

RTA408
The second-generation

semi-synthetic oleanane
triterpenes

Alleviates the inhibition of Nrf2 and the
expression of NF-κB and iNOS in the basilar

artery induced by aSAH; alleviates vasospasm;
enhances the antioxidant and

anti-inflammatory effects of the Nrf2-ARE
pathway, and finally reduces the apoptosis

induced by aSAH; improves CVS, and
secondary brain injury

[35]

MitoQ - Alleviates vascular calcification and enhances
mitochondrial autophagy [40,57]

Melatonin N-acetyl
5-methoxytryptamine

Induces mitochondrial autophagy and reduces
oxidative stress injury in aSAH through the

Nrf2-ARE pathway
[58]

Mangiferin (MF) A natural C-glucoside flavone

Increases HO-1 expression through the
Nrf2-related pathway and inhibits neuronal

apoptosis and neuroinflammation
induced by ROS.

[59]

Erythropoietin (EPO) -
Increases the expression of HO-1 and promotes

the production of NO in the vascular
endothelium, reducing CVS.

[60,61]

Salvianolic acid A Components of Salviae
Miltiorrhizae Bunge

Alleviates oxidative stress and
neuroinflammation in acute aSAH by

regulating the Nrf2-ARE pathway, and
alleviates EBI

[39]

Luteolin (LUT) Flavonoids are widely found
in vegetables and fruits

Inhibits the activation of NLRP3 inflammatory
corpuscles, which may depend on the

upregulation of the Nrf2 signaling pathway
[62]

Astragaloside IV (AS-IV)

A newly found glycoside of
cycloartane-type triterpene, is

the effective component
extracted from

Astragalus membranaceus

Inhibits ferroptosis in aSAH by activating
Nrf2/HO-1 pathway and increasing the levels

of GSH, GPX4, and SLC7A11
[63]

(EBI: early brain injury; HO-1: Heme oxygenase-1; NQO-1: quinine oxidoreductase-1; GST-α1: glutathione-S-
transferase α1; CVS: cerebral vasospasm; ROS: reactive oxygen species; NLRP3: nucleotide-binding oligomer-
ization domain (NOD)-like receptor family pyrin domain containing 3; NO: nitric oxide; Nrf2: nuclear factor
erythroid 2-related factor 2; Keap 1: kelchlike ech-associated protein 1; GSH: Glutathione; GPX4: glutathione
peroxidase 4; SLC7A11: solute carrier family 7 member 11).

3.2. Compounds Activate Nrf2 through the Keap1-Independent Pathway
3.2.1. AMPK-PGC1α-Nrf2 Pathway

AMP-activated protein kinase (AMPK) is a major regulator of cellular energy
metabolism and is involved in epigenetic modifications that control cell differentiation [64],
which can be activated by bioactive compounds such as resveratrol and polyphenol-rich
foods [65–67]. PGC-1α is a downstream molecule of AMPK that is primarily involved in
mitochondrial biogenesis [68,69]. Recent studies have found that PGC-1α is associated
with various inflammatory and metabolic diseases [70]. Phosphorylation of PGC1 α is
an important index of AMPK signaling pathway activation, which is a bridge between
the AMPK and Nrf2 signaling pathway [71]. PGC1α can activate transcription factors
such as Nrf2 and reduce mitochondrial ROS production, thereby reducing oxidative stress
injury [72]. Since mitochondria are the main source of ROS after aSAH, modulating the
AMPK-PGC1α-Nrf2 pathway has great potential in the treatment of aSAH (Table 2).

The neuroprotective effects of puerarin have been demonstrated in a variety of central
nervous system disorders, including Parkinson’s disease [73], Alzheimer’s disease [74],
acute spinal cord injury [75], and cerebral ischemic injury [76,77]. Following aSAH, blood
cell degradation products (such as heme) can activate oxidation and lipid peroxidation,
thereby triggering ferroptosis [78], which is one of the important pathophysiological mech-



Molecules 2023, 28, 1747 7 of 13

anisms of EBIs in aSAH [79,80]. Recent studies have shown that puerarin can improve
short-term (24 h) and long-term (26 days) neurological deficits after aSAH, primarily
through the AMPK-PGC1α-Nrf2 signaling pathway, to alleviate oxidative stress-induced
ferroptosis [81].

Interestingly, in the study of the effects of puerarin on oxidative stress injury and
photoaging of human fibroblasts induced by UVA radiation, it was found that puerarin
can increase the level of antioxidant enzyme mRNA through Keap1-dependent signaling
pathway, thus improving the antioxidant capacity of cells, and it can successfully elimi-
nate reactive oxygen species (ROS) and malondialdehyde (MDA) induced by UVA [82].
Therefore, puerarin may regulate antioxidative stress through both Keap1-independent and
Keap1-dependent signaling pathway, but whether puerarin plays a role in aSAH treatment
through Keap1-dependent signaling pathway remains to be further studied.

Table 2. Compounds acting on Keap1-independent regulation signaling pathway and their therapeu-
tic effects.

Pathway Compounds Brief Introduction Therapeutic Effects Literature

AMPK-PGC1α-Nrf2 Puerarin

A type of flavonoid
glycoside, extracted
from the pueraria

lobata root

Alleviates oxidative stress and iron
death after aSAH, and improves

neurological functions
[81]

SIRT1-Nrf2
Salvianolic acid B

A natural polyphenolic
compound extracted

from Salvia miltiorrhiza

Inhibits ROS overproduction induced
by aSAH, and increases SOD

and GSH levels
[83]

Isoliquiritigenin The natural flavonoids
extracted from licorice

Increases the expression of HO-1,
NQO-1, and SOD [84]

(HO-1: Heme oxygenase-1; NQO-1: Quinine oxidoreductase-1; SOD: Superoxide dismutase; GSH: glutathione).

