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Abstract: In this study, an ionogel electrolyte (PAIM-X) consisting of 1-vinyl-3-methylimidazole bis
(trifluoromethyl sulfonyl) imide ([VMIM][TFSI]), Polyacrylamide (PAAm), and MXene were pre-
pared. The conductivity of PAIM-X and integral area of the voltammetric curve of the supercapacitor
(PAIMSC) were improved by adding MXene. The addition of [VMIM][TFSI] enhanced the conduc-
tivity and applicable temperature of the ionogel electrolyte. At 90 ◦C, the conductivity of PAIM-4
can reach 36.4 mS/cm. In addition, spherical polyaniline with good electrochemical properties was
synthesized and coated on graphite paper as an active substance. An all-solid-state supercapacitor
was composed of PAIM-4, polyaniline electrode with 1.2 V potential window, pseudo-capacitors
and high quality capacitors. The solvent 1-ethyl-3-methylimidazolium bis (trifluoromethyl sulfonyl
imide) ([EMIM][TFSI]) and methanesulfonic acid (MSA) were introduced into the ionogel to promote
the redox reaction of polyaniline (PANI). The mass specific capacitance of PAIMSC was 204.6 F/g and
its energy density could reach 40.92 Wh/kg, which shows great potential for practical application at
high temperature. The device had good rate performance and cycle performance, and its capacitance
retention rate was still 91.56% after 10,000 cycles. In addition, the supercapacitor can work within
the temperature range of −20 ◦C to 90 ◦C. These excellent electrochemical properties indicate that
PAAm/IL/Mxene-X has broad application space and prospect.

Keywords: ionogel; Mxene; high temperature; flexible supercapacitors

1. Introduction

With the continuous progress of science and technology, new energy equipment has
come into being. SCs have been widely used in various fields due to their excellent high
energy density, good long-term stability, and environmental friendliness [1,2]. However, the
low operating voltage and capacitance of SCs limit their applications. Liquid electrolytes
with wide potential windows are often used [3]. However, they have risks of explosion
and fire due to leakage. In order to avoid these situations, solid electrolytes have been
developed to operate over a wide temperature range and high potential windows [4].
Solid-state supercapacitors consist of electrodes and electrolytes. The electrode material
is usually made up of one or more of metal oxides, conductive polymers, or carbon-
based materials. Electrolytes are usually composed of gel electrolytes and solid polymer
electrolytes. Pure solid polymer electrolytes have poor interface contact with electrodes
and low ionic conductivity. This disadvantage limits the energy density of supercapacitors
and shortens their application range. Gel electrolytes are widely used because of their good
flexibility and good contact with electrodes. By enlarging the electrochemical window of
the supercapacitor or reducing the resistance of the gel electrolyte, the energy density of the
electrolyte can be increased while ensuring the power density. Compared with hydrogel
electrolytes, ionogel electrolytes (IGEs) using ionic liquids as solvents and monomers just
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meet these two conditions [5,6]. MXene is obtained by selective etching of the “A” metal
element in the MAX phase. The MAX phase is a group of ternary carbides and nitrides,
where “M” is the transition metal and “X” is generally C. The general formula of MXene is
Mn+1XnTx, where Tx represents the surface -O, -OH, -F, -Cl, and other functional groups
of MXene. These abundant surface groups make it possible to combine with graphene,
polymers, metal ions, etc., to form gel electrolytes. Two-dimensional or three-dimensional
network structures were formed by physical or chemical cross-linking of the cross-linking
sites of Mxene nanoplates and gel systems. This not only avoids MXene’s self-accumulation,
but also provides a channel for gel ion transport, which is widely used in batteries and
supercapacitors [7,8].

