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Abstract: The density and speed of sound of pentaglyme and hexaglyme in the N,N-dimethylformamide
+ water mixture at four temperatures are presented. The limiting apparent molar volumes (V0

Φ,m = V0
m),

the isobaric molar thermal expansion (E0
p,m), the isentropic compressibility (κS), and the limiting partial

molar isentropic compression (K0
S,Φ,m = K0

S,m) were calculated. Changes in the values obtained from the
physicochemical parameters, as functions of composition and temperature, were analyzed in terms of
the molecular interactions and structural differentiation of the investigated systems. The hydrophobic
hydration process of the studied glymes was visible in the area of high water content in the mixture.
The hydration number of glymes in water at four temperatures was calculated and analyzed. The
contribution of the –CH2– and –O– group to the functions describing the volume and acoustic properties
of the investigated system was calculated. The calculated values of the functions analyzed using the
group contribution are in agreement with the values obtained from the experimental data. Thus, such
contributions are valuable for wide ranges of data, which can be used to analyze the hydrophobic
hydration and preferential solvation processes, as well as to calculate the values of these functions for
other similar compounds.

Keywords: pentaglyme; hexaglyme; density; speed of sound; N,N-dimethylforamide + water mixtures;
hydrophobic hydration; –CH2– and –O– group contribution

1. Introduction

The combination of results of densimetric and sonochemical studies enables a more in-
depth description of the interactions between molecules in solutions. It provides valuable
information in predicting the types of interactions that prevail in liquid mixtures, allowing
us to draw conclusions about the solvation process, including hydrophobic hydration.
These techniques have a wide range of applications and acceptance in many fields. The
speed of sound, along with the density, is useful to calculate some important volumetric,
acoustic, and thermodynamic properties of the solutions, but doing so also makes the
interpretations of both types of data more reliable in relation to each other [1–5]. Ultrasonic
and densimetric studies of liquid mixtures are of high practical importance in industry, in
the control of manufacturing processes, and in chemical processing [6]. These methods
are highly sensitive to molecular interactions and are particularly useful for elucidating
solute–solute and solute–solvent interactions [7].

Aqueous–organic mixtures are an important group of solvents that are attracting
increasing interest. Water–amide solutions are of practical importance in industry and in
biological research [8]. N,N-dimethylformamide (DMF) is used as a solvent for gasses and
liquids and in the production of acrylic fibers, vinyl polymers, films, coatings, and artificial
leather [8]. DMF is associated with dipole–dipole interactions to some extent. Significant
structural effects are absent due to the lack of hydrogen bonds [9]. Due to its miscibility
with almost all common polar and nonpolar solvents [9–12] and because its hydrophilic–
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hydrophobic character is almost compensated, it is the best solvent in a mixture with water
to analyze the solvation process, including hydrophobic hydration [13,14].

Glymes are compounds belonging to the group of polyethylene glycol methyl ethers
with the general formula CH3O(CH2CH2O)nCH3. The number of oxyethylene groups
(n) in a glyme molecule determines its polarity. With an increase in the number of the
–OCH2CH2– groups, the hydrophobic nature of a linear polyether molecule increases [15].
Open chain polyethylene glycols have been found to be capable of forming complexes
with different metal cations in organic solvents, in a similar manner to the macrocyclic
polyethers [16,17]. Glymes have also been used as effective catalysts in phase transfer
catalysis [18] and as effective solvents for many synthetic organic reactions [19]. Thus, open
chain ethers and their derivatives are of increasing interest in many areas, because of their
useful properties as effective complexing agents, as well as their relative inexpensiveness
and nontoxicity [20]. It is worth paying attention to research on the behavior of glymes in a
DMF and water (W) mixture.

In the present paper, we focus our attention on the solvation of selected glymes,
CH3O(CH2CH2O)nCH3 where 5 ≤ n ≤ 6, in the DMF + W solvent using densimetry and
sound of velocity methods. We suppose that hydrophobic hydration would manifest itself
in water-rich solutions. Studies were carried out using both methods at four temperatures
(293.15, 298.15, 303.15, 308.15) K in the entire range of the mixed solvent composition.

Furthermore, using the data resulting from the density and speed of sound propaga-
tion in the DMF + W mixtures containing glymes with shorter chains [21,22], the –CH2–
and –O– groups’ contribution to the functions derived from the density and speed-of-sound
measurements were calculated.

2. Results and Discussion
2.1. Volumetric Properties

The apparent molar volume of the glymes (VΦ,m) values in the DMF + W mixture were
calculated using the experimental values of the solution density via Equation (1).

VΦ,m =
M2

ρ
− 1000·(ρ− ρ0)

m·ρ·ρ0
(1)

where M2 is the molecular mass of glyme; ρ, ρ0 are the densities of solution and mixed
solvent, respectively; and m is the concentration of glyme in moles of solute per kg of the
mixed solvent.

The obtained values are presented in Tables S5 and S6 (see Supplementary Materials).
Equation (2) (proposed by Redlich and Mayer) was used [23] to the analyze the

function VΦ,m = f (m).
VΦ,m = V0

Φ,m + bVm (2)

where V0
Φ,m is the limiting partial molar volume of the solute (glyme), bV is the coefficient

that provides information on the interaction between the solute (glyme) molecules, and m
is the concentration of solution in moles of the solute (glyme) per kg of mixed solvent.

