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Abstract: Herein, a molecularly imprinted polymer (MIP) was prepared using bulk polymer-
ization and applied to wastewater to aid the adsorption of targeted template molecules using
ethylene glycol dimethacrylate (EGDMA), methacrylic acid (MAA), acid black-234 (AB-234), 2,2′-
azobisisobutyronitrile (AIBN), and methanol as a cross linker, functional monomer, template, initiator,
and porogenic solvent, respectively. For a non-molecularly imprinted polymer (NIP), the same proce-
dure was followed but without adding a template. Fourier-transform infrared spectroscopy (FT-IR),
scanning electron microscopy (SEM), and a surface area analyzer were used to determine the surface
functional groups, morphology and specific surface area of the MIP and NIP. At pH 5, the AB-234
adsorption capability of the MIP was higher (94%) than the NIP (31%). The adsorption isotherm data
of the MIP correlated very well with the Langmuir adsorption model with Qm 82, 83 and 100 mg/g at
283 K, 298 K, and 313 K, respectively. The adsorption process followed pseudo–second-order kinetics.
The imprinted factor (IF) and Kd value of the MIP were 5.13 and 0.53, respectively. Thermodynamic
studies show that AB-234 dye adsorption on the MIP and NIP was spontaneous and endothermic.
The MIP proved to be the best selective adsorbent for AB-234, even in the presence of dyes with
similar and different structures than the NIP.

Keywords: adsorption; acid black-234 dye; environment; selectivity

1. Introduction

The annual productivity of dyes is estimated to be one million tons. Textile industry
produces large amount of dirty effluent through dyeing, washing, and other procedures.
Synthetic dyes are the most dangerous compounds in wastewater because they are fre-
quently made synthetically and have intricate aromatic structures that demonstrate light,
oxidation, heat, and water stability. Dyes induce a variety of conditions, including cancer,
allergies, mutation, dermatitis, and skin irritation. Therefore, removing dyes and other
pollutants from the environment is critical for preventing contamination [1]. The quantity
of dyes released into the water, on the other hand, prevents deoxygenating capacity and
sunshine; therefore, aquatic life and biological activities are affected [2]. The dyes used
nowadays are generally cancer-causing and have negative environmental consequences [3].
These dyes are made up of an aromatic chemical and a metal, and their photosynthetic
activities are harmful. The majority of mutagenic activities are linked to colors (dye) used in
the textile industry [4]. For the treatment of textile wastewater, both physical and chemical
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methods are used. These procedures include oxidation, membrane technology, floccula-
tion, coagulation, and adsorption, all of which are expensive and may result in secondary
contamination as a result of excessive chemical usage. Other less expensive procedures
for decolorization include ozonation, electrochemical destruction, and photo catalysis [5].
The most practical way to remove dye is biological therapy, which uses a large number
of microorganisms in the declaration and mineralization of a variety of colors. It is quite
inexpensive, and the end result of biological treatment is non-toxic. However, because of
the limited biodegradability of dyes, there is less flexibility in design and operation [6]. As
a result, adsorbents such as activated carbon are employed for dye, although they are not
commonly used because of their expensive cost. Peat plum kernels, wood coal resin, and
chitosan fiber are some of the adsorbents employed in different industrial pollutants. Few of
these adsorbents are widely accessible and inexpensive, but they cannot completely remove
dyes such as activated carbon; therefore, it is necessary to develop low-cost adsorbents that
may be utilized in place of activated carbon [7–9].

To conclude, a molecularly imprinted polymer (MIP) is the best choice for removing
dyes from a variety of sources because of its specificity and selectivity, as well as its low cost
and simplicity of preparation. Making a molecularly imprinted polymer (MIP) involves
combining a template molecule with a functional monomer in the presence of an initiator
and a cross linker to generate a polymer that is extremely specific and selective to the
template molecules. After washing, cavities comparable in shape and size to the template
molecules are generated from the polymerization of monomers and the cavities left in the
polymer matrix. Because of their great selectivity even in complicated samples, MIPs used
in dyes are utilized as a sorbent for solid phase extraction [10].

