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Abstract: To avoid problems associated with the storage and processing of newly developed potential
medicines, there is a need to carry out thermal studies in the preclinical phase of drug develop-
ment. The thermal behaviour and decomposition pathway of a whole novel class of patented
potential molecular pharmaceutics, i.e., ethyl 2-[4-oxo-8-(R-phenyl)-4,6,7,8-tetrahydroimidazo[2,1-
c][1,2,4]triazin-3-yl]acetates (1–6) were reported for the first time in inert and oxidative atmospheres.
The experiments were conducted with the use of simultaneous thermogravimetry/differential scan-
ning calorimetry (TG-DSC) and simultaneous thermogravimetry coupled with Fourier transform
infrared spectroscopy (TG-FTIR). The decomposition pathways of compounds 1–6 were found to be
different under oxidative and inert conditions. It was proven that the investigated molecules reveal
higher thermal stability under a synthetic air atmosphere than under a nitrogen atmosphere, and their
decomposition is preceded by the melting process. Among all the investigated compounds, only the
meta-chloro derivative (4) was found to exhibit interesting polymorphic behaviour at a low heating
rate (10 ◦C min−1). It was proven that the oxidative decomposition process of the studied molecules
proceeds in three overlapping stages accompanied by strong exothermic effects. Additionally, it was
concluded that the title compounds were stable up to a temperature of 195–216 ◦C in an atmosphere
of synthetic air, and their thermal stability decreased in the order of R at the benzene ring: 4-CH3 >
3,4-Cl2 > 4-Cl > H > 2-OCH3 > 3-Cl.

Keywords: annelated triazinylacetic acid ethyl esters; anticancer agents; thermal stability; thermal
behaviour; thermal degradation course; TG-DSC; TG-FTIR

1. Introduction

Esters are commonly used in medicine because, as less polar compounds than car-
boxylic acids, they more easily penetrate cell membranes and thus are more bioavail-
able [1]. Ethyl esters of 2-[4-oxo-8-(R-phenyl)-4,6,7,8-tetrahydroimidazo[2,1-c][1,2,4]triazin-
3-yl]acetic acid (1–6) (Figure 1) belong to an important class of heterocyclic compounds
with the protected acetic acid function as an acetic acid ethyl ester. The title molecules
containing the same privileged scaffold and ester functional group are known due to their
disclosed medical application as possible anticancer agents [2]. They are of particular
significance in the treatment of human multiple myelomas, both resistant and susceptible
to thalidomide, and human tumours of the breast and cervix [2,3]. The most selective
and, therefore, the best in this class of small molecules is ethyl 2-[8-(3-chlorophenyl)-4-oxo-
4,6,7,8-tetrahydroimidazo[2,1-c][1,2,4]triazin-3-yl]acetate (4), which is capable of evoking
significantly higher necrosis rates in tumour than in normal cells [3]. The investigated com-
pounds have been developed as potential ester prodrugs that should cross cell membranes
(including the blood–brain barrier) better than their more polar structural congeners with
the acetic acid functional group [4]. An adsorptive stripping voltammetric procedure for
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the quantitative determination of the most selective anticancer agent (4) has been devel-
oped and reported as the first analytical method with potential applicability in clinical
analytics [5].
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Figure 1. Structures of the studied compounds: 1. R = H, 2. R = 4-CH3, 3. R = 2-OCH3, 4. R = 3-Cl, 5.
R = 4-Cl, 6. R = 3,4-Cl2.

Thermal analysis methods are commonly used tools for the characterisation of phar-
maceutical raw materials, chemical compounds with potential therapeutic properties and
drugs approved for use. Due to the specific application of heterocyclic compounds used in
pharmacy, understanding the impact of temperature on their properties is an important
research task. Knowledge about the thermal behaviour of molecular pharmaceuticals
provides valuable information about the compounds, such as the purity, thermal stability,
degree of solvation, decomposition mechanisms or their degradation products. Thermal
analysis methods also allow for the study of crystallisation and melting processes, which
are crucial for the detection of polymorphic forms of the compound, which, as is known,
may exhibit distinct biological activities [6–8]. Furthermore, the DSC measurements are em-
ployed to study phase change materials [9–11] that are widely used in various engineering
applications.