The limiting apparent molar volume (V0
Φ,m) for investigating the glymes in the mixed

solvent was calculated using Equation (3) and is presented in Tables 1 and 2.

lim
m→0

VΦ,m = V0
Φ,m = V0

m (3)

where V0
m is the limiting partial molar volume of glymes.

As seen in Tables 1 and 2, the limiting partial molar volume of the glymes increased
with the temperature increased. However, this increase was slight. It is known that an
increase in temperature favors the weakening of the interactions between the molecules
present in the solution, which causes an increase in the limiting partial molar volume of
glymes in a mixture at a given composition.



Molecules 2023, 28, 1519 3 of 23

Table 1. Limiting partial molar volume of pentaglyme in the DMF + W mixed solvent.

xW
V0

m·106/m3·mol−1

293.15 K 298.15 K 303.15 K 308.15 K

1.000 240.54 ± 0.01 241.76 ± 0.01 243.03 ± 0.01 244.22 ± 0.01
0.980 239.44 ± 0.01 240.86 ± 0.01 242.20 ± 0.01 243.58 ± 0.01
0.960 238.48 ± 0.01 239.91 ± 0.01 241.33 ± 0.01 242.85 ± 0.01
0.940 237.83 ± 0.01 239.41 ± 0.01 240.99 ± 0.01 242.64 ± 0.01
0.920 238.08 ± 0.01 239.64 ± 0.01 241.31 ± 0.01 242.96 ± 0.01
0.900 238.93 ± 0.01 240.66 ± 0.01 242.27 ± 0.01 243.87 ± 0.01
0.800 244.53 ± 0.01 246.08 ± 0.01 247.61 ± 0.01 249.15 ± 0.01
0.700 249.69 ± 0.01 251.03 ± 0.01 252.39 ± 0.01 253.78 ± 0.01
0.600 253.30 ± 0.01 254.63 ± 0.01 255.93 ± 0.01 257.32 ± 0.01
0.500 255.72 ± 0.01 257.06 ± 0.01 258.39 ± 0.01 259.77 ± 0.01
0.400 257.02 ± 0.01 258.42 ± 0.01 259.78 ± 0.01 261.09 ± 0.01
0.300 257.25 ± 0.01 258.52 ± 0.01 259.88 ± 0.01 261.23 ± 0.01
0.200 255.54 ± 0.01 256.90 ± 0.01 258.25 ± 0.01 259.53 ± 0.01
0.100 252.74 ± 0.01 254.05 ± 0.01 255.33 ± 0.01 256.66 ± 0.01
0.000 250.11 ± 0.02 251.37 ± 0.02 252.59 ± 0.02 253.66 ± 0.02

The uncertainty of the mole fraction xW is equal to ±1·10−3.

Table 2. Limiting partial molar volume of hexaglyme in the DMF + W mixed solvent.

xW
V0

m·106/m3·mol−1

293.15 K 298.15 K 303.15 K 308.15 K

1.000 279.24 ± 0.01 280.66 ± 0.02 282.16 ± 0.01 283.64 ± 0.01
0.980 276.42 ± 0.01 277.99 ± 0.01 279.51 ± 0.01 281.05 ± 0.01
0.960 275.31 ± 0.01 277.06 ± 0.01 278.82 ± 0.01 280.49 ± 0.01
0.940 274.40 ± 0.01 276.23 ± 0.01 278.11 ± 0.01 279.92 ± 0.01
0.920 274.88 ± 0.01 276.81 ± 0.01 278.60 ± 0.01 280.43 ± 0.01
0.900 275.54 ± 0.01 277.36 ± 0.01 279.19 ± 0.01 280.97 ± 0.01
0.800 281.43 ± 0.01 283.02 ± 0.01 284.65 ± 0.01 286.45 ± 0.01
0.700 287.60 ± 0.01 289.17 ± 0.01 290.78 ± 0.01 292.32 ± 0.01
0.600 291.78 ± 0.01 293.25 ± 0.01 294.75 ± 0.01 296.25 ± 0.01
0.500 294.73 ± 0.01 296.22 ± 0.01 297.73 ± 0.01 299.26 ± 0.01
0.400 295.82 ± 0.01 297.38 ± 0.01 298.83 ± 0.01 300.38 ± 0.01
0.300 295.49 ± 0.01 296.98 ± 0.01 298.54 ± 0.01 300.08 ± 0.01
0.200 293.26 ± 0.01 294.73 ± 0.01 296.28 ± 0.01 297.84 ± 0.01
0.100 290.49 ± 0.02 291.88 ± 0.02 293.48 ± 0.02 294.95 ± 0.02
0.000 287.24 ± 0.03 288.68 ± 0.03 290.09 ± 0.03 291.53 ± 0.03

The uncertainty of the mole fraction xW is equal to ±1·10−3.

Using the values of the limiting partial molar volume of glymes with shorter chains [21]
in Figure 1, the function V0

m = f (xW) for glymes with 2 ≤ m–O– ≤ 7 (m–O– is the number of
oxygen atoms in the glyme molecule) is presented.

