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Abstract: The emergence of multi-drug-resistant Mycobacterium tuberculosis (Mtb) strains has rendered
many of the currently available anti-TB drugs ineffective. Hence, there is a pressing need to discover
new potential drug targets/candidates. In this study, attempts have been made to identify novel
inhibitors of the ribonuclease VapC2 of Mtb H37Rv using various computational techniques. Ri-
bonuclease VapC2 Mtb H37Rv’s protein structure was retrieved from the PDB databank, 22 currently
used anti-TB drugs were retrieved from the PubChem database, and protein–ligand interactions
were analyzed by docking studies. Out of the 22 drugs, rifampicin (RIF), being a first-line drug,
showed the best binding energy (−8.8 Kcal/mol) with Mtb H37Rv VapC2; hence, it was selected
as a parent molecule for the design of its derivatives. Based on shape score and radial plot criteria,
out of 500 derivatives designed through SPARK (Cresset®, Royston, UK) program, the 10 best RIF
derivatives were selected for further studies. All the selected derivatives followed the ADME criteria
concerning drug-likeness. The docking of ribonuclease VapC2 with RIF derivatives revealed the
best binding energy of −8.1 Kcal/mol with derivative 1 (i.e., RIF-155841). A quantitative structure–
activity relationship study revealed that derivative 1’s activity assists in the inhibition of ribonuclease
VapC2. The stability of the VapC2–RIF155841 complex was evaluated using molecular dynamics
simulations for 50 ns and the complex was found to be stable after 10 nsec. Further, a chemical
synthesis scheme was designed for the newly identified RIF derivative (RIF-155841), which verified
that its chemical synthesis is possible for future in vitro/in vivo experimental validation. Overall, this
study evaluated the potential of the newly designed RIF derivatives with respect to the Mtb VapC2
protein, which is predicted to be involved in some indispensable processes of the related pathogen.
Future experimental studies regarding RIF-155841, including the exploration of the remaining RIF
derivatives, are warranted to verify our current findings.

Keywords: molecular docking; tuberculosis; Mycobacterium tuberculosis; root mean square deviation;
radius of gyration; root mean square fluctuation; ADMET
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1. Introduction

Tuberculosis (TB) is still a serious public health concern and is one of the most prevalent
infectious diseases, causing mortality worldwide. According to estimates, in 2020, about
10 million people fell ill with TB worldwide and 1.5 million died from the disease. It is the
thirteenth leading cause of death and the second leading infectious disease after COVID-19
(https://www.who.int/news-room/fact-sheets/detail/tuberculosis (accessed on 27 Octo-
ber 2022)). TB incidence may rise globally in 2022 and 2023 as a result of the COVID-19 pan-
demic [1,2]. A variety of therapeutic options are available for the treatment of TB, including
first-line medicines such as isoniazid (INH), rifampin (RIF), pyrazinamide (PZA), ethambu-
tol (EMB) and streptomycin (SM); however, this drug regimen often fails for various reasons.
The emergence of multidrug-resistant TB (MDR-TB) due to relapse and the spread of the
version of the disease resistant to (at least) isoniazid (INH) and rifampicin (RIF) are causes
for major concern, as these factors necessitate second-line medications that are difficult to
procure and are relatively more toxic and costly than the first-line drugs. The second-line
anti-TB medicines can be sub-divided into the following groups: (i) fluoroquinolones,
e.g., ofloxacin (OFX), levofloxacin (LEV), moxifloxacin (MOX), and ciprofloxacin (CIP),
and (ii) injectable aminoglycosides, e.g., kanamycin (KAN), amikacin (AMK), and capre-
omycin (CAP). In addition, (iii) less-effective second-line medicines include ethionamide
(ETH)/prothionamide (PTH), cycloserine (CS)/terizidone, and p-aminosalicylic acid (PAS).
Hence, the diagnosis as well as treatment of drug-susceptible/single-drug-resistant TB is
vital to avert the emergence of MDR-TB. Additionally, there have been several occurrences
of extensively drug-resistant TB (XDR-TB), wherein Mtb is resistant to either isoniazid
or rifampicin (similar to MDR-TB), any fluoroquinolone, and at least one of the three
second-line anti-TB drugs.