The thermolysis, stability in inert and oxidative conditions and decomposition prod-
ucts of structurally diverse and pharmaceutically important classes of molecules bearing
the ester functional group/groups have been previously investigated and disclosed [12–16].
In addition, the thermal decomposition mechanism in an important class of potential an-
ticancer agents, i.e., diethyl butanedioates bearing the imidazolidine template, has been
previously explained [12].

However, none of these papers concerned molecules such as our patented, published
and potentially useful in clinical analytics ethyl 2-[4-oxo-8-(R-phenyl)-4,6,7,8-tetrahydroimidazo
[2,1-c][1,2,4]triazin-3-yl]acetates (1–6) [2–5], whose thermal behaviour is described for the
first time in detail in the current paper. As the thermal properties and thermal degradation
mechanism of the title class of possible new anticancer agents with prospective medical
use (1–6) are unknown, the main goal of the present investigation is to determine their
thermal stability as well as thermal behaviour under oxidative and inert atmosphere condi-
tions. This article focuses on the thermostability determination of candidates for medical
applications belonging to a novel class of functionalised heterocycles by investigating
their thermal degradation pathways and tries to explain the relationships between the
structure and thermal stability of the analysed compounds. This paper also describes the
thermal degradation mode of the title compounds, showing the degradation products
(including gaseous ones). Therefore, the obtained knowledge about the range of thermal
stability and thermal properties of the molecules recruited is important and will be helpful
in a further evaluation of these possible pharmaceutics that are in the preclinical phase of
drug development.

2. Results and Discussion

The structures of the investigated molecules 1–6 are given in Figure 1. The thermal
behaviour of all the compounds was determined in oxidative (an air atmosphere) as well as
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in inert (a nitrogen atmosphere) conditions. The thermal properties of these patented drug
candidates are presented for the first time. The results presented in this study are essential
for the further characterisation of this new class of potential pharmaceutics.

2.1. Thermal Behaviours of Compounds 1–6 in an Oxidative Atmosphere

The simultaneous thermogravimetry (TG) and differential scanning calorimetry (DSC)
methods were applied for the determination of the thermal properties of the investigated
heterocyclic esters (1–6) in an oxidative atmosphere. It was found that all the compounds
are thermally stable under an air atmosphere, and their thermal stability increases in the
order: 4 (195 ◦C) < 3 (197 ◦C) < 1 (200 ◦C) < 5 (206 ◦C) < 6 (211 ◦C) < 2 (216 ◦C), taking
into account their mass changes during heating (Figure 2 and Table 1). This thermal
property would be very important in the case of approval of the investigated molecules
as pharmaceutics. It was proven that for medicines stable at temperatures much higher
than ambient temperature, changes in storage temperature in the range from 20 ◦C to 45 ◦C
have practically no impact on their shelf life [17,18].
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Table 1. Thermal data for compounds 1–6 (an air atmosphere).

Sample

Melting Process Decomposition Process

Tonset
[◦C]

Tpeak
[◦C]

∆Hm
[kJ·mol−1]

Step 1 Step 2 Step 3

∆T1 [◦C] ∆m1 [%] ∆T2 [◦C] ∆m2 [%] ∆T3 [◦C] ∆m3 [%]

1 172 175 26.31 200–328 23.26 328–484 27.33 484–718 48.71
2 202 206 24.87 216–338 23.70 338–502 27.48 502–765 48.72
3 172 177 29.90 197–315 20.55 315–454 25.33 454–692 54.09

4 131
143

135
147

6.75
11.36 195–336 21.83 336–476 28.25 476–705 49.87

5 172 176 25.21 206–339 22.57 339–448 23.13 448–680 54.18
6 171 176 19.79 211–324 16.04 324–450 27.22 450–671 56.65

Tonset—onset temperature of endothermic effect; Tpeak—melting peak temperature; ∆Hm—melting enthalpy; ∆T1,
∆T2, ∆T3—temperature ranges of decomposition stages; ∆m1, ∆m2, ∆m3—mass losses.

The melting enthalpy (∆Hm) values received in oxidative conditions are in the range
from 6.75 kJ mol−1 to 29.90 kJ mol−1 (Table 1). The highest ∆Hm value was seen for
compound 3 containing the 2-OCH3 substituent at the benzene ring. Additionally, it was
found that the replacement of a hydrogen atom at the benzene ring by the 4-CH3 group or
by one or two chlorine atom/atoms leads to a decrease in the ∆Hm values. This means that
less heat energy is required to convert a mole of a solid at its melting point into a liquid
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without an increase in temperature for compounds 2, 4, 5 and 6 as compared to the heat
energy evaluated for the parent compound (1).