The most commercial application of an MIP is in the sample preparation for envi-
ronmental, food analysis and environmental analysis. Clenbuterol solid-phase extraction
(SPE) material is currently available from a Swedish manufacturer [11]. MIPs are popular
recognition elements in sensors, and many transducers are employed in conjunction with
it [12]. The quartz crystal microbalance, an acoustic transducer sensor, has gained a lot
of popularity due to its inexpensive cost and ease of use [13]. The most often utilized
universal functional monomer for the preparation of an MIP is methacrylic acid (MAA),
and its binding capacity is determined by the bond sites and second pore size of polymeric
substances [14]. Ethylene glycol dimethacrylate (EGDMA) is widely utilized as a cross
linker, and the cross linker influences the hardness, strength, and selectivity of an MIP. The
type and quantity of cross linkers have significant impacts on the polymerization process.
If the amount is modest, an unstable polymer will be developed, while a larger amount will
lower the number of recognition sites [15]. Acetonitrile, chloroform, dichloroethane, and
methanol are among the most often-used solvents for MIP synthesis [16]. The imprinting
efficiency, structural adsorption, and interaction between the functional monomer and
template will all be affected by the porogen solvent. The use of a less polar porogen solvent
promotes the formation of functional-monomer–template complexes, whereas using a
more polar porogen solvent disrupts complex interactions [17]. While azo and analogue
compounds are applied for the synthesis of an MIP, azobisisobutyronitrile (AIBN) is the
best initiator since its decomposition temperature ranges from 50 to 70 ◦C [18].

There are various methods for MIP preparation, such as suspension polymerization,
precipitation, etc., but the most commonly used method for MIP synthesis is bulk polymer-
ization, in which the template is printed in the polymer matrix and the template monomer
must be completely removed after polymerization. To convert an MIP to a tiny powder, me-
chanical breakup and crushing using a mortar and pestle are required [19]. The purpose of
this study was to develop an extremely selective MIP adsorbent for acid black-234 (AB-234)
dye, as well as to explore the selectivity, rebinding, and use of MIPs in various effluents.
The MIP and NIP were produced using bulk polymerization for the rapid determination of
AB-234 dye in water samples, but the AB-234 dye showed more selectively toward the MIP
than NIP due to the recognition property of the MIP network. The adsorptive mechanism
of AB-234 removal by MIP is summarized in Figure 1.
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Figure 1. Adsorptive mechanism scheme of AB-234 dye on an MIP.

2. Results and Discussion
2.1. Choice of the Reagents

For the synthesis of a high-affinity molecularly imprinted polymer (MIP) the following
conditions are necessary:

Polar porogen solvent and template, high nominal level of cross linker for stable
polymer, and one or more functional monomers [20].

2.2. Characterization
2.2.1. Characterization by SEM

Scanning electron microscopy (SEM) may be used to determine the size and shape of
the MIP and NIP. The use of SEM to analyze the MIP and NIP particles has been reported
in several studies [21,22]. For careful consideration of sample morphology and smoothness,
SEM is an essential and valued analytical approach. The morphologies of unwashed and
washed MIP and NIP samples are shown in Figure 2. The non-covalent precipitation
polymerization process of the MIP was responsible for permeability smoothness, with an
extremely small, uniform, spherical, and equal size and shape, while no smoothness was
observed for the NIP, as shown in the figures. Because the binding kinetic was exposed to
the surface, the consistent size of the MIP revealed that the sample enabled the removal of
an efficient template. The unwashed sample dye bonded to the polymer without a clear
and uniform size and behaved like crystal reagents.

2.2.2. Characterization by FTIR

FTIR study was carried out within range of 4000–500 cm−1 and describes the surface
groups of a polymer (MIP) as shown in Figure 3. The starting materials of the MIP and NIP,
such as the functional monomer, cross linker, initiator, etc., were the same. Therefore, the
overall data of both graphs has an approximate similarity. The peaks at 3400 cm−1 and
2900 cm−1 were caused by the presence of OH and CH, respectively, whereas stretching at
1720 cm−1 and 1200 cm−1 was caused by the presence of C=O and C-O, respectively [23,24].
Additionally, the peaks stretching at ~1400 cm−1, ~1300 cm−1, ~1200 cm−1 are caused by the
presence of -CH2, -CH3, and C-O, respectively. The MAA and EGDMA C=C double bond
stretching 1637 cm−1 peak was absent in the MIP and NIP, indicating that polymerization
was successfully carried out.
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Figure 3. FTIR spectra of the MIP (a) and NIP (b).