Drug-resistance against TB therapy can be instigated by a variety of conditions, one
of which being a patient’s inability to adhere to the treatment protocols and schedules,
resulting in Mtb isolates that are resistant to currently approved drugs [3]. As a result,
novel strategies for combating TB are required, thereby necessitating a reassessment of the
medical treatment methods and warranting the development of more potent anti-TB drugs.
Thus, the contrivance of a strategy for developing novel antimicrobials by identifying and
investigating novel biological targets is crucial to combat the pathogen. The same can also
be attained by evaluating the existing drugs or their derivatives against the newly identified
bio-targets [4]. Rifampicin (RIF) is one such established anti-TB drug that has shown superb
sterilizing activity and acts by binding with RNA polymerase β-subunit (rpoB), which leads
to the inhibition of the transcription process, thereby killing the pathogen. RIF exclusively
works against actively growing and slowly metabolizing (non-growing) bacilli and causes
comparatively fewer adverse reactions.

Recently, the proteins involved in bacterial cytokinesis have been investigated with
regard to their role as potential targets, as these are necessary for bacterial multiplication
and growth. Ribonuclease VapC2 is one such crucial protein. The VapC2 protein is
a toxic component of the type II toxin–antitoxin (TA) system and acts as RNase. The
expression of VapC2 in M. smegmatis inhibits translation, growth, and colony formation [5].
The VapC2 (Rv0301) protein has 141 amino acids. Small protein domains, such as PIN
(PilT N-terminus), with strictly conserved acidic residues are also found in vapC2 toxin
and form part of the toxin–antitoxin (TA) operon [6]. This domain of Mtb Rv0300 is
similar to Rv2757c, Rv0229c, Rv2546, and others. This PIN domain area is considered
to be a possible Mtb-complex-specific genomic island [7]. The significance of VapC2 and
other cytokinesis proteins in bacterial survival has made them promising novel targets for
antibiotic research [8].

Considering the aforementioned facts regarding the anti-TB potential of RIF and the
indispensable role of Ribonuclease VapC2 for the survival of the pathogen, this study was
conducted with the aim of designing novel RIF derivatives, assessing protein (Ribonuclease
VapC2)–ligand (RIF derivatives) interactions, and evaluating their bioavailability using
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computational approaches to molecular docking and molecular dynamics (MD) simulations
supported with ADMET analysis.

2. Results and Discussion
2.1. Ribonuclease VapC2 Protein

Ribonuclease VapC2 acts as RNase. The TA (toxin–antitoxin) system in Mtb can
contribute to its pathogenesis and also aids in the translation of Mtb [9]. Figure 1 shows
the location of the VapC2 protein. The VapC2 protein has an area (SA) of 1089.651 and a
volume (SA) of 2885.670.
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Figure 1. Binding site prediction of VapC2 protein.

2.2. Ligand Growing Experiment

During the selection of a lead molecule, 22 currently used drugs were docked against
VapC2 protein and RIF was found to possess the best binding energy, namely,−8.8 kcal/mol
(Supplementary Materials: Table S1). Although the binding energies of Bedaquiline
(−8.7 kcal/mol) and Amikacin (−8.7 kcal/mol) were almost the same as RIF, we pro-
ceeded with RIF as it belongs to the first-line anti-TB drug family. The selected RIF drug
was used for the design of inhibitors (RIF-derivatives) against Mtb using SPARK 10.5.6
(Figure 2); as a result, a library of 500 novel RIF derivatives was created. Following the
filtration criteria of the shape score, field score, radial-plot, and Lipinski’s “rule of five”, a
total of 10 RIF compounds (derivatives) were selected for further analysis. The derivative
RIF-155841 was found to be the most active. The structural details of the top 10 selected
RIF derivatives (2–10) are provided in Supplementary Materials: Figure S1.
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2.3. ADME Properties

The bioavailability of the selected RIF derivatives was assessed according to their size,
lipophilicity, solubility, polarity, flexibility, and saturation (Table 1).