As is seen in Figure 1, the curves are similar to each other for all the investigated glymes.
They are typical for aqueous–organic systems and moreover illustrate the hydrophobic
properties of the solute [21,24,25]. The limiting partial molar volume V0

m of the glymes
increases with the increase in the number of oxyethylene groups in the glyme molecule
(Figure 1). Additionally, with the increase in the number of oxyethylene groups in glyme
molecules, their hydrophobic character increases. Thus, this arrangement of the curves on
the graph is closely related to the information above.
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atures (T) and Equation (4), the isobaric molar thermal expansion of the glymes, E0
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Table 3. Standard isobaric molar thermal expansion of glymes in the DMF + W mixture.

xW
E0

p,m·106/m3·mol−1·K−1

Pentaglyme Hexaglyme

1.000 0.246 ± 0.002 0.294 ± 0.002
0.980 0.275 ± 0.002 0.308 ± 0.001
0.960 0.291 ± 0.003 0.346 ± 0.003
0.940 0.320 ± 0.002 0.369 ± 0.002
0.920 0.326 ± 0.003 0.369 ± 0.004
0.900 0.329 ± 0.004 0.362 ± 0.002
0.800 0.308 ± 0.001 0.334 ± 0.007
0.700 0.273 ± 0.002 0.315 ± 0.002
0.600 0.267 ± 0.003 0.298 ± 0.001
0.500 0.270 ± 0.002 0.302 ± 0.001
0.400 0.271 ± 0.003 0.302 ± 0.003
0.300 0.266 ± 0.003 0.307 ± 0.002
0.200 0.266 ± 0.003 0.306 ± 0.003
0.100 0.261 ± 0.001 0.300 ± 0.005
0.000 0.237 ± 0.006 0.286 ± 0.001

The uncertainty of the mole fraction xW is equal to ±1·10−3.
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resulting phenomena are less susceptible to temperature changes. This effect increases with
the increase in the hydrophobic nature of the glymes.

2.2. Acoustic Properties

The isentropic compressibility (κS) values were calculated using Equation (5), and the
obtained data are presented in Tables S7 and S8 (see Supplementary Materials).

κS =
1

u2ρ
(5)

where u and ρ are the speed of sound and density of the glyme + DMF + W system,
respectively.

The values of the isentropic compressibility κS of the isomolal glyme solution in the
DMF + W mixed solvent, as a function of the mole fraction of water xW in this mixture
at 298.15 K, are presented in Figures 3 and 4. Each of the lines represents the function
κS = f (xW) at a given concentration of glyme, i.e., 0, 0.025, 0.05, 0.075, 0.125, 0.175, 0.2,
0.235, and 0.27. To make the intersection points of the curves more visible, the points that
correspond to the values of the function have been omitted.
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In Figures 3 and 4, it can be seen that the κS values reach a minimum at xW ≈ 0.8 for all
concentrations of the glyme in the DMF + W solvent. This decrease in the compressibility
value is related to the incorporation of glyme molecules into the structure of the mixed
solvent DMF + W. With a higher water content in the mixture xW > 0.8, the isentropic
compressibility values of the mixtures increase with increasing water content. This is
probably related to the characteristic structure of the DMF + W mixture in this range of
mixture composition. A similar situation was observed for the DMF + W systems containing
shorter glyme chains [22].

Among others, de Visser et al. [26] believe that hydrogen bonds formed between
water molecules and the carbonyl group of DMF molecules are stronger than hydrogen
bonds formed between molecules in pure water. In addition, complexes may form in the
DMF + W system when xW < 0.8, which most likely causes a decrease in the compressibility
coefficient of glyme solutions. In this region (xW < 0.8), the glyme molecules are probably
mainly solvated by DMF molecules. With the increase in water content, the DMF molecules
present in the solvation shell of the glymes are exchanged for water molecules. Due to
their properties, both glymes and DMF tend to stabilize the water structure. The presence
of glyme molecules solvated by DMF and water molecules and the ordered structure
of the mixed solvent most likely cause a decrease in the κS value in this composition
range (xW < 0.8).

The analysis of Figures 3 and 4 shows the area where the isotherms of the isentropic
compressibility versus the mole fraction of water show the intersection point before the
function reaches the minimum value. Similar points are observed in the range of lower
water content, i.e., xW ≈ 0.15 and xW ≈ 0.25, for pentaglyme and hexaglyme, respectively.
The location of the intersection points is different for each glyme. According to Endo [27,28],
in the compositions corresponding to the intersection points, clathrate structures may be
formed in the range of rich water content in the mixture. In the resulting associations,
the ratio of the number of solvent molecules to the number of solute molecules varies
depending on the composition of the mixture. However, this interpretation is somewhat
controversial and is discussed in the literature. It is probable that the dipole–dipole
interactions of glyme molecules with DMF molecules (instead of interactions between
glyme molecules and water molecules) cause the existence of second intersection points in
the range of low water content in the mixture.

The location (xW) of the intersection points of isomolal functions κS = f (xW) for the
investigated glymes, together with the literature values for glymes with shorter chains, is
presented in Table 4.

Table 4. The mole fraction of water (xW) in the DMF + W mixed solvent corresponding to the
intersection point of the functions κS = f (xW) for the glymes at 298.15 K.

xW

293.15 K 298.15 K 303.15 K 308.15 K

the first intersection point

monoglyme a 0.844 0.854 0.864 0.875
diglymea 0.817 0.824 0.830 0.838
triglyme a 0.788 0.795 0.802 0.809
tetraglyme a 0.761 0.768 0.776 0.785
pentaglyme 0.733 0.743 0.752 0.762
hexaglyme 0.724 0.732 0.739 0.746

the second intersection point

tetraglyme a 0.066 0.059 0.052 0.041
pentaglyme 0.165 0.162 0.153 0.151
hexaglyme 0.267 0.265 0.264 0.263

a data have been taken from Ref. [22].
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As presented in Table 4, when the number of oxygen atoms in the glyme molecule
increases, the water content in the mixture decreases for the first intersection point. For the
second intersection points, the dependence is opposite.