2.2.3. Brunauer–Emmett–Teller Analysis

The porosity and specific area of a chosen AB-234 molecularly imprinted polymer was
determined via BET analysis. The specific surface area of the MIP was 232.321 m2/g, with
a pore volume of 0.056 cc/g and a pore radius of 12.245 (Å), while the NIP has specific
surface area, volume and pore radius 32.034 m2/g, 0.0074 cc/g, and 3.441 (Å), respectively
as given in Table 1. For the MIP, a greater surface area suggests that unique cavities were
generated for AB-234 identification. The MIP has an enhanced adsorption capability due to
its larger surface area [25]. The volume ratio of the open pore to total volume is referred to
as a particle’s porosity [26]. The template in polymerization has the greatest impact on the
surface area and porosity of the MIP. The wider pore of the MIP indicates that the structure
of the MIP is not more compact compared to the NIP. The typical pore diameter of the MIP
is between 2 and 5 nm, indicating that the polymer is mesoporous [27].

Table 1. BET analysis of MIP.

Polymer Specific Surface Area (m2/g) Pore Volume (cc/g) Pore Radius (Å)

MIP 232.321 0.056 12.245

NIP 32.034 0.0074 3.441

2.3. Effect of Adsorbent Mass and pH

The effect of the adsorbent on the adsorption of acid black-234 dye was investigated,
and the polymer dosage changed from 2 to 12 mg. The adsorption rapidly increased from 2
to 6 mg at beginning for both the MIP and NIP, but no influence on dye adsorption was
observed after 8 mg. Therefore, maximum adsorption (94%) occurred at 8 mg. The pH of
the solution was found to range from 2 to 7. It was observed that adsorption was small at
a low pH and increased with increasing pH; hence, the maximum adsorption (94%) was
recorded at pH 5 as shown in Figure 4. Therefore, this pH was chosen for further study.
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Figure 4. Effect of mass (a), pH (b) and temperature on adsorption of AB-234 dye on the MIP and
NIP (c).

2.4. Contact Time Effect of AB-234 Dye Adsorption on the MIP and NIP

Kinetics is important to for obtaining information regarding the rate controlling and
binding mechanism. Therefore, the contact time was studied as a function of temperature.
The effect of contact time (Figure 5) on adsorption was determined at different times (min),
while keeping other parameters constant (pH, dose, volume). The adoption was studied
at 283K, 298K and 313K, which indicates that the removal of dye is time-dependent for
both the MIP and NIP. The results show a gradual increase in the adsorption of dye in the
MIP when the contact time increased from 5 to 20 min, followed by a considerable increase
in adsorption (94%) at 40 min. After that, no change was observed; therefore, this time
was used throughout the study. In general, the dye adsorption process is divided into
two phases: a rapid initial sorption phase, followed by a protracted period of relatively
slower adsorption [28]. Therefore, initially, uptake of dye was fast, especially during the
first 35 min, most likely due to the exposure of most of the binding sites on the MIP.

2.4.1. Pseudo First Order Kinetic Model

A pseudo–first-order kinetic model provides information about the rate of occupied
and unoccupied sites, in which different parameters were calculated using the following
equation [29]:

log (qe − qt) = log qe − k1
t

2.303
(1)

The amounts of AB-234 dye (mg g−1) adsorbed at time t (min) and at equilibrium are
represented by qt and qe, respectively. The pseudo–first-order constant k1 (min−1) was
calculated using a graphing log (qe − qt) against “t”. Figure 6a describes a pseudo-first
order kinetic model, with various parameters listed in Table 2. The qe (cal) and qe (exp)
do not match; therefore, the values show that the adsorption of acid black-234 dye in the
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MIP does not follow first-order kinetics because the regression coefficient R2 = 0.7037 is far
from unity.
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Table 2. Different kinetic models’ parameters for the adsorption of AB-234 dye on MIP.