Table 1. Pharmacochemical properties of the selected ligands (RIF derivatives).

Parameters Optimum Range Rifampicin RIF
155841

RIF
2074

RIF
21466

RIF
25606

RIF
73574

RIF
92770

RIF
116017

RIF
131214

RIF
138805

RIF
143641

Size MW between
150 and 500 g/mol 822.94 836.84 833.83 764.81 804.84 832.85 804.84 848.91 837.89 804.84 803.85

Number of
Rotatable bonds

Not more than
9 rotatable bonds 5 4 4 4 4 4 4 4 4 4 4

#H-bond
acceptors

No more than
10 hydrogen

bond acceptors
14 17 17 14 15 16 15 15 15 15 14

#H-bond donor
No more than

5 hydrogen
bond donors

6 6 6 6 7 6 6 6 7 7 6

XLOGP3 Between
−0.7 and +5.0 5.46 7.34 4.71 5.53 5.1 4.72 4.96 4.94 5.1 4.16 6.03

ESOL Log S Less than 6 −8.18 −9.64 −7.95 −8 −8.01 −7.95 −7.92 −8.19 −8.21 −7.42 −8.59

TPSA (Å2)
Must be between

20 and 130 220.15 275.08 270.44 227.34 256.02 261.71 244.64 276.81 288.44 260.18 227.59

Fraction of Csp3 Must not be less
than 0.25 0.53 0.45 0.43 0.45 0.44 0.43 0.44 0.43 0.44 0.45 0.42

The bioavailability radar of RIF and its selected derivatives has been depicted in
Figure 3. According to their ADME characteristics, the results for all 10 RIF compounds
were quite favorable [10] and suggest that these derivatives can be orally bioavailable, i.e.,
they will enter the systemic circulation in a tolerable amount when taken orally. RIF and its
derivatives displayed almost similar ADME properties (Table 1).
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2.4. Prediction of Antimicrobial Activity of RIF Derivatives Using QSAR Modeling

The developed QSAR model showed an accuracy of 73.8% (regression coefficient
R2 = 0.738; LOO cross validation regression coefficient R2

cv = 0.65). A total of nine molec-
ular descriptors, viz., GATS6s, MDEC-34, AATS6p, SpMax2_Bhv, AATS8i, maxHsOH,
minHBint8, VR2_Dzs, and MATS8i, were found to be significantly associated with an-
timicrobial activity. The model equation given below shows the relationship between
the experimental in vitro activity [IC50 nM] and the chemical descriptors, which were
dependent and independent variables, respectively.

Predicted Activity Log10 (IC50) = (−1.835869322 × GATS6s) + (0.46431287 ×MDEC-34) + (3.368747089
× AATS6p) + (−5.792245074 × SpMax2_Bhv) + (0.024503123 × AATS8i) + (−0.980285851 ×maxHsOH) +

(−0.143211 ×minHBint8) + (−0.011437386 * VR2_Dzs) + (1.861532898 ×MATS8i) + 18.4871726

Here, R2 is 0.74, which indicates that the correlation between the activity (dependent
variable) and the descriptors (independent variables) for the training data set compounds
was 74% (Figure 4a), and the R2

LOOCV is 0.65 (Figure 4b). The difference between the
predicted activity values and the experimental activity values is shown in Figure 4c. From
the above equation, it is apparent that the molecular descriptors GATS6s, SpMax2_Bhv,
maxHsOH, minHBint8, and VR2_Dzs are negatively correlated with the antimicrobial
activity, i.e., an increase in the values of these descriptors will decrease this activity. Whereas
the descriptors MDEC-34, AATS6p, AATS8i and MATS8i are positively correlated with
antimicrobial activity, i.e., an increase in the values of these descriptors will increase such
activity. Finally, the developed QSAR model was used to predict the toxic potential of the
newly designed RIF derivatives against Mtb H37Rv (Table 2).
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Table 2. Predicted activity of newly designed, selected RIF derivatives.