At higher temperatures, three main stages of decomposition could be distinguished on
the TG curves (Figure 2). The first mass loss of 16.04–23.70% for all the compounds (1–6) was
recorded in the first stage of their decomposition in the temperature range of 195–339 ◦C. All
the resulting intermediates were unstable and underwent further decomposition processes.
The second stage of decomposition took place in the temperature range of 315–502 ◦C. The
corresponding mass losses were slightly higher at 23.13–27.48%. The last step of compounds’
degradation occurred at a temperature above 448 ◦C, and it was accompanied by significant
mass losses in the range of 48.71–56.65%. The final decomposition temperature, where a
plateau on the TG curve occurred, was in the range of 671–765 ◦C (Table 1). From the above
data, it is evident that compound 2 is the most thermally stable, as its molecule degrades at
the highest temperature.

DSC analysis was performed simultaneously with the recording of TG curves. The
results obtained from the application of this method allowed for a better understanding of
the temperature influence on the physicochemical properties of the investigated compounds
as well as the mechanism of their decomposition. Heating the compounds resulted in the
melting process, which takes place before their degradation. The DSC curves recorded in
the temperature range of 125–230 ◦C showed one sharp endothermic peak for compounds
1–3 and 5–6, while two endothermic effects for compound 4 were noticed (Figure 3). The
previous 1H NMR, 13C NMR, HPLC and electrochemical investigations [2–5] confirm that
compound 4 is a homogeneous substance of high purity, so the attendance of the two peaks
on the DSC curve cannot be due to its contamination.
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800 ◦C and (b) in the temperature range of 125–230 ◦C. HF – heat flow.

The fact that the solid–liquid (melting) phase transition for the majority of tested
compounds (1–3 and 5–6) was described by one sharp DSC peak testifies to their high
purity. This is a favourable thermal property, and these anticancer active compounds
are expected to have higher physical and chemical stability compared to amorphous
substances. The parent structure 1—which does not contain a substituent attached to
the phenyl moiety—exhibits the melting temperature (Tpeak) at 175 ◦C. Replacing the
hydrogen atom at the benzene ring by a methyl group, methoxy substituent or one/two
chlorine atom/atoms causes an increase in the melting temperature (except in the case of
compound 4). The highest melting point occurs for molecule 2 with an electron-donating
methyl group in the para position (Tpeak = 206 ◦C). For molecules such as compound 3 (the
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ortho-OCH3 derivative), 5 (the para-Cl derivative) and 6 (the meta, para-Cl2 derivative), the
melting point increase is slight (by 1 and 2 ◦C) compared to parent structure 1 (Table 1).
An interesting melting behaviour was observed for compound 4. The DSC curve of this
compound exhibits two endothermic effects (Tpeak = 135 ◦C and 147 ◦C, the second of
which is more acute), as can be seen in Figure 3b. They are probably related to the two
polymorphic forms (A and B) of the meta-Cl derivative, which are shown in Figure 4. The
heat of the effect observed at a lower temperature is 6.75 kJ·mol−1, while the second effect
has a higher energy of 11.36 kJ·mol−1. The type of solvent, the rate of crystallisation, the
presence of other substances, the mixing and the concentration of the reagents influence the
resulting polymorphic form. Changing one of these factors can lead to the transformation
of polymorphs. Usually, the most stable form has the highest melting point. In both crystal
phases of compound 4, visible in the DSC curves, it can be stated that they have a different
arrangement and different conformation of the molecules in the crystal but have no solvent
molecules in their structure. The interesting melting phenomenon, which has already
been reported for a number of molecules [19,20], most likely results from the possibility of
solid phase proton transfer in the molecule of 4 and consequently leads to its polymorphic
transformation at a specific heating rate in result of the bond change (i.e., desmotropism).
It is most likely that compound 4, i.e., more precisely, its proven ketimine structure A, is
transformed into its more stable enamine polymorph B (whose structure can be stabilised
by an intramolecular hydrogen bond between the ester C=O and NH group of the triazine
ring) [21]. It seems that the type of solvent used for crystallisation (DMF) and the rate of
crystallisation favour the polymorphic behaviour of 4. No polymorphism was observed in
the case of the remaining molecules.
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[8-(3-chlorophenyl)-4-oxo-2,6,7,8-tetrahydroimidazo[2,1-c][1,2,4]trazin-3(4H)-ylidene]acetate—the 
enamine polymorph (B). 
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1–6 is followed by the evaporation processes and/or decomposition of molten compounds. 
The DSC curves show several overlapping peaks that are very difficult to assign due to 
the complexity of the processes involved. They are probably related to the processes of 
thermal dissociation of chemical bonds. Above 450 °C, on the DSC curves, the significant 
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Figure 4. The structurally distinct forms of the compound 4: ethyl 2-[8-(3-chlorophenyl)-4-oxo-4,6,7,8-
tetrahydroimidazo[2,1-c][1,2,4]trazin-3-yl]acetate—the ketimine polymorph (A) and ethyl 2-[8-(3-
chlorophenyl)-4-oxo-2,6,7,8-tetrahydroimidazo[2,1-c][1,2,4]trazin-3(4H)-ylidene]acetate—the enam-
ine polymorph (B).