Parameters 283 K c 313 K

Pseudo first-order
K1 0.0643 0.0729 0.0841

Qe (calculated) 9.342 11.543 14.768
Qe (experimental) 41.654 42.545 42.653

R2 0.9626 0.9709 0.9799
Pseudo second-order

K2 0.0069 0.0127 0.0141
Qe (calculated) 43.785 44.654 44.876

Qe (experimental) 41.654 42.545 42.653
R2 0.9945 0.994 0.9783

Intraparticle diffusion
Kid (mg/g min−1/2) 3.04 2.32 1.96

C 28.87 34.38 37.083
R2 0.9764 0.9508 0.9683

2.4.2. Pseudo–Second-Order Kinetic Model

Pseudo–second-order kinetic model was used to further analyze the kinetic data. The
given equation shows the linear version of pseudo–second-order kinetic model [30].

t
qt

=
1

k2 qe
2 +

t
qe

(2)

The pseudo–second-order constant k2 (mg g−1 min−1) is computed from the plot of
t/qt vs. “t” in the above equation. The pseudo–second-order model was used to determine
the adsorption of AB-234 dye in the MIP. The R2 value for second-order kinetics is larger
than the value of pseudo–first-order kinetics, and qe (cal) and qe (exp) have a similar
relationship. As a result, we may infer that the pseudo–second-order model’s adsorption
data have the best fit. These kinetic data reveal that AB-234 dye adsorption is affected by
both the adsorbent and the adsorbate because the regression coefficient R2 value 0.9667 is
close to unity. The various parameters obtained from this plot are shown in Table 2 and
Figure 6b, illustrate that the acid black-234 dye follows pseudo–second-order kinetics.

2.4.3. Intraparticle Model

Weber and Morris claim that, instead of the contact period “t”, the sorption capacity
varies according to t1/2 Equation (4) contains the linear expression [31].

qt = kid t1/2 + C (3)

where C is intercept and Kid is the rate constant. Multiple stages are involved in the
adsorption of dye (AB-234) from an aqueous fluid onto the polymer surface. This process
includes the molecular diffusion of sorbate molecules from the bulk phase to the adsorbent
outer surface, also known as film or external diffusion. Internal diffusion occurs in the
second stage, in which sorbate molecules travel from the MIP surface to the interior
locations. The adsorption of sorbate molecules from interior locations to inner pores is the
third phase [32].

Intra particle diffusion plot as shown in Figure 6c; however, it fails to pass from its
origin due to a difference in the rate of mass transfer between the beginning and final
temperatures. Furthermore, such a large divergence from the origin indicates that pore
diffusion is not the primary rate control step [33]. When the value of “C” is compared to
the rate constant, it is clear that intraparticle diffusion is not just a rate-limiting process,
while AB-234 dye adsorption on the MIP is a complicated process governed by surface
sorption and intraparticle diffusion.
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2.5. Binding Isotherm Models of Acid Black-234 Dye Adsorption

The adsorption isotherm provides information about the mechanism of the adsorption
process’. The isotherms are used to classify adsorption systems because they demonstrate
the adsorption process. The monolayer formation is generally defined by the Langmuir
isotherm, and the non-covalent behavior of the MIP is characterized by the Freundlich
model [34]. As a result, the Langmuir and Freundlich isotherms were used to assess the
adsorption data.

2.5.1. Langmuir Model

The Langmuir model describes a monolayer as an adsorbate surface that is uniform
and homogeneous. Adsorption happens at a particular homogenous spot inside the body
of the adsorbent. Equation (4) describes the Langmuir model [35]:

Ce

Qe
=

1
KLQm

+
Ce

Qm
(4)

where Ce (mg-L−1) represents the dye’s liquid-phase equilibrium concentration; Qm
(mg-g−1) represents the adsorbent’s maximum adsorption capacity; KL (L-mg−1) rep-
resents the amount of dye adsorbed, the energy or net enthalpy of adsorption; and Qe
(mg-g−1) represents the quantity of dye adsorbed. Ce/Qe and Ce must have a linear con-
nection with a slope of 1/Qm and an intercept of 1/(Qm KL). Table 3 shows the KL, Qm,
and R2 values derived from the curve (Figure 7a). The MIP has a maximal adsorption
capacity (Qmax) 100 mg g−1 at 313K. The Langmuir model provides the R2 value that best
fits the experimental result as given in Table 3.