Name/Structure of RIF Derivative Predicted Activity Log10 (IC50) Predicted Activity (IC50 nM)

RIF 2074 4.42 26,376.59

RIF 21466 4.20 15,997.57

RIF 25606 3.60 3983.70

RIF 73574 4.00 10,022.07

RIF 92770 3.64 4399.95

RIF 116017 4.26 18,004.64

RIF 131214 4.54 34,973.04

RIF 138805 4.44 27,829.03

RIF 143641 5.46 285,648.34

RIF 155841 4.41 25,711.36

2.5. Molecular Docking

The binding site of the VapC2 protein was docked with the 10 selected RIF analogues.
Derivatives 1 and 2 had the best docking values (−8.1 and −7.9) out of the ten selected
compounds (Table 3).

Table 3. Docking energy of top 10 ligands towards VapC2 (PDB ID 3H87).

Target Protein Ligands Docking Energy (kcal mol−1)

3H87

Rifampicin −6.8

155,841 (Derivative 1) −8.1

116,017 (Derivative 2) −7.9

138,805 (Derivative 3) −7.8

92,770 (Derivative 4) −7.8

73,574 (Derivative 5) −7.8

25,606 (Derivative 6) −7.7

131,214 (Derivative 7) −7.6

2074 (Derivative 8) −7.2

143,641 (Derivative 9) −6.9

21,466 (Derivative 10) −6.7

Derivatives 3–6 had nearly the same docking energy of about −7.8 kcal/mol, which
suggested that the nature of their side chains were nearly the same; hence, no major
change was observed in terms of binding affinity. However, Derivatives 7–10 had reduced
binding affinity towards the VapC2 protein, with docking energy values of −7.7, −7.6,
−7.2, −6.9, and −6.7 kcal/mol. RIF had a docking energy value of −6.8 kcal/mol, which
indicated a lower binding affinity in comparison with its derivatives. The docking of RIF
and its derivative 1 with 3H87 protein is shown in Figure 5A–D, respectively. RIF155841
(derivative 1) pose 1 showed the best binding ability (−8.1 kcal/mol) among all the other
poses (Supplementary Materials: Table S3).
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2.6. Protein–Ligand Intermolecular Interaction Analysis

The importance of hydrogen bonding in the docked complex (protein–ligand interac-
tions) was explored further (Table 4). RIF155841-3H87 (VapC2) showed a binding affinity
(M−1) of 8.73 × 105, and this value was 9.72 × 104 for the RIF-3H87 (VapC2) complex
(Table 4). The corresponding ligand–protein interactions are generally characterized by
typical hydrogen bonds, alkyl bonds, and attracting charges. The amino acids leucine,
valine, proline, and arginine were involved in the alkyl interactions with the RIF derivative,
whereas glutamic acid was involved in charge interactions. The introduction of a ring
structure in the side-chain increased the number of charge interactions, which, in turn,
stabilized the complex and led to better binding affinity.
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Table 4. Molecular-docking parameters for the interaction between the target protein and the
corresponding inhibitors.

Donor-Acceptor Pairs Distance (Å) Type of Interaction Docking Energy (kcal mol−1) Binding Affinity (M−1)

3H87-155841 complex

LIG: N–GLU57:OE2 5.2186 Electrostatic

−8.1 8.73 × 105

LIG: N–GLU57:OE2 5.5269 Electrostatic
LIG: N–GLU60:OE1 3.8458 Electrostatic
LIG:H–GLU57:OE1 2.2104 Conventional Hydrogen Bond

LIG:C–VAL14 4.6644 Hydrophobic (Alkyl)
LIG:C–LEU16 3.9970 Hydrophobic (Alkyl)

A: ARG56–LIG 5.4696 Hydrophobic (Pi-Alkyl)
LIG–PRO62 4.3944 Hydrophobic (Pi-Alkyl)

3H87-Rifamycin complex

ARG56:HH22–LIG: O 2.2590 Conventional Hydrogen Bond

−6.8 9.72 × 104

LIG:C–ILE53 4.9650 Hydrophobic (Alkyl)
LIG:C–LEU16 4.8045 Hydrophobic (Alkyl)
LIG:C–PRO62 3.7328 Hydrophobic (Alkyl)
LIG:C–LEU13 3.6771 Hydrophobic (Alkyl)
LIG:C–VAL14 3.9681 Hydrophobic (Alkyl)
LIG–PRO62 4.7323 Hydrophobic (Pi-Alkyl)