Patrice Simon et al. further immersed the hydrogel film into the electrolyte of
[VMIM][TFSI]. The ionogel films exhibited a 70 F/g capacitance at a rate of 20 mV/s [9].
Udo Kragl et al. found that N,N′-methylene bisacrylamide and vinyl can form polyionic
liquid hydrogels in water. The prepared hydrogel has good thermal stability and mechani-
cal properties. Therefore, the gel polymer electrolyte was prepared with [VMIM][TFSI] [10].
Yohan Dall’Agnese et al. found that with MSA/PVA polyvinyl acetate as the electrolyte
and MXene as the electrode of the supercapacitor has the advantages of high cycle life and
low temperature resistance [11]. Tifeng Jiao et al. found that by adding gelatin-modified
MXene to the Polyacrylamide (PAAm) hydrogel, the tensile strength increased significantly
(1100%) and the tensile strength increased significantly (430 kPa). [12]. Up to now, there
have been few studies of all-solid supercapacitors based on ionic liquid gel electrolytes.
Poly(3,4-ethylenedioxythiophene) (PEDOT) [13], Polypyrrole (PPy) [14], and Polyaniline
(PANI) [15] are widely used as conductive polymer materials for supercapacitor electrodes
because they produce the Faraday oxidation–reduction process of false capacitance and
have high specific capacitance. The conductive polymer PANI undergoes the process of
doping and redox of undoping electrolyte ions to store electric energy. Because of its high
storage capacity, high doping/undoping rate, and low cost, it is considered one of the most
studied conductive polymers [16,17].

In this paper, [VMIM][TFSI] and PAAm were used as monomers, and MXene was
used as an inorganic filler to provide an ion transport channel for ionogel. In addition,
methanesulfonic acid and [EMIM][TFSI] have also been used innovatively as solvents
for ionogel electrolytes. As [VMIM][TFSI] and [EMIM][TFSI] have similar structures,
excellent electrochemical performance, and good compatibility with methanesulfonic acid,
the prepared ionogel has higher conductivity and wider application temperature. Under
ice bath conditions, spherical polyaniline was prepared and coated on graphite paper as an
active substance. The electrochemical properties of PAIMSC were measured at different
temperatures by using ionogel and polyaniline electrodes to assemble a supercapacitor.

2. Results and Discussion
2.1. Synthesis and Mechanism of PAIM-X Ionogel Electrolyte

Figure 1a,b are two digital photos of ionogel. The gel without MXene in Figure 1a is
colorless and transparent, but it becomes a uniform black ionogel after adding MXene. In
Figure 1b, the prepared PAIM ionogel has the ability to resist twisting and stretching, which
indicates that it has excellent flexibility [18]. The elastic modulus of the MXene proportional
gel with different compositions was determined by tensile test. As shown in the Figure 1c,
the conductivity of PAIM-X ionogel electrolyte is positively correlated with temperature.
With the increase in temperature, the ion migration is accelerated along with the thermal
motion of polymer molecular chain [19,20]. At the same temperature, the conductivity of
PAIM-4 ionogel electrolyte is the highest, and the conductivity of PAIM-4 is 36.4 mS/cm at
90 ◦C. It was attributed to the -CONH2 group of PAAm forming hydrogen bonds with the
-OH and -F groups on the surface of MXene, forming an interconnected network between
the monomers. It provided a shorter path for protons and improved the conductivity of the
gel [21]. However, when the content of MXene reached 5 mg/mL, the conductivity of the
ionogel decreased. This is due to the low conductivity of MXene itself and the low charge
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transfer rate caused by excessive crosslinking. By analyzing the proton conductivity and
mechanical properties of the gel, the optimum addition of MXene was 4 mg/mL. In order
to verify the good conductivity of PAIM-X at high temperature, we measured the proton
conductivity of PAIM-X from 10 ◦C to 90 ◦C. As shown in Figure 1d, at the same tensile
rate, with the increase in MXene content in gel, the elastic modulus increases and the tensile
strain decreases. When the content of MXene is 4 mg/mL, the elastic modulus of MXene
gel is 33.4 kPa, which is about twice that of the gel without MXene. This is because the
cross-linking effect of MXene increases the tensile strength and decreases the elongation at
break. When the content of MXene is above 5 mg/mL, the mechanical properties of MXene
decrease due to the aggregation of MXene. This is consistent with the previous discussion
of conduction capacity [22].
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Figure 1. Electron photograph of ionogel. (a) PAIM-X ionogel and PAI ionogel; (b) twisted and
strained PAIM-X hydrogel; (c) the conductivity of the different MXene content of PAIM ionogels as a
function of temperature; (d) stress–strain curves of PAIM-X ionogel with different MXene content.