Table 3. Parameters of Langmuir and Freundlich models for the adsorption of AB-234 on the MIP.

Parameters 283 K 298 K 313 K

Langmuir model
Qm (mg-g−1) 82.23 83.04 100

KL 0.207 0.125 0.789
R2 0.9862 0.978 0.9844

Freundlich model
Kf (mg-g−1) (L mg-g−1) 3.008 10.543 12.68

1/n 0.6497 0.653 0.7893
R2 0.9358 0.9406 0.9355
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2.5.2. Freundlich Model

The adsorption characteristics of multilayer and heterogeneous surfaces with uneven
adsorption sites and unusually accessible adsorption energy were determined using the
Freundlich isotherm. The Freundlich isotherm model equation is shown below [36].

ln qe = ln Kf +
1
n

ln Ce (5)

where Ce (mg-L−1) is the liquid phase concentration at equilibrium, qe mg-g−1 is the dye
adsorption quantity, Kf (mg-g−1) is a relative indication of adsorption capacity, and 1/n
is the surface heterogeneity factor indicating adsorption type. For favorable adsorption,
the 1/n ratio should be less than 1, whereas for unfavorable adsorption, the value should
be larger than 1, indicating poor bond adsorption [37]. Figure 7b depicts the Freundlich
model, while Table 3 lists the various parameters.

2.6. Thermodynamic Study

Thermodynamic experiments were conducted to examine the dye (AB-234) adsorption
process on the MIP. In this study, a significant judgment must be made on whether the
mechanism is spontaneous or not. The following equation was used to determine many
thermodynamic parameters, including standard free energy (G◦), enthalpy (H◦), and
entropy (S◦) [38].

log Kc =
∆S◦

2.303R
− ∆H◦

2.303RT
(6)

∆G◦ = ∆H◦ − T∆S◦ (7)

where T is the specific heat, R is the universal gas constant (8.314 J-mol−1K−1), and Kc
(Lg−1) is the thermodynamic equilibrium constant defined by qe/Ce. The intercept and
slope of a plot log Kc vs. 1/T were used to calculate the values of ∆S◦ and ∆H◦ (Figure 8).
Table 4 shows the different thermodynamic parameters that were examined at various
temperatures. The value of ∆G◦ was found to be negative at all temperatures, indicating
that dye (AB-234) adsorption in the MIP was spontaneous [39]. The value of ∆G◦ decreased
as the temperature increased, indicating that a higher temperature enhances dye (AB-
234) adsorption in the MIP. The positive sign of ∆H◦ indicates that this adsorption is
endothermic, because with the increasing temperature, the rate of adsorbate diffusion
on the adsorbent also increased. Additionally, a positive ∆S◦ value shows that disorder
increased during adsorption.
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Table 4. Different thermodynamic parameters for AB-234 dye.

Temperature (K) ∆G◦ KJmol−1 ∆H◦ KJmol−1 ∆S◦ KJmol−1

288 −1439

7.74 31.52298 −1915

308 −2516

2.7. Selectivity Study

A competitive adsorption study was carried out in the presence of dyes, such as AB1,
BB3, safranin, and acid yellow 76, that are both comparable and dissimilar in structure
to the template (AB-234) to confirm the selective cavities in a polymer. The MIP should
be more selective for the specific template (AB-234) than the NIP. At optimum conditions,
100 mg/L of AB2-34 dye and the interfering dyes were added to each Erlenmeyer flask,
and the mixture was agitated in a thermostat shaker at 130 rpm. At a certain time, samples
were withdrawn, the absorbance was measured using a UV–vis spectrophotometer, and
the quantity of dye adsorbed on the polymer was estimated by subtracting the final dye
concentration from the starting dye concentration in the mixture. MIP has a 94% selectivity
for AB-234, compared to other dyes with adsorption rates ranging from 5% to 23%. There-
fore, the selectivity results confirm that MIP cavities are solely selective for the template
(AB-234) molecule. The results are graphically shown in Figure 9.