3.2.2. SIRT1-Nrf2-ARE Pathway

Silent information regulator 2 homolog 1 (SIRT1) is a well-studied member of the
Sirtuins family. It is widely expressed in the CNS, is also involved in the maintenance of
physiological brain functions, and exhibits neuroprotective and anti-inflammatory effects in
many neurodegenerative diseases [85,86]. Bidirectional crosstalk between SIRT1 and Nrf2
has been reported in human renal proximal tubular and glomerular mesangial cells [87,88].
Nuclear localization of Nrf2 is increased by SIRT1 through suppression of p53 in human
mesenchymal stem cells [89]. It has been reported that melatonin can restore SIRT1 activity
in the rat brain and protects brain from LPS-induced brain injury by activating SIRT1/Nrf2
signaling pathways [90]. More and more evidence has shown that SIRT1 activation can
improve brain injury after aSAH and plays a key role in regulating the Nrf2 signaling
pathway [91–94]. Salvianolic acid B is a nicotinamide adenine dinucleotide-dependent
deacetylase and an effective SIRT1 activator [57,58], which is related to a variety of cell
functions. In the past, the therapeutic mechanism of salvianolic acid B in aSAH has been
unclear. Recently, the researchers found that the therapeutic effect of salvianolic acid B on
EBI caused by aSAH largely depended on the upregulation of the Nrf2 signaling pathway,
which was partly achieved by enhancing SIRT1 activation, rather than directly by regulating
Keap1 [95,96].

Similarly, isoliquiritigenin (ISL) can improve EBI caused by aSAH through the Keap1-
independent pathway. It has been proved that Isoliquiritigenin (ISL) has a strong an-
tioxidant effect and prevents oxidative stress-related diseases [97,98]. In central nervous
system (CNS) diseases, ISL has also been found to play a brain-protective role and it
improves cognitive impairment in various acute brain injuries and neurodegenerative
diseases [99–101]. In addition, ISL can penetrate the BBB and directly influence the central
nervous system [100]. In this study, the mechanism of isoliquiritigenin in EBI caused by
aSAH was further studied, and it was proved that ISL mediated brain protection through
SIRT1 and increased the expression of Nrf2. At the same time, because of its high perme-
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ability through the BBB, it has a more potent effect on the central nervous system, which
provides it with better clinical application potential. In addition, in the drug treatment
of acute liver failure, studies have proved that isoliquiritigenin can improve the ability
of antioxidant stress and reduce both inflammatory reaction and apoptosis by activat-
ing PGC1-α/Nrf2 signaling pathway, which provides the possibility of treating acute
liver failure [102]. Therefore, isoliquiritigenin and puerarin have the ability to regulate
PGC1-α/Nrf2 signaling pathway, while isoliquiritigenin has the potential to regulate Nrf2
through various Keap1-independent signaling pathways. Whether isoliquiritigenin can
play a regulatory role through the PGC1-α/Nrf2 signaling pathway in aSAH treatment has
yet to be definitively proven and requires additional research.

In summation, the Keap1-independent Nrf2 regulatory compounds and Keap1-
dependent Nrf2 regulatory compounds have similar effects on EBI after aSAH; both mainly
upregulate the expression of antioxidant enzymes and detoxification enzymes. It is impor-
tant to emphasize that some compounds, such as melatonin, can regulate Nrf2 expression in
both Keap1-dependent and Keap1-independent ways. As previously mentioned, melatonin
can improve EBI in aSAH through the Keap1-Nrf2-ARE pathway. In addition, studies have
reported that melatonin can also reduce LPS-induced acute depressive-like behavior and
microglial NLRP3 inflammasome activation through the SIRT1-Nrf2 pathway. Therefore,
whether melatonin can also improve EBI after aSAH through the SIRT1-Nrf2 pathway and
the specific mechanism of its regulation of Nrf2 are in need of further study.

4. Conclusions and Future Directions

In summary, when Nrf2 is used as a therapeutic target for aSAH: (1) it enhances
the expression of antioxidant enzymes and detoxification enzymes mainly through the
Nrf2-ARE pathway; (2) it can also enhance the metabolic efficiency of mitochondria and
reduce the production of oxidative stress; and (3) it not only reduces the EBIs, but also
improves cognitive function in the long term.

EBIs following aSAH leads to early neurological impairments, and most patients with
aSAH also experience long-term cognitive impairment, which makes for a poor prognosis
in the late stage. Nrf2 pathway targeted drugs can not only alleviate EBIs after aSAH, but
also have the potential to treat chronic progressive cognitive dysfunction in patients with
aSAH. Additional clinical studies are still needed to determine the short- and long-term
efficacy of Nrf2 activators in patients with aSAH.

Nrf2 is a master regulator of a complex biological network of molecules and enzymes
implicated in the regulation of antioxidant, drug metabolism, anti-inflammation, detox-
ification, and free radical scavenging. Targeting the Nrf2 pathway and reducing ROS
levels is one potential neuroprotective strategy that may be implemented after aSAH. Since
mitochondria are the main source of oxidative stress after aSAH, it is important to further
study the regulatory mechanism of Nrf2 on mitochondrial function. Extensive research on
various Nrf2 inducers and their different mechanisms of action could be fundamental to
the design of more effective antioxidants. Complex drug, pharmacological and surgical
combinations, or therapeutic interventions involving two or more different systems may be
viable future therapies.
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