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Abstract: Lipopolysaccharide (LPS) has been considered the primary agent to establish animal models
of inflammation, immunological stress, and organ injury. Previous studies have demonstrated that
LPS impaired gastrointestinal development and disrupted intestinal microbial composition and
metabolism. Ferulic acid (FA) isolated from multiple plants exhibits multiple biological activities.
This study investigated whether FA ameliorated intestinal function and microflora in LPS-challenged
Tianfu broilers. The results showed that LPS challenge impaired intestinal function, as evidenced
by decreased antioxidant functions (p < 0.05), disrupted morphological structure (p < 0.05), and
increased intestinal permeability (p < 0.05); however, these adverse effects were improved by FA
supplementation. Additionally, FA supplementation preserved sIgA levels (p < 0.05), increased
mRNA expression levels of CLDN and ZO-1 (p < 0.05), and enhanced epithelial proliferation (p < 0.05)
in the ileal mucosa in LPS-challenged chickens. Moreover, FA supplementation rectified the ileal
microflora disturbances in the LPS-challenged broilers. The results demonstrate that dietary FA
supplementation decreased LPS-induced intestinal damage by enhancing antioxidant capacity and
maintaining intestinal integrity. Furthermore, FA supplementation protects intestinal tight junctions
(TJs), elevates secretory immunoglobulin A (sIgA) levels, and modulates ileal microflora composition
in LPS-challenged broilers.

Keywords: ferulic acid; lipopolysaccharide; intestine permeability; intestinal barrier; ileal microbiota

1. Introduction

Broilers are raised under an intensive husbandry environment in commercial poul-
try farms, which may increase the risk of ingesting various toxins, such as mycotoxin,
bacteriotoxin, and zootoxin. Lipopolysaccharide (LPS) is a crucial bacterial endotoxin
produced by most gram-negative bacteria [1]. It has been considered the primary agent
to establish animal models of inflammation, immunological stress, and organ injury [2–7].
Moreover, the accumulation of excessive free radicals [8] induced by LPS damaged the
intestinal barrier [9] and decreased the growth performance of broilers [10] by triggering
inflammation of the gastrointestinal tract [11], initiating oxidative damage and apoptosis
of intestinal epithelial cells [12,13], and disrupting intestinal microbial composition and
metabolism [14,15].

A number of studies indicated active plant components enhanced growth performance
and combated various diseases, therefore, had great potential for generating revenue in
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the poultry industry [16–19]. An active ingredient of phenolic, ferulic acid (FA, 4-hydroxy-
3-methoxycinnamic acid), is isolated from multiple plants and has been recognized as
an antioxidant. A series of recent studies indicated that FA shows low toxicity [20] and
possesses varieties of biological activities, including antibacterial [21], antioxidant [22],
anti-inflammatory [23], antithrombotic [24], and anticancer [25] properties. Additionally, it
has been reported that FA supplementation improves the immune functions and growth
performance in male adult zebrafish by elevating the number of intestinal goblet cells
and ameliorating the intestinal microbiota composition [26]. In piglets, dietary FA supple-
mentation exhibited a similar effect by promotion of Claudin-1 (CLDN-1) and Occludin
(OLDN) expression, increasing the Firmicutes/Bacteroidetes ratio (F/B), the abundance
of the Lachoiraceaea family, and reduction in the abundance of the Prevotellaceae family
in the cecum [27]. Another example of this is that FA reduces atherosclerotic injury by
regulating lipid metabolism and intestinal microbiota [28]. However, information with
regard to the mechanism of action and how FA protects the intestinal health and microbial
composition of broilers remains unreported.

On account of the multiple benefits on intestinal FA, this study was carried out to
explore whether dietary 100 mg/kg FA supplementation ameliorates the intestinal injury
and intestinal microflorae of broilers challenged with LPS.