Molecules 2023, 28, x FOR PEER REVIEW 12 of 17 
 

 

 

Figure 9. Selectivity of MIP towards different similar structures dyes. 

2.8. Distribution Ratio and Imprinting Factor 

The contact and strength of the template molecule (AB-234) with the polymer 

(MIP/NIP) is described by the imprinting factor. It appears that the MIP and NIP have 

recognition properties for a certain analyte. Equation (9) was used to derive the im-

printing factor (IF) for a molecularly imprinted polymer: 

IF ∝ =
QMIP

QNIP
 (8) 

where QMIP denotes MIP adsorption capacity for the dye (AB-234), and QNIP denotes NIP 

adsorption capacity for AB-234. The following equation was used to calculate the distri-

bution ratio. 

Kd =
(Ci−Cf

) 

Cf m
V (9) 

where Kd (L/g) denotes the distribution coefficient, Ci the initial dye concentration, Cf the 

final dye concentration, V the volume used, and “m” the polymer mass (MIP/NIP) [40]. 

The obtained results have been summarized in Table 5. 

Table 5. Adsorption parameters for dyes (MIP/NIP). 

Dyes 
% Removal 

Adsorption Ca-

pacity  

Q mg/g 

Distribution Coef-

ficient 

Kd (L/g-) 

Imprinting Factor 

IF ∝=
𝑸𝑴𝑰𝑷

𝑸𝑵𝑰𝑷
 

Selectivity 

S=
𝑰𝑨𝑩𝟐𝟑𝟒

𝑰 𝒊𝒏𝒕𝒆𝒓𝒇𝒆𝒓𝒊𝒏𝒈 

MIP NIP MIP NIP MIP NIP 

AB-234 94 31 41.1 8.0 0.53 0.06 5.13 - 

AB-1 23 25 5.21 6.31 0.42 0.27 0.82 6.25 

SEFRANIN 18 26 4.32 6.61 0.02 0.01 0.65 7.89 

AY-76 9.2 14 2.35 4.30 0.21 0.15 0.54 9.50 

BB-3 7 13 1.38 3.15 0.17 0.11 0.43 11.9 

2.9. Application of MIP to Adsorb Dye (AB-234) 

The polymer was applied as a solid-phase adsorbent material in the preconcentra-

tion of AB-234 from river water and effluent samples in order to test the efficiency of the 

MIP produced in real environmental samples. In a total volume of 10 mL, aliquots of 

these three samples were spiked with known volumes of AB-234 dye standard solution at 

concentrations of 50, 75, and 100 mg/L, with agitation for 40 min. Given the MIP’s highest 

retention capability of 94.67% (±0.1) while the recoveries were between 84 and 94%, as 

shown in Table 6. Taking into account the complexity of the examined samples, these 

results reveal that the imprinted material shows an outstanding sorption capability and 

ability to give unique recognition of the analyte. 

0

20

40

60

80

100

AB234 AB1 AY76 Cefranine BB3

%
 A

d
so

rp
ti

o
n

 

Different dyes

MIP NIP

Figure 9. Selectivity of MIP towards different similar structures dyes.

2.8. Distribution Ratio and Imprinting Factor

The contact and strength of the template molecule (AB-234) with the polymer (MIP/NIP)
is described by the imprinting factor. It appears that the MIP and NIP have recognition
properties for a certain analyte. Equation (9) was used to derive the imprinting factor (IF)
for a molecularly imprinted polymer:

IF ∝=
QMIP
QNIP

(8)

where QMIP denotes MIP adsorption capacity for the dye (AB-234), and QNIP denotes
NIP adsorption capacity for AB-234. The following equation was used to calculate the
distribution ratio.

Kd =
(Ci −Cf)

Cf m
V (9)

where Kd (L/g) denotes the distribution coefficient, Ci the initial dye concentration, Cf the
final dye concentration, V the volume used, and “m” the polymer mass (MIP/NIP) [40].
The obtained results have been summarized in Table 5.
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Table 5. Adsorption parameters for dyes (MIP/NIP).