2.7. Molecular Dynamics Analysis

The Root-Mean-Square Deviation (RMSD) analysis of the protein–ligand complexes
was computed for 50 nsec. The VapC2-RIF 155841 complex converged and reached stability
at around 12 ns, as illustrated in Figure 6a, and remained stable until the end of the
simulation experiment. For a better understanding of the stability of the docked complexes,
the RMSD was determined for the RIF 155841-3h87 (VapC2) complex. The RIF 155841-3h87
(VapC2) complex had an average RMSD value of 0.4. The alpha carbon atoms of the Vapc2-
155841 complex residues are shown in Figure 6b as a root-mean-square fluctuation (RMSF)
plot. The residues 0–20, 40–60, and 85–95 showed distinct variations in terms of the RIF
155841 compound. A significant constraint was identified, as these areas contain residues
at the binding locations. The RIF-3h87 (VapC2) docked complex was also stable at 12 ns
and its RMSD value was 0.2 (Figure 6c,d).
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atoms against the residue number of VapC2 bound to RIF.

2.8. Chemical Synthesis of Potentially Identified Newly Designed RIF Derivative

Further, the design of a successful chemical synthesis scheme for the identified RIF
155841 derivative against VapC2 verified the practicability of the development of this
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potential anti-TB drug (Figure 7). The proposed chemical synthesis scheme can be fur-
ther implemented for compound synthesis followed by experimental validation studies.
Further in-silico NMR (https://www.nmrdb.org (accessed on 29 October 2022)) and MS
characterization of the RIF 155841 derivative were performed, and pertinent data have
been provided in Supplementary Materials: Figures S2 and S3, respectively.
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3. Materials and Methods
3.1. Protein Retrieval

Ribonuclease VapC2 (UniProt id: P9WFB9) protein was retrieved from Protein Data
Bank (PDB) (https://www.rcsb.org/ (accessed on 23 September 2019), which is available
under the following identification number: PDB ID 3H87 (Rv0301-Rv0300, Toxin–antitoxin
complex from Mtb). Rv0301-Rv0300, an Mtb VapBC TA complex with 1.49-resolution crystal
structure, offers three major functions: anti-toxin inhibition, RNase activity, and promoter
DNA binding. VapC2 gene is a 426 bp nucleotide found in the cytosol and plays a variety
of roles in pathogen virulence, detoxification, and adaptation.

3.2. Prediction of the Binding Site

CASTp 3.0 was used to predict VapC2′s binding pocket [11]. The pocket with the
greatest area and volume was considered to be the most likely binding pocket of the
Ribonuclease VapC2 protein of Mtb.

3.3. Ligand Selection

The 3D structures of 22 known (currently in use) anti-TB drugs (first-line, second-line,
oral, and injectable) were retrieved from the PubChem database (https://pubchem.ncbi.
nlm.nih.gov (accessed on 10 October 2019)) and blind docking was performed against
VapC2 (3H87) protein (Supplementary Materials: Table S1). To design and synthesize a

https://www.nmrdb.org
https://www.rcsb.org/
https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov
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potential derivative(s) against VapC2 (3H87) protein, the best-docked compound (drug)
was chosen.

3.4. Derivative Designing

SPARK (Cresset®, Royston, UK) program was utilized to design novel anti-TB drug
derivatives of RIF [12,13]. To promote ligand design, rifampicin (RIF) was employed
as a reference molecule. Before use, the starting and reference molecules were three-
dimensionally aligned. SPARK was used in conjunction with three databases: ChEMBL
common with 58,924 fragments and Commercial Very Common and Common with 20,561
and 42,778 fragments, respectively. Both the distances and angles were considered when
evaluating the matches. The electrostatic status and similarities of these newly designed
RIF derivatives were compared with the starting structure.