2. Results
2.1. Intestinal Morphological Analysis

Figure 1 represents the morphological characteristics of the ileum among groups. The
ileal VH and CD in the LPS group were significantly lower (p < 0.05) than in the CON group.
While the contrary, it increased significantly (p < 0.05) with dietary FA supplementation.
Birds in the FL group had the highest VH/CD (p < 0.05) among the groups. Similarly, LPS
challenge significantly decreased (p < 0.05) duodenal VH and VH/CD, while significantly
increasing (p < 0.05) the CD in the duodenum and jejunum, which were modified by FA
supplementation (Supplementary Materials, Figure S1).
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Figure 1. The data of villus height, crypt depth, and villus/crypt ratio. (A) Villus height (μm). (B) 
Crypt depth (μm). (C) Villus height/crypt depth ratio. Values are expressed as the mean ± SEM. n = 
8. * means p < 0.05, compared with the CON group. # means p < 0.05, compared with the LPS group. 
(D–G) The representative histological changes of the ileum villus height and crypt depth with HE 
staining (scale bar = 500 μm). (D) CON group, (E) LPS group, (F) FA group, (G) FL group. 

2.2. Intestinal Permeability Biochemical Analysis 
Figure 2 shows the parameters indicating intestinal permeability. The levels of DAO 

and D-LA in the serum were significantly increased (p < 0.05) after LPS challenge; how-
ever, FA significantly decreased the serum DAO activity and D-LA levels (p < 0.05) in 
chickens challenged with LPS. 

 
Figure 2. DAO activity and D-LA content in serum. (A) Diamine oxidase (DAO, ng/mL) (B) D-lactate 
acid (D-LA, nmol/L). Values are expressed as the mean ± SEM. n = 6. * means p < 0.05, compared 
with the CON group. # means p < 0.05, compared with the LPS group. 
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n = 8. * means p < 0.05, compared with the CON group. # means p < 0.05, compared with the LPS
group. (D–G) The representative histological changes of the ileum villus height and crypt depth with
HE staining (scale bar = 500 µm). (D) CON group, (E) LPS group, (F) FA group, (G) FL group.

2.2. Intestinal Permeability Biochemical Analysis

Figure 2 shows the parameters indicating intestinal permeability. The levels of DAO
and D-LA in the serum were significantly increased (p < 0.05) after LPS challenge; however,
FA significantly decreased the serum DAO activity and D-LA levels (p < 0.05) in chickens
challenged with LPS.
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Figure 2. DAO activity and D-LA content in serum. (A) Diamine oxidase (DAO, ng/mL) (B) D-lactate
acid (D-LA, nmol/L). Values are expressed as the mean ± SEM. n = 6. * means p < 0.05, compared
with the CON group. # means p < 0.05, compared with the LPS group.

2.3. Antioxidant Parameters of Intestinal Mucosa

The levels of antioxidants in intestinal mucosa were examined and shown in Figure 3.
The LPS group had significantly lower levels of SOD, T-AOC, and GSH in the mucosa than
the CON group (p < 0.05). Conversely, levels of SOD, T-AOC, and GSH were significantly
elevated (p < 0.05) in the FL group when compared to the LPS group.
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Figure 3. Antioxidant parameters of the intestinal mucosa. (A) Superoxide dismutase (SOD, U/mg),
(B) total antioxidant capacity (T-AOC, mmol/g), (C) glutathione (GSH, µmol/g). Values are expressed
as the mean ± SEM, n = 3. * means p < 0.05, compared with the CON group. # means p < 0.05,
compared with the LPS group.

2.4. sIgA Content in Ileal Mucosa

Figure 4 shows that ileal sIgA contents in LPS-challenged chickens were the lowest
(p < 0.05); however, dietary FA supplementation increased (p < 0.05) the ileal sIgA contents
in the FL group compared to the LPS group.
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Figure 4. sIgA content in ileal mucosa. Values are expressed as the mean± SEM. n = 4. * means p < 0.05,
compared with the CON group. # means p < 0.05, compared with the LPS group.

2.5. Life Cycle of the Ileal Epithelium

Figure 5 shows an increased ileal epithelium percentage in the G0/G1 phase (p < 0.05),
a reduced percentage of cells in the S and G2M phases, and a lower PI index in the LPS
group (p < 0.05) compared to the CON group. However, more ileal epithelium entered the
S and G2M phase (p < 0.05) in the FL group compared to the LPS group.
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Figure 5. Ileal cell cycle. The percentage of the ileal cells in the (A) G0G1 phase (DNA pre-synthesis
phase of the cell life cycle, %), (B) S phase (DNA synthesis phase of the cell life cycle, %), (C) G2M
phase (prophase of division and division phase of the cell life cycle, %). (D) PI index (proliferation
index). (E) The flow cytometry quadrant diagrams of the ileal cell life cycle among four groups.
Values are expressed as the mean ± SEM. n = 6. * means p < 0.05, compared with the CON group.
# means p < 0.05, compared with the LPS group.