In Figure 5 the dependence of the location (xW) of the first and second intersection
points of the isomolal functions κS = f (xW) derived for glymes solutions in the mixture
DMF + W as a function of the number of oxygen atoms in the glyme molecules (m–O–)
is presented at different temperatures. In Figure 5a, the presented dependence is almost
linear, but the function presented in Figure 5b is linear. The placement of the straight lines
in Figure 5a is almost parallel, showing that the influence of the temperature on the first
intersection point is similar for all glymes. In Figure 5b in the low water content of the
mixture, the influence of diversified temperature is seen for long-chain glymes. One can
notice that for hexaglyme, the position of the intersection point is almost not dependent
on the temperature. Furthermore, according to Figure 5b, the less intensive temperature
dependence for the second location (xW) of the intersection point is observed, i.e., the longer
chain of the glyme. The mentioned influence of temperature is more visible in Figure 6a,b.
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Figure 5. The location (xW) of the first (a) and second (b) intersection point of the isomolal functions
κS = f (xW) derived for glyme solutions in the DMF + W mixed solvent as a function of the number
of oxygen atoms in the glyme molecule (m–O–) at the temperatures of � 293.15 K, • 298.15 K, N
303.15 K, H 308.15 K.

In Figure 6, the dependence of the composition of the solvent (xW) corresponding
to the first and second intersection points of the isomolal curves κS = f (xW) in relation
to the temperature obtained for the examined glymes in the DMF + W mixed solvent is
presented. In this case, this dependence is seen to be linear. As the temperature increases,
this intersection point shifts towards a lower water content in the mixture. In a high water
content, this may indicate that at a higher temperature, there is a greater disturbance in
the clathrate-like structure as a result of increased thermal movements. In the mixture
where DMF is dominating as a solvent, the location (xW) of the second intersection point
increases with the temperature increase. The parameters of the linear function xW = a+b·T
presented in Figure 6 are shown in Table 5. The determination coefficient and the standard
deviation show that this linear relationship is very good. Using the values presented
in Table 5, the location of the first and second intersection points can be calculated at a
selected temperature.
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Table 5. The coefficients of the straight line equation xW = a + b·T that describe the dependence of
the mole fraction of water (xW) corresponding to the first and second intersection points in relation
to temperature.

a b R2 SD

monoglyme 0.240 ± 0.0104 0.00206 ± 0.00003 0.99943 0.00038
diglyme 0.412 ± 0.016 0.00138 ± 0.00005 0.99707 0.00060
triglyme 0.378 ± 0.001 0.00140 ± 0.00001 0.99999 0.00001
tetraglyme 0.292 ± 0.019 0.00160 ± 0.00001 0.99688 0.00071
pentaglyme 0.170 ± 0.009 0.00192 ± 0.00003 0.99957 0.00032
hexaglyme 0.296 ± 0.001 0.00146 ± 0.00003 0.99888 0.00038

tetraglyme 0.556 ± 0.031 −0.00167 ± 0.00010 0.99234 0.00116
pentaglyme 0.465 ± 0.005 −0.00102 ± 0.00018 0.94385 0.00197
hexaglyme 0.336 ± 0.001 −0.00024 ± 0.00001 0.99993 0.00002

R2 is the regression coefficient. SD is the standard deviation.

The values of apparent molar isentropic compression of glymes (KS,Φ,m) in the DMF + W
solvent were calculated using Equation (6) and are presented in Tables S9 and S10 (see
Supplementary Materials):

KS,Φ,m =
M2κS

ρ
+

κSρ0 − κS,0ρ

mρρ0
(6)

where M2 is the molar mass of glyme; ρ, ρ0 are the densities of solution and mixed solvent,
respectively; κS, κS,0 are the isentropic compressibility coefficients of the solution and
solvent, respectively; and m is the concentration of the solution in moles of solute per kg of
mixed solvent.

Equation (7) was used for analyzing the function KS,Φ,m = f (m).

KS,Φ,m = K0
S,Φ,m + bKm (7)
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The values of K0
S,Φ,m and bK were obtained by using the least-squares method. The

limiting apparent molar isentropic compression (K0
S,Φ,m) is equal to the limiting partial

molar isentropic compression of glyme (K0
S,m). The values of K0

S,m for investigated glymes
in the mixed solvent were calculated using Equation (8) and are presented in Tables 6 and 7.

lim
m→0

KS,Φ,m = K0
S,Φ,m = K0

S,m (8)

Table 6. Standard partial molar compression of pentaglyme in the DMF + W mixed solvent.

xW
K0

S,m·1014/(m3·Pa−1·mol−1)