3.5. In Silico Prediction of Drug Likeness, Bioavailability and Toxicity

The SwissADME (http://www.swissadme.ch (accessed on 16 December 2019)) web
application was used to appraise the ADME (absorption, distribution, metabolism, and
excretion) pharmacokinetic properties of the newly designed RIF-compounds [13]. The
SwissADME uses canonical SMILES (simplified molecular input line entry specification)
together with the Bioavailability Radar to describe a chemical molecule. The OpenBabel
API (version 2.3.0, 2012) was used to compute all descriptors and molecular parameters. A
linear skin permeation technique based on Potts and Guy’s quantitative structure–property
relationship (QSPR) model, which links the decimal logarithm of Kp to MW and logP, was
presented in the pharmacokinetics section. To predict Kp, multiple linear regression was
employed [14]. For drug-likeness pre-screening investigations, Lipinski’s “rule of five”
(Pfizer) [15,16] and Ghose’s [17], Veber’s [18], Egan’s [19], and Muegge’s [20] guidelines
were followed. The admetSAR (version 2.0) http://lmmd.ecust.edu.cn/admetsar2.html
(accessed on 11 January 2021) online tool and ADMETLab were used to estimate the
toxicological profiles of the designed RIF derivatives [21,22].

3.6. Quantitative Structure–Activity Relationship (QSAR) Analysis

Data collection: Antimicrobial structure-versus-activity data for Mtb H37Rv were
downloaded from ChEMBL database (https://www.ebi.ac.uk/chembl/ (accessed on 18
June 22)). The retrieved data set was filtered by removing the outlier and redundant data;
at the end, a total of 97 compounds were considered for the training set. Bioactivity was
expressed in the form of IC50 (nM) values. The data were normalized by converting the
values into log10 (base 10) form.

Structure drawing and cleaning: Drawing and geometry cleaning of compounds with
antimicrobial activity were performed using ChemDraw Professional version 15.0 software
(PerkinElmer Informatics, Waltham, MA, USA). The two-dimensional (2D) structures were
transformed into three-dimensional (3D) structures using Chem3D version 15.0. The 3D
structures were then subjected to energy minimization using molecular mechanics-2 (MM2).

Descriptor calculation and model development: Molecular descriptors were calculated using
PaDEL-Descriptor program (http://www.yapcwsoft.com/dd/padeldescriptor/ (accessed on
28 August 2022)). The descriptors were filtered through the observation of an inter-descriptor
correlation matrix. The QSAR model’s generation was based on step-wise multiple linear
regression method. A comparison of experimental and predicted activities of the training
data set based on the QSAR model is shown in Supplementary Materials: Table S2.

Cross-validation of the model: The developed model was cross-validated by Leave-one-
out cross-validation (LOOCV) method. For the data set N, (N − 1) was considered as a
‘training set’ and the remaining one was designated as a ‘test set’. Hence, the training and
testing phases were repeated N times, and in this manner, all the data passed through the
testing process [23].

http://www.swissadme.ch
http://lmmd.ecust.edu.cn/admetsar2.html
https://www.ebi.ac.uk/chembl/
http://www.yapcwsoft.com/dd/padeldescriptor/
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3.7. Molecular Docking

For molecular docking experiments, AutoDock tool was used. Molecular docking
includes phases such as protein preparation, ligand preparation, grid generation, and
molecular docking/interaction analysis. A grid box was created using Autodock version
4.2.6. The grid size was set to 60 × 60 × 60 for points x, y, and z, respectively, with a
grid spacing of 0.375, and the grid center was set at −1.095, −1.554, and 3.894 for x, y,
and z dimensions, respectively. To reduce computing time, a score grid was generated
using the ligand structure. The information on the proteins and ligands, as well as grid
box attributes in the configuration file, were used for docking studies performed through
AutoDock/Vina version 4.2.6. Heuristic local search global optimizer was utilized in
AutoDock/Vina version 4.2.6. During the docking process, both, the proteins and the
ligands were considered ‘rigid’ entities. The data with a positional root-mean-square
deviation (RMSD) of less than 1.0 were grouped and represented by the binding free energy
with the lowest value. The position with the lowest binding energy or affinity was extracted
and aligned with the receptor structure for the future analysis. The ligand pose with the
best binding affinity was extracted from the docked complex [24,25] for further studies.