2.6. Relative mRNA Expressions of Intestinal Tight Junction Proteins

Figure 6 depicts the relative mRNA expressions of intestinal TJs. The OCLN expression
did not significantly change, but the CLDN-1 and ZO-1 decreased significantly (p < 0.05) in
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the LPS group when compared to the CON group. Significant upregulations (p < 0.05) of
CLDN-1 and ZO-1 were noticed in the FL group compared to the LPS group.
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Figure 6. Relative mRNA expression levels of CLDN-1, OCDN, and ZO-1 in the ileum. Values are ex-
pressed as the mean± SEM. n = 3. * means p < 0.05, compared with the CON group. # means p < 0.05,
compared with the LPS group.

2.7. Ileal Microbiota Composition

The Venn diagram (Figure 7A) and flower diagram (Figure 7B) showed the unique and
shared OTUs of the different microbiome groups in the ileum. The diagrams illustrate that
1049 OTUs (the core) were shared by four groups. In total, 327, 221, 153, and 127 unique
OTUs were discovered in the CON, LPS, FA, and FL groups, respectively (Figure 7B).
Interestingly, chickens in the LPS and FL groups shared fewer OTUs (1342) than those in
the CON and LPS groups (1663). Among these unique OTUs, 175 OTUs were discovered in
both the CON and LPS groups; 136 OTUs were discovered in both the CON and FA groups;
133 OTUs were discovered in both the CON and FL groups; 90 OTUs were discovered in
both the LPS and FA groups; and 97 OTUs were discovered in both the LPS and FL groups.
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The alpha diversity (Figure 8), a parameter that evaluates diversity and uniformity of
the bacterial species, of the ileal microbiota was not significantly (p > 0.05) different among
the four groups. The ileal microbiota was obviously different among the four groups (PC1,
44.96%; PC2, 15.9%) based on the results of principal coordinate analysis (PCoA) with
weighted unifrac distances (Figure 9A). Furthermore, the results (Figure 9B) indicated
that the FL group had a similar ileal microbiota composition to the CON and FA groups
compared to the LPS group.
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Figure 10 presents the composition of microbiota in Tianfu broilers. At the phylum
level (Figure 10A), the ileal microbiota of the Tianfu broilers mainly was composed of
Bacteroiota (44.3%), Firmicutes (40.23%), Euryarchaeota (4.16%), Desulfobacterota (1.41%),
unidentified_bacterira (1.42%), and Antinobacteriota (3.15%). After LPS challenge, the ileal
microbiota exhibited an increment of Bacteroidota, Desulfobacterota, and Actinobacteriota,
but a decrement of Firmicutes and Euryarchaeota in comparison to the CON group. How-
ever, the results showed an increment of Firmicutes and Euryarchaeota, and a decrement
of Bacteroidota, Desulfobacterota, and Actinobacteriota in the FL group when compared to
the LPS group.
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the family level. (C) Microbial structure at the genus level.
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At the family level (Figure 10B), Bacteroidaceae (22.96%) was the most abundant
family followed by Rikenellaceae (16.94%), Lachnospiraceae (13.63%), Lactobacillaceae
(7.56%), Ruminococcaceae (7.05%), and Muribaculaceae (2.45%). LPS reduced the abun-
dance of Lactobacillaceae and Ruminococcaceae, whereas both of them increased in the
FL group in comparison to the LPS group. Moreover, LPS increased the abundance of
Bacteroidaceae and Muribaculaceae compared to the CON group, but dietary 100 mg/kg
FA supplementation decreased their abundance in comparison to the LPS group.