2.2. Electrochemical Test Results of Polyaniline Electrode

The micromorphology of polyaniline has great influence on its electrochemical per-
formance. The spherical polyaniline SEM was prepared by chemical oxidation under
acidic conditions (hydrochloric acid). SEM image in Figure 2a–d shows the microscopic
morphology of spherical polyaniline at different polymerization times. At the initial 4 h of
polymerization, polyaniline showed a disordered and staggered chain structure. Due to
the slow reaction at low temperature, the polyaniline dispersed into uniform and similar
spherical particles in 8 h. At 12 and 16 h, as the reaction progressed, polyaniline began to
aggregate into irregular block particles [23,24].
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The electrodes with different polymerization times were coated on graphite paper
and named PANI-4, 8, 12, 16. Figure 3a shows the CV curve of polyaniline electrode
with polymerization time. It can be seen from the image that the electrode with PANI-8
has the largest integral area. According to Nyquist curve (Figure 3b), the EIS curve of
PAIN-8 has the smallest intercept with the X-axis, while the intercept of PANI-12 and
PANI-16 is larger, which is due to the low equivalent series resistance caused by their
stacked structure. Compared with other curves, the PANI-8 curve has a steeper slope,
indicating that its ionic diffusion impedance is lower and it has better electrochemical
performance. This corresponds to the micromorphological phenomena observed by the
electron microscope. Figure 3c shows that the redox peak of the polyaniline electrode
appears at 0.3 V. With the increase in scanning rate, the redox peak of the polyaniline
electrode shifts to high potential, and its curve shape changes regularly, which shows that
it has good discharge performance. Combined with previous work, a polyaniline electrode
with excellent electrochemical properties was successfully synthesized according to the
discharge law of polyaniline. In Figure 3d, an obvious discharge plateau appears at 0.3 V,
which is completely consistent with the CV curve. The existence of the discharge platform
proves that polyaniline undergoes a redox reaction during charging and discharging. In this
process, charge transfer occurs between interfaces, which greatly increases the discharge
time of the capacitor [25].
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of PANI-8 electrode at different current densities.

2.3. Demonstration of Stability and Application of Supercapacitor

In the process of acid-doping PANI, hydrogen ions combine with N atoms in the imine
group to form polar delocalization, which makes PANI have high conductivity. Compared
with other organic solvents, PANI was doped with sulfonic groups in MSA. The quinone
ring disappeared from the molecule and the electron cloud was redistributed. The positive
charge delocalization from nitrogen atom to conjugated π bond increased the conductivity
of PANI. Conventional organic solvents such as DMSO and EG do not possess strong acidity
and cannot be doped with PANI [26]. From Figure 4a,b, compared with EGISC and DMISC
devices, the CV curves of PAIMSC and PAISC with methanesulfonic acid have obvious
redox peaks, and there are also obvious discharge platforms on the GCD curves. At the
scanning rate of 50 mV/s, the integral area and discharge time of the CV curve of PAIMSC
are larger than those of PAISC. It also indirectly proves that MXene plays the roles of proton
transport channel and charge transport carrier in the gel. The discharge time in the GCD
curve can also prove the above conclusion. As shown in Figure 4c, with the increase in
scanning rate, the reduction peak moves to the negative direction, which is caused by the
mixed polarization of ionic resistance and electronic resistance. Even at the high scanning
rate of 100 mV/s, the redox peak of the CV curve obviously appears. This indicates that the
charge transfer at the interface between the electrolyte and the electrode are carried out at a
high speed. The existence of the charging and discharging platform is evidence of the redox
region [27]. From Figure 4d, we compare the GCD curves of different current densities.
With the increase in charge–discharge current, the curve bending degree is smaller and
the voltage drop is larger. When the current density increases during the charging and
discharging process, the reversible redox between the electrode and the electrolyte interface
will decrease, and the high current will increase the system resistance and the voltage drop.
Under the current density of 0.25 mA/g, the discharge time of PAIMSC is 818.4 s, and the
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specific capacitance of PAIMSC reaches 204.6 F/g, which shows excellent performance
among similar devices. Cyclic voltammetry was tested at different scanning rates [28].
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It can be concluded from the characterization of ionogel electrolytes that PAIM-4
ionogel electrolytes have the best mechanical properties and proton conduction ability
compared with other ionogel. Therefore, a sandwich-type supercapacitor was made of
PAIM-4 ionogel and two tablets of polyaniline, and we have studied the electrochemical
properties of the PAIMSC.