3.8. Molecular Dynamics Simulation

Molecular dynamics (MD) simulations were performed using GROMACS (Version
5.1.3). Previously retrieved docked complexes were used as ‘input’ for MD simulations.
Protein topology was generated using gromos43a1.ff force field via pdb2gmx module.
Following the introduction of the protein–ligand complex, a unit cell was filled with water.
Afterwards, Na+ was added to neutralize the system, and the steepest descent energy
method was adopted to minimize the system. GROMACS calculates electrostatic and
Van der Waals interactions as well as Particle Mesh Ewald (PME) energy. All complexes
were equilibrated for 100 psec under constant volume (NVT) and constant pressure (NPT)
conditions with position restraints and applied to the ligands at the same time [26]. Later,
the system was subjected to 50 nsec MD production run. The ligand RMSD, C-alpha
backbone, and RMSF graphs were created using XMGRACE version 5.1.25.

3.9. Chemical Synthesis of RIF Derivatives

The best-docked RIF derivative was subjected to design of chemical synthesis process.
The possible chemical synthesis procedure of RIF derivatives is shown in the chemical
scheme provided in Figure 7. The side chain that reacts with RIF can be prepared in
a three-step process. In the first step, formyl chloride can be synthesized using formic
acid and hexachloro acetone. This formyl chloride can undergo multiple reactions and
forms 6-Bromo-1,2,4-triazine. This 6-Bromo-1,2,4-triazine further reacts with Magnesium
under the reaction condition of diethyl ether or tetrahydrofuran P(THF) and 0 ◦C to yield
Grignard reagent. RIF primarily transforms into its Bromo derivative to react further.
Bromo-RIF reacts with Grignard reagent under the reaction condition of FeCl3-THF at
room temperature and thus yields the final RIF derivative. Further, in silico chemical
characterization of RIF derivative was performed to ascertain its chemical properties.

4. Conclusions

Understanding the interactions between proteins and lead molecules is vital to the
development of more targeted and potent inhibitors. The major goal of this study was to
find potential inhibitor(s) of the Mtb VapC2 protein using newly designed RIF derivatives,
followed by molecular docking and MD simulations. This study provides a remarkable
insight into what to expect when these inhibitors interact with the VapC2 protein. Out of
the ten selected RIF derivatives, only one derivative (RIF 155841) scheme was successfully
prepared for chemical synthesis. The newly designed RIF derivative’s ability to inhibit
Mtb H37Rv was predicted by the constructed QSAR model. Molecular docking analysis
showed that all the selected RIF derivatives were found to be active with respect to binding
with the VapC2 protein and showed quite a strong affinity for VapC2. The precise binding
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at the active site of VapC2 protein with RIF derivative 2 and RIF derivative 3 constituted
the greatest binding affinities while RIF derivative 7 bore the lowest such value. All the RIF
derivatives had decent binding energy, especially VapC2-155841, which had the highest
binding energy and ligand efficiency. Bioavailability analysis revealed that all of the RIF
derivatives examined were potentially suitable for oral administration and must be further
explored. In addition, the MD analysis revealed that the VapC2-RIF 155841 complex was
quite stable at approximately 12 nsec. The RMSD values indicated that the binding of the
VapC2-RIF155841 complex had been stabilized without any conformational shift. Overall,
the newly designed RIF derivatives altered VapC2′s structural conformation and showed
good outcomes as a prospective anti-TB drug candidate, while derivative RIF 155841
produced the best results. This computational investigation reveals potential new drug
candidates and their associated drug–target intermolecular interactions, further paving the
way for the experimental validation of the current findings.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28041652/s1, Figure S1: Chemical structures of RIF
derivatives 2–10; Figure S2: NMR characterization of derivative 1 (RIF 155841); Figure S3: Mass
spectroscopic characterization data of derivative 1 (RIF 155841); Table S1: Binding energy of known
Mtb drugs with VapC2 protein through blind docking; Table S2: Training dataset with experimental
and predicted values; Table S3: Binding energy of 155841_3h87 (VapC2) complex with all poses.
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