As it results from the profiles of the DSC curves, the melting process of compounds
1–6 is followed by the evaporation processes and/or decomposition of molten compounds.
The DSC curves show several overlapping peaks that are very difficult to assign due to the
complexity of the processes involved. They are probably related to the processes of thermal
dissociation of chemical bonds. Above 450 ◦C, on the DSC curves, the significant exothermic
effects appeared as the result of the combustion processes of solid unstable intermediates.

2.2. TG-FTIR Analysis of Compounds 1–6 in a Nitrogen Atmosphere

Coupling of the thermogravimetric analysis (TG) and a Fourier transform infrared
spectroscopy (FTIR) method was applied for the determination of the thermal stability and
decomposition mechanism of the investigated compounds (1–6) in a nitrogen atmosphere
as well as the identification of evolved volatile products of their degradation. It was found
that all the tested compounds (1–6) are thermally stable materials under inert conditions
and their thermal stability can be ordered as follows: 4 (119 ◦C) < 5 (157 ◦C) < 6 (177 ◦C) < 3
(178 ◦C) < 1 (184 ◦C) < 2 (201 ◦C) based on the analysis of their thermogravimetric curves
(Figure 5).
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Comparing the temperature of decomposition beginning in the corresponding com-
pounds in nitrogen and air, obviously an impact of the atmosphere heating on the com-
pound stability is seen. At first, a decrease in the thermal stability of all compounds is
noticed. The fact that this influence has a double character is quite surprising. Taking into
account the thermal stability of parent compound (1), introducing the substituents such as
methyl, methoxy and chlorine groups at the benzene ring in different positions strongly in-
fluences the stability of the explored compounds. Compound 2, which exhibits the highest
thermal stability, is structurally characterised by the presence of a methyl substituent in
the para position at the benzene ring. On the other hand, replacing the hydrogen atom of
the benzene ring with a chlorine atom in the meta position, as took place in compound 4,
leads to a drastic decrease in its stability under inert conditions but a slight decrease in its
stability under oxidative conditions. An impact of the methoxy group in an ortho position
as well as two chlorine substituents in positions 3 and 4 of the phenyl moiety is very similar.
In both cases, a decrease in compound stability in relation to parent structure (1) is noticed.
These observations do not resonate with those previously reported for thiophenylated
fused triazinones [22]. In this class of compounds, the substitution of hydrogen atoms
in positions 4 or 3 and 4 through one or two chlorine atoms, respectively, resulted in an
increase in thermal stability compared to parent structure (1). The similar influence of two
chlorine substituents at the benzene ring on the thermal stability of the trifluoromethylated
fused triazinones was also observed [23]. Presumably, these observations can be explained
in terms of the overall geometry of the molecules, their relative position and packing as
well as their molecular interactions.

A detailed analysis of the TG curves of the tested compounds suggests that their de-
composition occurs in overlapping stages without forming thermally stable solid products.
Compared to the TG curves recorded in the air, it is impossible to separate these stages.
Their shapes are dominated by one significant mass loss of 66.39–64.01% in the temperature
range of 119–700 ◦C. The mass of solid residues composed of unburnt carbon increased as
follows: 33.61% (1), 34.72% (2), 35.80% (6), 35.89% (3 and 5) and 35.99% (4).