Figure 5a is cyclic voltammetry curve at a scanning rate of 20 mV/s, which is carried
out at different temperatures from −20 ◦C to 90 ◦C. All the six CV curves show obvious
pseudocapacitance behavior. The CV curve showed obvious pseudocapacitance, and two
large oxidation–reduction peaks appeared at the corresponding potential. This is due to the
presence of redox in acidic conditions, and the shape of the reaction curves varies regularly
with scanning rate and temperature. With the increase in temperature, the integral area
of the CV curve increased obviously, and the oxidation–reduction peaks shifted. This is
because the increase in temperature promotes the charge transfer and reduces the resistance
of oxidation and reduction, so it promotes the oxidation and reduction process. The
oxidation potential moves to the low potential, and the reduction potential moves in the
corrected direction [28–30].
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Figure 5. (a) The CV curve of PAIMSC with scanning rate of 20 mV/s at different temperatures from
−20 ◦C to 90 ◦C; (b) GCD curves of PAIMSC at current densities of 0.25 mA/g; (c) different Nyquist
curves of PAIMSC; (d) specific capacitance and IR drop at different temperatures.

We measured the GCD curves of the device from −20 ◦C to 90 ◦C at a current density
of 1 mA/g. As the temperature rises, the discharge time of the supercapacitor becomes
longer, and its IR drop decreases, so the whole platform is almost stable and regular, which
has the same regularity as the CV curves (Figure 5b). All the five curves have obvious
discharge platforms, which shows that PAIMSC has good specific capacitance and specific
energy. With the temperature increase of 90 ◦C, the discharge time of the device can reach
818.4 s. When the current density is 0.25 mA/g, the energy density of PAIMSC reaching
40.9 Wh/kg when the specific capacitance of PAIMSC reaches 204.6 F/g. Therefore, the
electrochemical performance is better than that of the same supercapacitor. The Nyquist
curves of the same device from −20 ◦C to 90 ◦C are shown in Figure 5c. All curves are
parallel to the imaginary axis in the low-frequency region, which indicates that the device
has the ability of low-frequency charge transfer and ion diffusion. The intercept of each set
of curves on the horizontal axis represents the equivalent series resistance. As can be seen
from the diagram, the equivalent series resistance of the device decreases gradually with
the increase in temperature. At 90 ◦C, the equivalent series resistance of the device is 2.3 Ω,
which is much lower than the average supercapacitor. The slope of the low-frequency
line represents the ion diffusion impedance of the electrode surface. As the temperature
increases, the line approaches 90 ◦C, and the PAIMSC approaches pure capacitance be-
havior [31]. This is mainly due to the introduction of ionic liquids [VMIM][TFSI] and
MXene, which increase the conductivity of the gel electrolyte and decrease the resistance of
the device [30]. The characteristics of curves can all verify the theory and have concrete
embodiment. The specific capacitance of the device is calculated from the discharge curves
at different temperatures. The specific capacitance of the device increases with increasing
temperature (Figure 5d), which matches the obtained rule and proves the ability of the de-
vice at high temperature. With the increase in working temperature, the capacitance of the
supercapacitor becomes larger. However, due to the rapid transport and adsorption of elec-
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trolyte ions and the changing electrode surface, the internal resistance of supercapacitors
decreases [32–34].