At the genus level (Figure 10C), the ileal microbiota mainly was composed of Bacteroides
(22.96%), Rikenellaceae_RC9_gut_group (9.57%), Alistipes (7.32%), Lactobacillus (7.56%), Faecalibacterium
(4.14%), CHKCI001 (4.28%), Methanobrevibacter (4.16%), [Ruminococcus]_torques_group (3.50%),
Barnesiella (1.18%), and Megamonas (0.82%). The challenge of LPS decreased the abun-
dance of Lactobacillus, Faecalibacterium, CHKCI001, and Methanobrevibacter, but increased
the abundance of Bacteroides, [Ruminococcus]_torques_group, and Megamonas. However,
dietary 100 mg/kg FA supplementation increased the relative abundance of Lactobacillus,
Faecalibacterium, CHKCI001, and Methanobrevibacter, while decreasing the proportions of
Bacteroides, [Ruminococcus]_torques_group and Megamonas compared to the LPS group.

3. Discussion

The gastrointestinal tract is an essential organ for nutrient absorption and a funda-
mental protective barrier against incursions of bacteria, pathogens, and toxins; therefore,
maintaining intestinal homeostasis is of great importance [29]. There is increasing evidence
that suggests LPS, a common toxin in the poultry industry [30], leads to loss of body
weight [31], intestinal epithelium injury [32], increased intestinal permeability [33,34], and
microflora dysbiosis [35]. Bioactive agents with various biological benefits [36], such as FA,
may represent an interesting solution.

The intestinal epithelium is renewed from the proliferation and differentiation of
multipotential stem cells located in the crypt. At the tips of the villus, fully differentiated
cells are extruded into the lumen [37]. Higher VH, VH/CD, and lower CD result in a
greater mucosa surface area and faster migration, which is helpful to improve the capacity
of intestinal digestion and absorption [38,39]. In this study, LPS significantly impaired the
intestinal morphological structure through diminishing ileal VH. This result indicates that
LPS impaired intestinal digestion and absorption, which is the leading cause of decreased
body weight and average daily feed intake reported in our previous study [40]. Previous
studies by Gadde et al. [41] and An et al. [42] reported similar findings. It shows that FA
improves growth performance by maintaining the intestinal structure of LPS-challenged
broilers. However, the protective effect of FA on intestinal morphology and barrier func-
tion was reported by a previous study [43] and was possibly related to its activation of
the Nrf/HO-1 signaling pathway [44], as well as its radial scavenging property [45], as
evidenced by the enhanced antioxidant ability of the intestinal mucosa in this study.

Intestinal permeability is a functional indicator to reflect the integrity of the intestinal
wall and the extent of bacteria translocation. The increased level of serum DAO or D-LA has
been considered a token of intestinal structural damage. DAO is an intracellular enzyme
that exists in intestinal mucosa [46]. Similarly, D-LA is located in the gut and is produced
by various bacteria as a fermentation product. Increased serum levels of DAO and D-
LA reflect the alteration of intestinal permeability as a consequence of intestinal barrier
dysfunction [47]. The results in the present study showed an increased serum activity of
DAO and level of D-LA in the broilers challenged with LPS, which was consistent with
the reports by Yang’s study [48]. In comparison, FA-supplemented chickens decreased the
activity of DAO and the levels of D-LA, indicating an augment of intestinal wall stability,
which was also observed in tilapia fed with an oxidized fish oil diet [49].

Interestingly, this study found that LPS blocks ileal cell entry into the S and G2/M
phase, leading to an aggregation of G0G1 cells and a remarkable reduction in the PI index;
however, FA supplementation promoted the proliferation of the ileal cells. In the present
study, LPS downregulated the expression of CLDN-1, OCDN, and ZO-1 in the ileum. CLDN-
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1, OCDN, and ZO-1 belong to the tight junction proteins (TJs) and are responsible to seal
the paracellular space in the epithelial cells in the gut [50]. TJs regulate ion and solute
diffusion through the intercellular space and prevent the translocation of luminal antigens,
microorganisms, and related toxins [51]. FA could alleviate LPS-induced TJ function loss,
as evidenced by upregulated expression of CLDN-1 and ZO-1 in the ileum. Secretory
immunoglobulin A (sIgA), the first line of defense of the gastrointestinal epithelium, is one
of the most abundant antibodies in mucosal secretions. It binds to viruses and bacteria
and prevents them from attaching to and invading the epithelial cells [52]. Furthermore,
sIgA is reported to help with the stabilization of the microbial composition by binding
commensal microbiota [53]. In line with a present study, a significant decrease in sIgA level
was noticed in the LPS group [54]. Dietary FA supplementation instead increased the sIgA
levels in the LPS-challenged chickens and maintained the mucosal immune response.