Dyes
% Removal Adsorption Capacity

Q mg/g
Distribution Coefficient

Kd (L/g) Imprinting Factor
IF ∝= QMIP

QNIP

Selectivity
S= IAB234

I interfering
MIP NIP MIP NIP MIP NIP

AB-234 94 31 41.1 8.0 0.53 0.06 5.13 -

AB-1 23 25 5.21 6.31 0.42 0.27 0.82 6.25

SEFRANIN 18 26 4.32 6.61 0.02 0.01 0.65 7.89

AY-76 9.2 14 2.35 4.30 0.21 0.15 0.54 9.50

BB-3 7 13 1.38 3.15 0.17 0.11 0.43 11.9

2.9. Application of MIP to Adsorb Dye (AB-234)

The polymer was applied as a solid-phase adsorbent material in the preconcentration
of AB-234 from river water and effluent samples in order to test the efficiency of the
MIP produced in real environmental samples. In a total volume of 10 mL, aliquots of
these three samples were spiked with known volumes of AB-234 dye standard solution
at concentrations of 50, 75, and 100 mg/L, with agitation for 40 min. Given the MIP’s
highest retention capability of 94.67% (±0.1) while the recoveries were between 84 and
94%, as shown in Table 6. Taking into account the complexity of the examined samples,
these results reveal that the imprinted material shows an outstanding sorption capability
and ability to give unique recognition of the analyte.

Table 6. Recovery test of the MIP using different samples in a province of Pakistan (KPK).

Samples Added (mg/L) Found in MIP (mg/L) Recovery (%) RSD (%)

Textile industry
effluent

50 46.51 ± 0.04 93.02 0.33

75 71.02 ± 0.07 94.60 0.34

100 94.8 ± 0.1 94.8 0.39

River 1

50 45.43 ± 0.03 90.86 0.30

75 71.05 ± 0.1 94.66 0.54

100 86.62 ± 0.09 86.62 0.77

River 2

50 43.62 ± 0.02 87.24 0.04

75 66.54 ± 0.1 88.01 0.49

100 84.89 ± 0.04 84.89 0.61

2.10. Reuse of MIP for AB-234 Dye

The continuous use of the MIP was determined in five cycles of adsorption–desorption
under optimal conditions. Table 7 shows that, between the first and fifth cycles, roughly
14% of the AB-234 dye rebinding was lost. According to the results, the MIP could be
reused at least five times without significantly lowering its adsorption capability.

Table 7. Repeated use of MIP on adsorption capacity.

Times 1 2 3 4 5

Q (mg g−1) 94 92 89 84 80

A comparison present adsorbent capacity with those cited in literature in given in
Table 8.
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Table 8. Adsorptions capacity of acid black-234 dye on different adsorbents.

Adsorbents Adsorption Capacity (mg-g−1) Ref

Polyaniline/chitosan (PAn/Ch) 74.1 [32]

Starch (PPy/St) 62.5 [41]

Polyanaline/sugarcane begasse (PAn/SB) 52.6 [41]

MIP 100 Current study

3. Materials and Methods
3.1. Materials

All solvents and dyes were analytical-grade and were supplied by Sigma-Aldrich
(Taufkirchen, Germany). The acid black-234 dye (AB-234) as a template, methacrylic acid
(MAA) as a functional monomer (Dae-Jung, Korea), azobisisobutyronitrile as a reaction
initiator, methanol as a porogenic solvent (Chengdu, China), acetone and methanol mix-
ing solution as a washing solvent (Merck, Darmstadt, Germany), and ethylene glycol
dimethacrylate (EGDMA) as a cross linker (J.T. Baker, New York, NY, USA). The MIP’s
selectivity for AB-234 was tested using AB1, BB3, safranin, and acid yellow-76. The water
was deionized using a Milli-Q system (Chennai, India). The chemical structures of the dyes
are shown in Figure 10.
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3.2. Characterization of the MIP and NIP

The structure of polymer was studied using FTIR in the range of 4000–500 cm−1;
Vertex 70 (Shimadzu, Kyoto, Japan) and SEM (JSM-IT500) were used to assess the size and
shape of the MIP and NIP; and a UV–Vis 1800 spectrophotometer was used to quantify
absorbance using quartz cuvettes (Shimadzu, Japan). Brunauer–Emmett–Teller theory was
used for the surface area calculation from the adsorption of nitrogen (8 mg MIP and NIP,
N2, 70 ◦C, 5 h) (ASAP 2010).