In order to verify the application and repeatability of the PAIMSC, after two PAIMSCs
were connected in series and in parallel, they were tested for CV and GCD. The results
of Figure 6a,b show that the CV window and maximum current of the series PAIMSCs
can reach twice that of a single PAIMSC. In the series circuit, the electrochemical window
increased from 1.2 V to 2.4 V. At the same time, in the parallel circuit, the CV curve area
and discharge time from one PAIMSC to two PAIMSCs almost doubled. It shows that each
integrated device manufactured has similar performance. In addition, by connecting these
two devices in series (Figure 6d), we can light up an LED electronic watch, which shows its
application prospect [35–37].
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As shown in the illustration in Figure 6c, we connected the two ends of a device to
our fingers and bent the device at different angles. When the supercapacitor was bent at
this angle, we started testing the CV curve. Obviously, the shapes of the three curves were
almost the same, which indicates that the PAIMSC device had a stable structure [38].
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Figure 6e illustrates a Ragone plot of PAIMSC. PAIMSC exhibits higher energy densi-
ties (40.92 Wh/kg at 180 W/kg) than conventional electrochemical capacitors and other
electrochemical capacitors, such as PANI/MoS2 [39], 3D-G/PANI [40], Au/PANI//AC,
Au/PANI//Au/PANI [41], and PANI/HClO4 [42].

As can be seen from Figure 6f, PAIMSC has stable cycling performance and Cullen
efficiency. At the current density of 5 mA/g, the cycle efficiency is 91.56% and the coulombic
efficiency is over 93% after 10,000 cycles. On the one hand, PAIMSC at room temperature
of high resistance, long-term operation will demonstrate heating phenomenon, resulting in
heat loss. On the other hand, when the device is placed for a long time, a small amount of
liquid will leak out. These reasons will lead to the increase in the resistance of the device
and a decrease in discharge time. With the decrease in discharge time, the Coulombic
efficiency and cycle efficiency decrease, according to the calculation [43].

3. Experimental Section
3.1. Materials

Titanium aluminum carbide (MAX phases), lithium fluoride (LiF), 1-vinyl-3-methyli-
midazolium bis(tri-fluoromethylsulfonyl)imide ([VMIM][TFSI]), ammonium persulfate
(APS), Methanesulfonic Acid (MSA), Dimethyl sulfoxide (DMSO), Ethylene glycol (EG),
hydrochloric acid (HCl), N,N,N′,N′-Tetramethylethylenedi-amine (TMEDA), potassium
persulfate (KPS), and polyvinylidene fluoride (PVDF) were purchased from Aladdin
(Shanghai, China). N-Methyl pyrrolidone (NMP), Methylene-bis-Acrylamide (MBA),
acrylamide (AAm), and 1-ethyl-3-methylimidazolium bis(tri-fluoromethylsulfonyl)imide
([EMIM][TFSI]) were obtained from Macklin, Chinese Academy of Sciences. The above
materials can be directly used in the experiment.

3.2. Preparation of MXene and PANI

Multilayer Ti3C2Tx was prepared by etching Ti3AlC2 powder. A total of 4 g LiF was
dissolved in 100 mL 9 M HCl solution. A total of 3 g Ti3AlC2 powder was gradually added
in a water bath at 40 ◦C for 1 d. Ti3C2Tx powder was obtained by washing the sediment
with deionized water, filtering, and drying at 60 ◦C.

In order to synthesize polyaniline, 1 g aniline monomer and 120 mg APS were added
to and stirred in water bath at 0 ◦C for 12 h. Then, the dark-green mixture was centrifuged
and vacuum-dried at 60 ◦C to obtain the active substance in powder form. XRD images of
PANI and MXene and SEM images of MXene are shown in Supplementary Materials.

3.3. Preparation of PAAm/IL/MXene-X Ionogel Electrolyte

MXene powders of different masses were added to 0.5 mL MSA for ultrasonic treat-
ment to form uniform viscous solution. A total of 0.2 g AAm, 1.7 mL [EMIM][TFSI],
0.05 mL [VMIM][TFSI], 0.3 mL MSA, 0.02 g KPS, and 0.02 g MBA were added to the reagent
bottles and stirred continuously. A total of 0.02 mL TMEDA was added when there was
no solid in the solution. The solution was added to the mold (400 × 100 × 2 mm3) and
placed in an oven at 50 ◦C for 4 h to obtain PAAM/IL/MXene-X ionogel (PAIM-X). X is the
amount (mg/mL) of MXene added: X = (0, 2, 3, 4, 5). The synthesis process and formation
mechanism of PAIM-X ionogel are shown in Figure 7.
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3.4. Preparation of PANI Electrodes Based on Graphite Paper and Supercipicator