Intestinal microflora hemostasis provides essential health benefits to animals by pro-
moting food digestion and nutrient absorption, influencing immune development, and
providing colonization resistance against pathogens [55–57]. However, the beneficial ef-
fects of the intestinal microbiota depend on its composition, which have been shown to
vary with a number of factors including diet, disease, and stress conditions [58,59]. In
the present study, the diversity and uniformity of ileal microflora are different among the
four groups. However, the composition of the ileal microflora in the FL group is highly
similar to those in the CON group but differs from the LPS group, indicating that dietary
FA supplementation reduces LPS-induced intestinal bacterial disturbance. Bacteroidota
and Firmicutes are the two dominant phyla of bacteria in the intestine [60,61], and the F/B
ratio was closely dependent on body weight because Firmicutes has higher efficiency of
absorbing calorie than Bacteroidetes [62]. In this study, FA shows positive effects on the
F/B ratio in the ileum of LPS-challenged chickens. Interestingly, the BW of LPS-challenged
chickens was positively correlated with FA, as reported in our previous study [44]. The
relative abundance of phylum Bacteroidota was found positively associated with oxidative
stress [63] and was consistent with what we found in the present study, as levels of GSH
and T-AOC, and the activity of SOD in the intestinal mucosa, were decreased, but the
relative abundance of phylum Bacteroidetes in the ileum was increased in the LPS group,
which was improved by FA. This finding is in agreement with previous observations that
FA scavenges free radicals [64] and increases antioxidant function [65]. Increased relative
abundance of Proteobacteria suggests a non-homeostasis of the intestinal environment [66].
In this study, chickens that receive FA supplementation showed a decrease in the relative
abundance of Proteobacteria compared to the CON and LPS groups at the phylum level,
which comprises several pathogens, such as Escherichia, Salmonella, and Helicobacter [67].
It is widely acknowledged that Lactobacillus improves intestinal health by preventing the
colonization of pathogens [68]. The present results reveal that dietary FA supplementation
increased the relative abundance of the family Lactobacillaceae and the genus Lactobacillus
compared to the LPS group. Faecalibacterium has been recognized as a probiotic that im-
proves epithelial proliferation and is a major butyrate producer [69]. At the genus level,
FA-supplemented chickens shows an increased relative abundance of Faecalibacterium in
the ileum compared to the ones challenged by LPS, which is in agreement with a previous
study [70].

4. Materials and Methods
4.1. Reagents

Ferulic acid (C10H10O4, CAS number: 1135-24-6) was purchased from Chengdu
Herbpurify Co. Ltd. (Chengdu, China) with 99.91% purity assessed by high-performance
liquid (Welch C18 column (4.6 × 250 mm, 5 µm) with mobile phase acetonitrile: 20%
phosphoric acid (22:78), Palo Alto, CA, USA). Lipopolysaccharide from Escherichia coli
O55:B5 (LPS, L2880) was purchased from Sigma-Aldrich Corp (St. Louis, MO, USA) with
≥98% purity and ≥500,000 EU/mg titer. Then, LPS was suspended in sterile saline at a
concentration of 100µg/mL.
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4.2. Experimental Design

Tianfu broiler chickens (n = 160, male, 25-day-old initial body weight 184.33 ± 3.34 g),
were divided into four groups at random. Each group had four identical cages with
10 chickens per cage. Figure 11 represents the overview of the experimental design: CON
group (basal diet and non-LPS challenge), LPS group (basal diet and 1.0 mg/kg LPS
challenge), FA group (100 mg/kg FA + basal diet and non-LPS challenge). and FL group
(100 mg/kg FA + basal diet and 1.0 mg/kg LPS challenge). On days 14, 16, 18, and 20,
the birds were administered 1.0 mg/kg LPS of body weight intraperitoneally or an equal
volume of normal saline based on a protocol described in a previous study [71].