3.3. Preparation of the MIP and NIP
Preparation of the MIP for AB-234 Dye

For the synthesis of the MIP, 0.215 g of acid black-234 dye was dissolved in 10 mL
of methanol and stirred for 10 min. Then, 150 mmol of MAA was added and left to rest
for two hours, followed by the addition of 225 mmol of EGDMA, and then left for 15 min.
Then, 2 mg of initiator (ABIN) was added and maintained in a water bath for 24 h at 60 ◦C.
The NIP was synthesized using same procedure but without dye. The sample was removed
from the flask after 24 h of heating, and the polymer was filtered. After filtering, the
polymer was washed five to six times in a soxlet system with a methanol/acetone solution
(8:2, v/v) to completely remove the template. Finally, a pure polymer was produced, which
was then dried at room temperature. The synthesis protocols of the MIP and NIP are shown
in Table 9.

Table 9. Polymerization mixture of MIP synthesis.

Reagents Chemicals MIP and NIP Composition (Mass
and Volume)

Template AB-234 MIP NIP

Monomer MAA 0.215 g -

Cross Linker EGDMA 150 mmol 150 mmol

Solvent Methanol and Acetone 225 mmol 225 mmol

Initiator AIBN 10 mL 10 mL

Template AB-234 2.00 g 2.00 g

3.4. Binding Adsorption Analysis

MIP binding was studied using 20 mL vials containing 8 mg of an MIP and 10 mL
of 100 mg/L dye by adjusting parameters, such as mass, concentration, pH, and time.
After 40 min on a centrifuge at 15,000 rpm, the supernatant was filtered through a 0.45 µm
membrane before UV–Vis spectrophotometric measurement. The following equation was
used to calculate the binding adsorption capacity:

Q =
(C0 −Ce)

V
m (10)

The initial dye concentration is Co (mgL−1), the equilibrium dye concentration is Ce
(mgL−1), the experimental adsorption quantity is Q (mg-g−1), the volume of solution is V,
and the mass of the MIP is m (g).

3.5. Selectivity Study

A competitive adsorption study was carried out in the presence of molecules that are
similar and different in structure to AB-234 dye in order to assess the creation of selective
cavities in polymer. Different dyes were used in this case, including acid black-1 (AB-1),
safranin, acid yellow-76 (AY-76), and BB-3. For each compound’s selectivity recognition
assays, 8 mg of the MIP was dissolved in a 10 mL solution (pH 5), containing 100 mg/L of
each dye and equilibrated for 40 min. After stirring the concentration of these dyes in the
supernatant was determined using a UV–Vis spectrophotometer.
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4. Conclusions

The current study looks at how to employ a synthetic polymer (MIP) to remove a
specific analyte (AB-234) from various water samples under optimal conditions. Compared
to other dyes—acid black-1 (AB1), acid yellow-76 (AY-76), safranin, and BB-3, which had
23%, 18%, 9.3%, and 7% selectivity, respectively, toward a specific analyte— AB-234 had
about 94% selectivity toward a specific analyte. The adsorption of AB-234 on NIP was only
31%, which indicates that the MIP is more specific for AB2-34 dye due to the formation
of complementary cavities. The MIP followed second-order kinetics and the Langmuir
model, according to kinetic and isotherm analyses. Therefore, a high adsorption (94%) was
found on 313 K. The negative value of ∆G◦ shows the process to be spontaneous, while
the ∆H◦ and ∆S◦ demonstrates the endothermic and feasible nature of the process. The
MIP can be easily and repeatedly be recovered from the solution using the centrifugation
process, without the immense loss of its selectivity. Therefore, the MIP synthesized here
could be presented as a possible material for the separation of AB-234 dye from wastewater
with immense selectivity and great recovery.
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