293.15 K 298.15 K 303.15 K 308.15 K

1.000 −0.43 ± 0.02 0.69 ± 0.02 1.64 ± 0.01 2.44 ± 0.01
0.980 0.84 ± 0.04 1.71 ± 0.02 2.56 ± 0.03 3.31 ± 0.02
0.960 1.15 ± 0.02 2.02 ± 0.02 2.64 ± 0.02 3.45 ± 0.01
0.940 2.18 ± 0.01 2.68 ± 0.01 3.51 ± 0.02 4.30 ± 0.02
0.920 3.09 ± 0.01 3.69 ± 0.01 4.37 ± 0.01 4.86 ± 0.01
0.900 4.05 ± 0.01 4.62 ± 0.01 5.11 ± 0.01 5.69 ± 0.01
0.800 7.08 ± 0.01 7.45 ± 0.01 7.91 ± 0.02 8.29 ± 0.03
0.700 9.02 ± 0.01 9.44 ± 0.01 9.89 ± 0.02 10.28 ± 0.02
0.600 10.40 ± 0.02 10.80 ± 0.01 11.16 ± 0.01 11.58 ± 0.01
0.500 11.05 ± 0.02 11.44 ± 0.02 11.86 ± 0.02 12.30 ± 0.02
0.400 11.32 ± 0.02 11.73 ± 0.02 12.15 ± 0.02 12.64 ± 0.04
0.300 11.58 ± 0.01 12.00 ± 0.01 12.45 ± 0.01 12.95 ± 0.02
0.200 11.37 ± 0.02 11.84 ± 0.02 12.31 ± 0.01 12.78 ± 0.01
0.100 11.06 ± 0.02 11.49 ± 0.02 11.92 ± 0.02 12.37 ± 0.02
0.000 10.53 ± 0.02 10.92 ± 0.02 11.32 ± 0.02 11.74 ± 0.02

The uncertainty of the mole fraction xW is equal to ±1·10−3.

Table 7. Standard partial molar compression of hexaglyme in the DMF + W mixed solvent.

xW
K0

S,m·1014/(m3·Pa−1·mol−1)

293.15 K 298.15 K 303.15 K 308.15 K

1.000 –0.61 ± 0.02 0.64 ± 0.02 1.80 ± 0.02 2.80 ± 0.02
0.980 0.81 ± 0.02 1.77 ± 0.01 2.81 ± 0.01 3.70 ± 0.02
0.960 1.19 ± 0.01 2.25 ± 0.01 3.01 ± 0.02 3.82 ± 0.02
0.940 2.21 ± 0.02 2.93 ± 0.02 3.72 ± 0.01 4.56 ± 0.01
0.920 3.45 ± 0.02 4.16 ± 0.02 4.89 ± 0.01 5.61 ± 0.01
0.900 4.23 ± 0.01 4.88 ± 0.01 5.48 ± 0.01 6.10 ± 0.02
0.800 7.79 ± 0.01 8.28 ± 0.01 8.71 ± 0.01 9.15 ± 0.01
0.700 10.20 ± 0.02 10.69 ± 0.02 11.18 ± 0.01 11.57 ± 0.01
0.600 11.64 ± 0.02 12.07 ± 0.01 12.47 ± 0.01 12.93 ± 0.02
0.500 12.29 ± 0.01 12.75 ± 0.02 13.24 ± 0.02 13.72 ± 0.02
0.400 12.61 ± 0.01 13.07 ± 0.02 13.55 ± 0.02 14.05 ± 0.02
0.300 12.63 ± 0.02 13.10 ± 0.02 13.59 ± 0.02 14.09 ± 0.02
0.200 12.27 ± 0.01 12.76 ± 0.02 13.26 ± 0.02 13.78 ± 0.02
0.100 11.95 ± 0.02 12.37 ± 0.02 12.85 ± 0.02 13.32 ± 0.02
0.000 11.40 ± 0.02 11.82 ± 0.02 12.23 ± 0.01 12.71 ± 0.01

The uncertainty of the mole fraction xW is equal to ±1·10−3.

As seen in Tables 6 and 7, the standard partial molar compression of pentaglyme and
hexaglyme in the DMF + W mixed solvent increases with increasing temperature, similar
to that in the case of glymes with shorter chains [22].

As can be seen in Figure 7, the longer the chain of glymes and the greater the hy-
drophobic nature of these molecules, the greater the limiting molar value of isentropic
compressibility of glymes. The limiting partial molar isentropic compression of tri-, tetra-,
penta-, and hexaglyme passes through maxima in the range of medium water content in the
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mixture DMF + W, i.e., xW < 0.7. The height of this maximum increases with the increase
in the hydrophobic nature of the studied glymes. This may suggest that in the high and
medium DMF content of the mixed solvent, we can observe weaker interaction between
the glyme and mixed-solvent molecules. This may be the reason for the weakening of the
bonds’ structure in the system and the contribution to a slightly greater compression of
the system in this range of concentrations of the mixture. This conclusion is confirmed
by the lack of observed changes in the limiting partial molar expansion of glymes in the
same concentration range of the DMF + W mixture, as shown in Equation (4). For shorter
chain glymes (monoglyme and diglyme), one can observe only the change in the slope of
the curve.
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hexaglyme.

In the range of high water content in the mixture (xW > 0.7), the compression of the
investigated systems decreases with increasing water content. The higher the water content
in the mixture, the more clearly the process of the hydrophobic hydration of glymes, which
have a hydrophobic character, is observed. This stiffens the structure of the system and
thus reduces the compressibility [22,29].