All chickens were provided by and fed in the Poultry Breeding Research Unit of
Sichuan Agricultural University (Ya’an, China) and were housed in an environment-
controlled room with a relative humidity of 50–55%, room temperature of 22 ◦C, and
16 h light:8 h dark, and food and water ad libitum. The basic nutrient fact composition
and of the basal diet are listed in Table 1, and the nutritional requirement was formulated
according to the National Research Council requirements for chickens.
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Figure 11. Experimental design. Four treatment groups were randomly assigned to broilers of similar
body weights. CON, birds received basal diet and intraperitoneal injection of saline. LPS, birds
received basal diet and intraperitoneal injection of LPS. FA, birds received basal diet supplemented
with FA and intraperitoneal injection of saline. FL, birds received basal diet supplemented with FA
and intraperitoneal injection with LPS.

Table 1. Ingredient composition and nutrient content of the basal diet.

Ingredient % Calculated Nutrients %

Corn 59.50 Metabolizable energy (MJ kg−1) 12.80

Soybean meal 32.90 Crude protein 19.70

Vegetable oil 4.65 Lysine 1.08

CaCO3 0.50 Methionine 0.40

CaHPO4 1.60 Methionine + Cystine 0.74

NaCl 0.30 Calcium 0.77

Choline 0.10 Nonphytate P 0.40

DL-Met 0.12

Premix 1 0.33

Total 100
1 Provided per kg for diet: vitamin A (all-trans retinol acetate), 12,500 IU; cholecalciferol, 2500 IU; vitamin E (all-
rac-a-tocopherol acetate), 18.75 IU; vitamin K (menadione Na bisulfate), 5.0 mg; thiamine (thiamine mononitrate),
2.5 mg; riboflavin, 7.5 mg; vitamin B6, 5.0 mg; vitamin B12, 0.0025 mg; pantothenate, 15 mg; niacin, 50 mg; folic
acid, 1.25 mg; biotin, 0.12 mg; Cu (CuSO4·5H2O), 10 mg; Mn (MnSO4·H2O), 100 mg; Zn (ZnSO4·7H2O), 100 mg;
Fe (FeSO4·7H2O), 100 mg; I (KI), 0.4 mg; and Se (Na2SeO3), 0.2 mg.
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4.3. Sample Collection and Measurement

On day 21 of the study, eight chickens per group were selected randomly for blood
sample collection. Isolated serum samples were stored at −20 ◦C. Intestinal samples were
collected after birds were slaughtered under anesthesia. Part of the intestine was fixed in
4% (wt/vol) paraformaldehyde. Some ileal mucosa was scraped and stored at −80 ◦C,
and another was crushed, centrifuged at 600× g for 5 min, and suspended at a density
of 1 × 106 cells/mL in the phosphate-buffered saline (PBS; Sigma-Aldrich, MO, USA) for
subsequent flow cytometry analysis.

4.4. Morphological Analysis

Fixed intestinal samples were dehydrated using graded ethanol, and vitrificated by
dimethylbenzene. Then samples were embedded in paraffin, sliced with a Lecia RM2235
microtome (Leica Biosystems Inc., Buffalo Grove, IL, USA), and stained by hematoxylin-
eosin (HE). The villus height (VH) and crypt depth (CD) were measured using a microscope
imaging system (DM 1000, Leica, Germany) and Image-Pro Plus software 6.0 (Media
Cybernetics, Inc., Washington, DC, USA) to calculate the ratio of the villus height to the
crypt depth (VH/CD).

4.5. Permeability and sIgA Content Analysis

The levels of diamine oxidase (DAO), D-lactate acid (D-LA) in serum, and sIgA content
in ileal mucosa were determined by the chicken-specific enzyme-linked immunosorbent
assay (ELISA) kits (Shanghai Enzyme-linked Biotechnology Co., Ltd., Shanghai, China).

4.6. Antioxidant Parameters

Biochemistry kits (Nanjing Jiancheng Bioengineering Institute, Nanjing, China) were
used to measure the concentrations of superoxide dismutase (SOD), total antioxidant
(T-AOC), and glutathione (GSH) in the ileal mucosa.