Besides the TG curves, Gram–Schmidt plots as well as FTIR spectra of volatile products
of their degradation point out to their multistep pyrolysis process. The Gram–Schmidt
plots showing the intensity of the evolved gases during the heating of the compounds,
which are shown in Figure 6, also confirm their different ways of degradation.
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Figure 6. Gram–Schmidt plots of compounds 1–6 in nitrogen.

The highest intensity of the emitted gases during pyrolysis of compounds 1–6 is ob-
served between 25 and 31 min of heating, which corresponds to a temperature range of
about 270–340 ◦C (Figure 6). At higher temperatures, very complex processes of degrada-
tion occur as evidenced by the multipeak profiles of the Gram–Schmidt plots.

The 3D presentations of the FTIR spectra of the evolved gases during the heating of
compounds 2 and 6 as two representatives are given in Figure 7.
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The first gaseous species recognised on the FTIR spectra as products of all compounds’
decomposition were ethyl alcohol, water and carbon dioxide (Figures 7 and 8). The presence
of such compounds can be explained as the result of the cleavage of the bond between
ethyl ester of acetic acid moiety and 1,2,4-triazine skeleton. The FTIR spectra display
several very characteristic bands for the released C2H5OH molecules. The split band in the
region of 3100–2800 cm−1 with maxima at 2965 cm−1 and 2913 cm−1 was assigned to the
asymmetric and symmetric stretching vibrations of the CH3 group. The strong band located
at 1057 cm−1 is characteristic of the C–O stretching vibrations of the primary alcohol, while
those at 897 cm−1 were assigned to the stretching vibrations of the CCO group [24]. The
evolved carbon dioxide molecules give rise to the characteristic bands at 2358, 2322 and
697 cm−1 from their stretching and deformation vibrations. Simultaneously, the bands in
the regions of 4000–3200 cm−1 and 1800–1300 cm−1 were recorded due to the stretching
and deformation vibrations of water molecules (Figure 8) [25,26].
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At higher temperatures, further decomposition of the solid residues took place. The
FTIR spectra recorded above 29 min (328 ◦C) of heating exhibit very diagnostic double
bands with maxima at 966 and 930 cm−1 derived from the asymmetric and symmetric
stretching vibrations of NH groups from ammonia or hydrazine [27,28]. Along with these
molecules, isocyanic acid (HNCO) and/or its derivatives (RNCO) are also evolved. This
conclusion was driven based on the broadening of the multipeak band observed in the
range of 2200–2100 cm−1 [29]. Deep analysis of such a band allows for distinguishing
the band at 2251 cm−1 as characteristic for the stretching vibrations of NCO moieties.
Simultaneously, the FTIR spectra display diagnostic bands at 965 and 930 cm−1 due to the
evolution of ammonia and/or hydrazine molecules. These compounds can be regarded
as products of the cleavage of triazine moieties. An increase in the temperature leads to
the release of aniline and p-toluidine molecules [30]. The FTIR spectra show bands in the
range of 3150–3000 cm−1 derived from the stretching vibrations of the CH groups. The
most distinctive bands for these compounds are observed at 1270 and 754 cm−1 due to
the stretching vibrations of the CN group and wagging vibrations of NH, respectively.
The liberation of such compounds is especially observed during decomposition of the
compounds 1, 2 and 5 (Figure 8a). The FTIR spectra reflect also the presence of substituents
in the benzene ring. Among the volatile products of decomposition of compound 2,
methane and carbon monoxide are also clearly observed. The stretching vibrations of the
CH bonds from the methane molecules give rise to the characteristic group of bands in the
range of 3200–2900 cm−1 with a maximum of 3017 cm−1. A very weak double band in the
range of 2200–2000 cm−1 confirms the evolution of carbon monoxide [26]. The FTIR spectra
of compound 6, which contains in its structure two chlorine atoms, show split bands in the
range of 3100–2600 cm−1 as a result of the evolution of the HCl molecules [31] (Figure 8b).