In Figure 8, the
∂K0

S,m
∂T values as a function of water content (xW) are presented for the

glymes in the mixture DMF + W. As in the case of other functions, the greatest changes
are seen with respect to the large amount of water in the system. The greatest influence
of temperature on K0

S,m is observed for solutions with a high water content, in which the
hydrophobic hydration of the glymes plays a significant role.
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2.3. Hydration Number

Using the values of isentropic compressibility for the investigated glymes, the hydra-
tion numbers of the glymes (n0

h) were calculated using a modified Pasynski’s method. This
method is described, and its advantages and disadvantages are discussed in the literature
by Burakowski and Gliński [30–32].

The hydration numbers of the investigated glyme molecules were calculated as de-
scribed in our previous paper [22] and are presented in Table 8 and Figure 9 as a function
of the number of oxygen atoms (m−O−) in the glyme’s molecule.

Table 8. The hydration number of glymes.

Glyme 293.15 K 298.15 K 303.15 K 308.15 K

monoglyme a 4.7 4.1 3.6 3.0
diglyme a 6.9 6.3 5.7 4.9
triglyme a 9.3 8.5 7.6 6.9

tetraglyme a 11.2 10.1 9.3 8.4
pentaglyme 13.2 11.9 10.8 10.0
hexaglyme 15.3 14.0 12.8 11.6

a data were taken from Ref. [22].

As seen in Figure 9, the course of the function n0
h = f (m−O−) is approximately linear at

a constant temperature; i.e., the larger the glyme molecule, the more water molecules there
are in the hydration shell. The dependence of the hydration numbers (n0

h) on temperature
is presented in Figure 10.
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It can be observed that this dependence is linear and can be described by Equation (9),
and its parameters are presented in Table 9.

n0
h = c + d·T (9)

Table 9. The parameters of Equation (9).

c d R2 SD

monoglyme a 37.5 ± 0.9 −0.112 ± 0.003 0.99879 0.032
diglyme a 45.6 ± 2.1 −0.132 ± 0.007 0.99452 0.077
triglyme a 56. 8 ± 1.6 −0.162 ± 0.005 0.99787 0.059

tetraglyme a 65.1 ± 2.6 −0.184 ± 0.008 0.99576 0.095
pentaglyme 75.8 ± 4.8 −0.214 ± 0.016 0.98911 0.178
hexaglyme 87.4 ± 1.0 −0.246 ± 0.003 0.99360 0.039

a data were taken from Ref. [22]. R2 is the regression coefficient. SD is the standard deviation.

As seen in Figure 10 and Table 9 (b coefficient), the influence of temperature on the
change in hydration number decreases with a decreasing number of oxygen atoms in
the glyme molecules. This is probably related to the thermal movements of the chain in
the glyme molecules. The longer the chain, the more degrees of freedom it has. From
Figure 9, we can conclude that with the increase in molecule size, the bigger number of
water molecules is probably moved from the shell with increasing temperature.

2.4. The Contribution of the –CH2– and –O– Groups

The values of limiting molar volume (V0
m), limiting molar expansion (E0

p,m), and
limiting molar compression (K0

S,m) for the solution of glymes with the number of oxygen
atoms in molecule 2 ≤ m–O– ≤ 7 made it possible to calculate the contribution of the –CH2–
and –O– groups in these values. Using the analogous method proposed by Savage and
Wood [33] the contribution of groups to the enthalpy of solvation of different compounds
in pure solvent to be calculated. Thus, the average effect of the interaction between the
–CH2– or –O– group (in glyme molecule) and molecules of the DMF + W mixed solvent for
the values of V0

m, E0
p,m, and K0

S,m for glymes with 2 ≤ m–O– ≤ 7 in the DMF + W mixture
has been calculated.

For the calculation, it was assumed that –CH3 is equal to 1,5·–CH2– [34], and Equation (10),
as well as the nonlinear regression method, was used.

Z = (3 + 2n)·P1 + (1 + n)·P2 (10)

where Z = V0
m, E0

p,m, and K0
S,m; n is the number of the –CH2CH2O– group in the glyme

molecule; P1 is the contribution of the –CH2– group; and P2 is the contribution of the ether
oxygen atom –O–.

The obtained values of the average effect of the interaction between the –CH2– or –O–
group and molecules of the DMF + W mixed solvent are presented in Tables 10–12 for V0

m,
E0

p,m, and K0
S,m, respectively, and in Figure 11.

As can be seen in Figure 11, the courses of the functions describing the contribution
delivered by the –CH2– group and the ether oxygen atom –O– to the V0

m, E0
p,m, and K0

S,m
functions, depending on the mole fraction of water xW in the mixed solvent, are opposite to
each other. The contribution of the –CH2– group is positive, and, by the ether oxygen atom
–O–, negative in all analyzed functions in the entire range of composition of the mixed
solvent DMF + W.
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Table 10. The average effect of the interaction between the –CH2– or –O– group and molecules of the
DMF + W mixed solvent in V0

m at 298.15 K.