Totals of 0.8 g PANI powder, 0.1 g graphitized carbon black, 0.1 g PVDF, and 2 mL
NMP were mixed to grind and produce homogeneous oily paste. A paste of 1 × 1 cm2 area
was coated on graphite paper. The electrode was dried at 80 ◦C for 24 h, and the mass of
the active substance was calculated. Finally, the resulting electrode had an area of 1 cm2.
On average, each electrode contains about 2 mg of the active substance. Due to density
difference, the load of polyaniline electrode was 1.6 mg. Two obtained electrodes and
PAIM ionogel were assembled into a supercapacitor (PAIMSC) for subsequent experiments
and characterization. The additional gels were prepared using DMSO and EG as solvents,
respectively, and then formed into supercapacitors, named DMISC and EGISC.

3.5. Characterization
3.5.1. Proton Conductivity and Tensile Property of Electrolytes

The proton conductivity (s/cm) of the PAIM-X ionogel was calculated by Formula (1):

σ =
R

L× S
(1)

where σ is the ionic conductivity of PAIM ionogel in S/cm; L is the distance between the
two electrodes in cm; S and R are the sectional area and resistance of the PAIM ionogel in
cm and Ω. The gel was placed in a water bath to measure conductivity at 0–90 ◦C.

3.5.2. Mechanical Properties of PAIM-X Ionogel Electrolyte

The PAIM-X ionogel was prepared in a cylindrical mold with a diameter of 0.5 cm
and a height of 5 cm, and the mechanical properties of the gel were tested with a tensile
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testing machine (SHIMADZU, Model AGS-X, 100 N, Japan) at a test rate of 60 mm/min,
with measurements repeated 3 times to prevent personal error.

3.5.3. Electrochemical Measurements of Supercapacitors (Electrodes)

CV, EIS, GCD and long-term capacitance retention were measured on an electrochemi-
cal workstation (AUT86925, Autolab). On the basis of CV/GCD curve, the specific mass
capacitance (Cs, F/g), energy density (E, Wh/kg), and power density (P, W/kg) of PAIMSC
were calculated by Formulas (2)–(4):

Cs =
I∆t

m∆V
(2)

E =
1
2

Cs∆V2 (3)

P =
E
∆t

(4)

where ∆t(s), I(A), ∆V(V), and m(g) represent discharge time, current, potential window
during discharge, and mass of active materials on the electrode, respectively. The long-term
cyclic stability of PAIMSC was tested at the current density of 10 mA/g for 10,000 cycles.
The electrochemical properties of PAMSC were measured at −20–90 ◦C in refrigerator and
water bath, respectively.

3.5.4. Morphology of PANI

After gold spray treatment, the dispersion of polyaniline at different polymerization
time was observed using field emission scanning electron microscope (JSM-7610F, JEOL
Ltd., Tokyo, Japan).

4. Conclusions

To summarize, an ionogel electrolyte composed of a PAAm-[VMIM][TFSI] network,
methanesulfonic acid/[EMIM][TFSI] solvent, and physical cross-linking agent MXene was
successfully prepared. PAIM-X ionogel has a high conductivity of 36.4 mS/cm at 90 ◦C
and its elastic modulus is 33.4 kPa, which is twice that of PAI ionogel. In this paper, a
supercapacitor composed of ionogel and polyaniline electrode was prepared by using
methanesulfonic acid/[EMIM][TFSI] as solvent for the first time. The potential window
of the device is 1.2 V. When the current density is 0.3 mA/g, the specific capacitance of
PAIMSC is 204.6 F/g, and the energy density is 40.92 Wh/kg. This shows that PAIMSC has
a good development prospect.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/molecules28041554/s1, Figure S1: XRD images of PANI and MXene, Figure S2: SEM images of
MXene, Figure S3: DSC images of PAIM.
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