4.7. Life Cycle of Ileum Epithelium

After being fixed in cold ethanol, the cell suspension was stained with PI/Rnase
Staining Buffer (BD Bioscience, Franklin Lakes, NJ, USA), resuspended in PSB, and detected
by a CytoFLEX flow cytometer (Backman Coulter, Brea, CA, USA). The formula used to
determine the proliferation index (PI) was (S1 + G2M)/(G0/1 + S + G2M).

4.8. Real-Time Quantificative PCR (RT-qPCR)

The isolation of total ileal RNA followed the user’s guidance of RNAiso Plus (TaKaRa
Bio Inc., Shiga, Japan). The PrimeScript™ reagent Kit with gDNA Eraser Kit (TaKaRa Bio
Inc., Shiga, Japan) was used for the synthesis of the first strand (cDNA). A CFX96 Real-Time
PCR Detection System (Bio-Rad, Hercules, CA, USA) with a SYBR Premix Ex Taq II (TaKaRa
Bio Inc., Shiga, Japan) was used for RT-qPCR and gene expression was analyzed using the
2−∆∆Ct method [72]. The primers for the target genes and β-actin (as a housekeeping gene)
are listed in Table 2.

Table 2. Primers used for qRT-PCR.

Gene Accession Number Primer Sequence (5′–3′) Product Length (bp)

CLDN-1 XM_001013611.2 F: CATACTCCTGGGTCTGGTTGGT
R: GACAGCCATCCGCATCTTCT 100

OCLN NM_205128.1 F: CTCAATCAGCTCAGCCGAC
R: TCTCCTGCTTCTTGCTTTGGTA 130

ZO-1 NM_040706827.1 F: GTAAACCACTGCCTACACC
R: ATATCTTAACTCTACTTCGCACA 90

β-actin NM_205518.1 F: AAGGATCTGTATGCCAACACA
R: AGACAGAGTACTTGCGCTCA 148

CLDN-1: Claudin-1, OCLN: Occludin, ZO-1: zonula occkudens-1, β-actin: reference gene.
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4.9. 16S rRNA Sequencing and Data Analysis

Ileal digesta contents were collected randomly from six broilers per group. Total
genome DNA was extracted using the SDS method. PCR reactions were carried out using a
Phusion® High-Fidelity PCR Master Mix (New England Biolabs, Ipswich, MA, USA). Dis-
tinct regions V3-V4 of 16S rRNA genes were amplified using a specific primer. Sequencing
libraries were generated using a TruSeq® DNA PCR-Free Sample Preparation Kit (Illumina,
San Diego, CA, USA) and sequenced on an Illumina NovaSeq platform after quality assess-
ment. Paired-end reads assembly used FLASH and quality control through data filtration
and chimera removal. Effective tags were finally obtained. The same operational taxonomic
units (OTUs) were formed from sequences that shared a minimum 97% similarity. The
QIIME software (version 1.9.1; GitHub, San Francisco, CA, USA) was used to determine
Alpha diversity including ACE, Chao1, Shannon, Simpson, and Beta diversity, including
PCA and PCoA.

4.10. Statistical Analyses

All data were analyzed by SPSS 27.0 (SPSS Inc., Chicago, IL, USA) and compared
significant differences among groups with one-way analysis of variance (ANOVA) and
Tukey’s multiple comparison tests. Results were presented as mean ± standard error of
mean (SEM). Values of p < 0.05 were considered significant.

5. Conclusions

In conclusion, LPS decreased the intestinal antioxidant ability and impaired the in-
testinal morphological structure, resulting in increased intestinal permeability, diminished
levels of sIgA, debilitated TJ function, impaired enterocytes’ ability to proliferate, and
induced gut microbiota dysbiosis in the ileum. The aforementioned detrimental effects
were ameliorated by dietary FA supplementation through enhancement of antioxidant
ability, augmentation of intestinal barrier integrity, improvement of the mucosal immune
response, and elevated stability of ileal microflora.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/molecules28041720/s1, Figure S1: The data and histology of duode-
num and jejunum.
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