2.3. Assessment of the Risk of Side Effects and the Impact on Red Blood Cells of the Investigated
Compounds (1–6)

Taking into account the fact that the title compounds, as anticancer drug candidates
with potential therapeutic use [2,3], are characterised by high thermal stability (described
in this paper) and optimal pharmacokinetic properties [4], the determination of their
safety/toxicity profile is justified.

In the preclinical phase of drug development, it is important to assess the risk of
serious adverse effects of new drug candidates. The molecules revealing mutagenic,
tumorigenic, irritating and reproductive effects should not be tested on living organ-
isms. Therefore, a useful in silico tool—the OSIRIS Property Explorer (available online at
http://www.organic-chemistry.org/prog/peo/; accessed on 3 January 2023)—was applied
to predict the possibility of the appearance of adverse side effects in this novel class of
compounds. The adverse side effects risk predictor locates all structural fragments that
give rise to toxicity alerts if they are present in the molecule investigated. A set of these

http://www.organic-chemistry.org/prog/peo/
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fragments was taken from the Registry of Toxic Effects of Chemical Substances database.
This database contains a large number (about 20,000) of chemical substances revealing
mutagenic, tumorigenic, irritant and reproductive effects and medicines as a control group.
The prediction result indicates no risk (score 1.0; green colour), medium risk (score 0.8,
yellow colour) and high risk (score 0.6; red colour) of the undesired effect. In the case of
our annelated triazinylacetic acid ethyl esters (1–6), according to the OSIRIS programme,
none of the investigated compounds poses a risk of mutagenic, carcinogenic, irritating or
reproductive effects (Table S1 in the Supplementary material). This was to be expected, as
no genotoxophore fragments are present in the molecules of the compounds studied.

The evaluation of the toxicity profile of pharmacologically relevant compounds is
an important task in the preclinical phase of drug development. Therefore, the effect of
compounds 1–6 on the most numerous cells in the living organism, i.e., erythrocytes, was
evaluated in an ex vivo model. It was found that all annelated triazinylacetic acid ethyl
esters after incubation with red blood cells do not cause any haemolytic effects, and thus
they are safe for erythrocytes (Table S2 in the Supplementary material). This confirms the
very good safety profile of these compounds, which is particularly important due to their
potential usefulness in cancer therapy. On the other hand, the antihaemolytic properties
of compounds 1–6 were evaluated ex vivo on red blood cells exposed to reactive oxygen
species, such as peroxyl radicals or hydrogen peroxides, which, by inducing oxidation of
membrane proteins and lipids, lead to erythrocyte membrane damage and ultimately to
haemolysis. The ability of annelated triazinylacetic acid ethyl esters to inhibit oxidative
hemolysis, and thus to protect erythrocytes against oxidative damage, was compared
to that of ascorbic acid or trolox (Figure S1A,B in the Supplementary material). It was
proven that all the tested molecules protect the red blood cells from oxidative damage. This
effect was dependent on the structure of the compound. The most effective in inhibiting
AAPH-induced haemolysis were found to be compounds 3 and 4, whose antihaemolytic
activity was 88% and 85% of ascorbic acid activity, respectively. In turn, compounds 3 and
2 inhibited the most effectively H2O2-induced hemolysis, and their activity was 89% and
86%, respectively, compared to trolox. The remaining annelated triazinylacetic acid ethyl
esters also protected erythrocytes against oxidative haemolysis, and their activity ranged
from 61% to 79% in relation to the activity of antioxidant standards.

Both the lack of risk of side effects and the beneficial impact on erythrocytes of the title
compounds (1–6) make them safe drug candidates suitable for further research.

3. Materials and Methods
3.1. Short Description of the Investigated Compounds (1–6)

Ethyl 2-[4-oxo-8-(R-phenyl)-4,6,7,8-tetrahydroimidazo[2,1-c][1,2,4]triazin-3-yl]acetates
(1–6) belonging to fused azaisocytosine congeners have been synthesised for the purposes
of thermal studies according to efficient synthetic approaches previously patented and
published [2,3]. The structures of molecules 1–6 have been confirmed by 1H-NMR/13C-
NMR spectra and elemental analysis, and established on the basis of the performed
13C, 1H HMBC and HMQC correlations for the ethyl ester of 2-(4-oxo-8-phenyl-4,6,7,8-
tetrahydroimidazo[2,1-c][1,2,4]triazin-3-yl)acetic acid (1) [3]. The purity and homogeneity
of all the compounds intended for thermal studies (1–6) have been previously evaluated
under reaction and the purification conditions employed. All these ones have been obtained
and described [3] as homogenous, pure, crystalline solids with sharp melting points and
microanalyses within ±0.4 percent of the calculated values. They have been reported to
reveal not only enhanced anticancer effects in malignant human multiple myeloma cells
(MM1R, MM1S) but also antiproliferative activities against human tumours of the breast
(T47D) and cervix (HeLa) [3]. In addition, their mode of anticancer action and very low
toxicities towards normal human skin fibroblasts have been previously documented [3].
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3.2. Thermal Analysis Methods