V0
m·106/m3·mol−1

xW –CH2– –O– R2 SD

1.000 22.21 ± 1.09 −7.58 ± 2.39 0.99981 0.946
0.980 20.80 ± 0.39 −4.87 ± 0.86 0.99998 0.335
0.960 20.17 ± 0.58 −3.70 ± 1.28 0.99996 0.505
0.940 20.13 ± 0.53 −3.71 ± 1.16 0.99996 0.458
0.920 20.04 ± 0.44 −3.43 ± 0.97 0.99998 0.383
0.900 20.14 ± 0.18 −3.53 ± 0.40 1.00000 0.157
0.800 21.58 ± 0.21 −5.78 ± 0.47 0.99999 0.186
0.700 22.69 ± 0.31 −7.30 ± 0.67 0.99999 0.266
0.600 23.53 ± 0.45 −8.48 ± 0.99 0.99998 0.393
0.500 24.03 ± 0.62 −9.16 ± 1.36 0.99996 0.537
0.400 24.47 ± 0.73 −9.89 ± 1.61 0.99994 0.638
0.300 24.97 ± 0.66 −10.99 ± 1.44 0.99995 0.569
0.200 26.04 ± 0.66 −13.61 ± 1.45 0.99995 0.575
0.100 27.17 ± 0.41 −16.49 ± 0.91 0.99998 0.359
0.000 28.17 ± 0.26 −19.14 ± 0.56 0.99999 0.223

R2 is the regression coefficient. SD is the standard deviation. The uncertainty of the mole fraction xW is
equal to ±1·10−3.

Table 11. The average effect of interaction between the –CH2– or –O– group and molecules of the
DMF + W mixed solvent in E0

p,m at 298.15 K.

E0
p,m·106/m3·mol−1·K−1

xW –CH2– –O– R2 SD

1.000 –0.031 ± 0.008 0.107 ± 0.018 0.99442 0.007
0.980 0.020 ± 0.002 0.001 ± 0.004 0.99972 0.001
0.960 0.041 ± 0.006 −0.039 ± 0.012 0.99694 0.005
0.940 0.038 ± 0.011 −0.029 ± 0.024 0.99109 0.009
0.920 0.056 ± 0.006 −0.068 ± 0.014 0.99643 0.006
0.900 0.071 ± 0.006 −0.099 ± 0.012 0.99687 0.005
0.800 0.064 ± 0.006 −0.089 ± 0.014 0.99553 0.005
0.700 0.062 ± 0.006 −0.089 ± 0.013 0.99508 0.005
0.600 0.056 ± 0.006 −0.076 ± 0.013 0.99497 0.005
0.500 0.060 ± 0.006 −0.085 ± 0.012 0.99552 0.005
0.400 0.057 ± 0.003 −0.078 ± 0.006 0.99888 0.002
0.300 0.062 ± 0.003 −0.090 ± 0.006 0.99895 0.002
0.200 0.059 ± 0.004 −0.083 ± 0.008 0.99790 0.003
0.100 0.062 ± 0.008 −0.091 ± 0.017 0.99077 0.007
0.000 0.058 ± 0.004 −0.087 ± 0.009 0.99664 0.004

R2 is the regression coefficient. SD is the standard deviation. The uncertainty of the mole fraction xW is
equal to ±1·10−3.

Table 12. The average effect of interaction between the –CH2– or –O– group and molecules of the
DMF + W mixed solvent in K0

S,m at 298.15 K.

K0
S,m·1014/m3·Pa−1·mol−1

xW –CH2– –O– R2 SD

1.000 1.02 ± 0.02 −2.09 ± 0.05 0.97083 0.020
0.980 1.14 ± 0.02 −2.20 ± 0.03 0.99534 0.013
0.960 1.51 ± 0.15 −2.92 ± 0.32 0.70058 0.126
0.940 1.53 ± 0.14 −2.85 ± 0.32 0.92040 0.126
0.920 1.55 ± 0.08 −2.74 ± 0.17 0.99266 0.065
0.900 1.82 ± 0.11 −3.19 ± 0.25 0.98949 0.098
0.800 2.65 ± 0.03 −4.49 ± 0.07 0.99970 0.029
0.700 2.96 ± 0.07 −4.82 ± 0.15 0.99929 0.061
0.600 3.41 ± 0.06 −5.59 ± 0.12 0.99965 0.049
0.500 3.76 ± 0.10 −6.22 ± 0.23 0.99890 0.089
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Table 12. Cont.

K0
S,m·1014/m3·Pa−1·mol−1

xW –CH2– –O– R2 SD

0.400 4.10 ± 0.15 −6.92 ± 0.33 0.99767 0.131
0.300 4.49 ± 0.11 −7.74 ± 0.24 0.99866 0.096
0.200 4.83 ± 0.13 −8.50 ± 0.29 0.99780 0.113
0.100 5.01 ± 0.12 −8.95 ± 0.27 0.99771 0.107
0.000 5.37 ± 0.09 −9.81 ± 0.20 0.99841 0.077

R2 is the regression coefficient. SD is the standard deviation. The uncertainty of the mole fraction xW is equal
to ±1·10−3.
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 Figure 11. The average effect of interaction between the (a) –CH2– (�) or (b) –O– (•) group and
molecules of the DMF + W mixed solvent for the values of V0

m, E0
p,m, and K0

S,m for glymes as a function
of xW at 298.15 K.