The TG-DSC curves were recorded using the SETSYS 16/18 thermal analyser (Setaram,
Caluire, France) in an air atmosphere. The samples (mass of 5–8 mg) were heated in open
alumina cylindrical (100 µL) crucibles from 30 to 800 ◦C with a heating rate of 10 ◦C min−1

(airflow 12.5 cm3 min−1). Simultaneous TG-FTIR analyses were carried out on the Q5000
(TA Instruments, New Castle, DE, USA) analyser coupled with a Nicolet 6700 (Thermo
Scientific, Waltham, MA, USA) spectrophotometer. The samples of about 30 mg were
heated from room temperature up to 700 ◦C at a heating rate of 10 ◦C min−1 (nitrogen
flow 25 cm3 min−1) in open plate platinum crucibles. The IR cell maintained at 250 ◦C was
connected online to the Q5000 thermal analyser (TA Instruments, New Castle, DE, USA)
using stainless steel heated to 240 ◦C. The identification of volatile decomposition products
of compounds 1–6 was made using the database OmnicSpecta 2.0 software.

4. Conclusions

The thermal stability and thermal properties of ethyl 2-[4-oxo-8-(R-phenyl)-4,6,7,8-
tetrahydroimidazo[2,1-c][1,2,4]triazin-3-yl]acetates (1–6)—regarded as potential anticancer
agents—were determined in oxidative and inert conditions. They are thermally stable
at about 200 ◦C in an oxidative atmosphere. Therefore, if they are registered as pharma-
ceuticals, there will be no problems with their storage at room temperature as well as
processing by the pharmaceutical industry. All the investigated compounds reveal higher
thermal stability under oxidative conditions than under inert conditions. Therefore, it can
be assumed that oxygen enhances the decomposition activation energy by acting as an
inhibitor of the decomposition process of the studied polynitrogenated small molecules.
The decomposition of the studied molecules is preceded by their melting process. A single
endothermic effect observed on the DSC curves of compounds 1–3 and 5–6, assigned to
the melting process, confirms their high purity. The advantage of these heterocyclic es-
ters is that they do not undergo any polymorphic transformations when studied at a low
heating rate. On the other hand, the appearance of two endothermic effects for compound
4 suggests the presence of its two polymorphs and the thermal transformation of a less
stable crystal form to a more stable crystal form. The decomposition of the investigated
compounds occurs in three overlapping stages accompanied by strong exothermic effects
above 450 ◦C. However, in a nitrogen atmosphere, their thermal stability, as well as decom-
position pathways, were different. Analysis of the FTIR spectra recorded during the heating
of the investigated compounds (1–6) enabled us to distinguish the main three stages of
their decomposition related to the defragmentation of the investigated molecules during
their heating in nitrogen. In the first decomposition stage, the FTIR spectra show bands
from water, carbon dioxide and ethyl alcohol molecules as the defragmentation products of
the acetic acid ethyl ester moiety. The attendance of ammonia and/or hydrazine along with
isocyanic acid and its derivatives primarily occurred in the second decomposition stage.
At last, in the third stage of their decomposition, aniline and its derivatives are released.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28041735/s1. Table S1. Risk assessment of adverse side
effects by OSIRIS Property Explorer for the investigated compounds (1–6). Table S2. Haemolytic ac-
tivity of the investigated compounds (1–6) at a 0.15 mM concentration. Figure S1. (A) Antihaemolytic
activities (in the model of rat erythrocytes exposed to AAPH) of compounds 1–6 in relation to ascorbic
acid. (B) Antihaemolytic activities (in the model of rat erythrocytes exposed to H2O2) of compounds
1–6 in relation to trolox.
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