Molecules 2023, 28, 1519 18 of 23

In the range of high water content in the DMF + W mixed solvent characteristic,
changes are observed in the functions V0

m = f (x2) and E0
m = f (x2), and these prove that the

hydrophobic nature of the –CH2– group influences the structure of the mixture. Analogous
opposite changes are observed in the case of the hydrophilic oxygen atom. Moreover, the
contribution of the –CH2– and –O– to the function E0

m = f (x2) is almost constant for small
and medium water content in the mixture. In the case of group contributions obtained for
standard partial molar compression, it can be seen that the function K0

S,m = f (x2) curve
is monotonic. No characteristic course of the functions is observed in the area with high
water content. This is probably related to the lower sensitivity of this function to changes in
the hydrophobic–hydrophilic character. The increasing contribution of the atom –O– to the
K0

S,m suggests that the presence of an oxygen atom in the low and medium water content
of the DMF + W mixture also contributes to increasing the values of K0

S,m in this range of
the mixture.

For example, in Figure 12, the function courses V0
m = f (x2), E0

m = f (x2), and K0
S,m = f (x2),

calculated using the group contribution and calculated using experimental data for tetraglyme at
298.15 K in the DMF + W mixed solvent, are compared. As shown in Figure 12, the consistency of
the obtained dependencies is satisfactory.
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3. Experimental
3.1. Materials

The compounds used in the study in this paper, as well as the suppliers, the purity,
the purification method, and water content, are presented in Table 13.

Table 13. Materials.

Name of Compound Source Purity Purification Method Mass Fraction
of Water c

pentaglyme prepared as described
in [15] >0.99 a 3·10−3

hexaglyme prepared as described
in [35] >0.99 a 3·10−3

N,N-dimethylformamide
(DMF)

Sigma-Aldrich
Poznan, Poland 0.99 b Distillation under

reduced pressure 2·10−4

a The purity of the compound has been determined by means of 1H NMR; see Supplementary Materials.
b Declared by the supplier. c Determined by the Karl Fischer method.

3.2. Method

The densities and speed of sound of the glyme + DMF + W solutions within the whole
concentration range of the mixed solvent DMF + W at temperatures T = (293.15, 298.15,
303.15, 308.15) K were measured with the density and speed of sound analyzer DSA 5000
from Anton Paar. This device combines two miniaturized inline cells to simultaneously
measure the density and speed of sound of a liquid sample at ambient pressure. The
density is measured using a cell with oscillatory U-tube, where the repeatability of the
density was ±1·10–3 kg·m–3, as declared by the manufacturer. Taking into account the
formula for the combined standard uncertainty for the average of density measurements
proposed by Fortin et al. [36], the estimated uncertainty according to this paper was
±4·10−3 kg·m−3. The sound-speed cell has a circular cylindrical cavity of 8 mm diameter
and 5 mm thickness that is sandwiched between the transmitter and the receiver. The speed
of sound is determined by measuring the time-of-flight of signals between the transmitter
and receiver [36]. The repeatability declared by the manufacturer of the speed of sound
measurements and their estimated uncertainty [36] were ±0.1 m·s−1 and ±0.5 m·s−1,
respectively. Both measurement cells were housed in a thermostated block, the temperature
of which was controlled with a combination of thermoelectric Peltier elements and an
integrated Pt-100 resistance thermometer. The temperature measured with an integrated
Pt-100 thermometer gives a repeatability in measured temperature equal to±0.001 K. In the
densimeter and sound-speed cells, an adjustment procedure was performed with ultra-pure
Type 1 (MilliporeSigma™ Synergy™ Ultrapure Water Purification System), degassed water,
and air at 293.15 K and at 0.1000 MPa pressure. The values of water density and speed
of sound, amounting 998.203 kg·m−3 and 1482.66 m·s−1 at a temperature of 293.15 K, are
similar to those reported in the literature [37].

The glymes solutions in the DMF + W mixture were prepared by weight using elec-
tronic balances with a precision of ±2·10−5 g. Temperature scans were programmed from
35 to 20 ◦C in decrements of 5 ◦C. The data of density and speed of sound obtained as a
function of the water mole fraction (xW) of the solution and temperature T are presented in
Tables S1–S4 (see Supplementary Materials).

4. Conclusions

The densimetric and acoustic investigations of glymes solutions in the DMF + W mixed
solvent allow us to make a conclusion about the solvation process of glymes in this mixture
at different temperatures. Analysis of the values of standard molar volume, standard
molar thermal expansion, compressibility, and standard molar compression as a function
of the mole fraction of water in the DMF + W mixed solvent (V0

m = f (xW), E0
p,m = f (xW),

κS = f (xW) and K0
S,m = f (xW)) shows the characteristic changes in these functions in the
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range of high water content in the mixture. These changes probably correlate with the
hydrophobic hydration process of glyme molecules in a mixture with high water content.

Slight changes in these functions in the area of medium and low water content in the
mixture show a stable structure of the mixed solvent in this range of compositions. This is
consistent with the conclusions of other authors regarding the DMF + W solvent.

The hydration number of glymes with a number of oxygen atoms in the chain
2 ≤ m–O– ≤ 7 increases proportionally with the chain-length glymes and decreases lin-
early with increasing temperature.

The parameters of the linear relationship of the first and second intersection points of
the isentropic compressibility κS of isomolal solutions are presented in the current paper.
Additionally, the hydration number as a function of the number of oxygen atoms in the
glyme molecules, as well as the temperature, is presented (xW = f (m−O−), xW = f (T),
n0

h = f (m−O−), n0
h = f (T)). Knowing these parameters will allow one to calculate and

interpret the intersection points of the isomolal curves of the isentropic compressibility
and also calculate the hydration numbers for other similar systems. In addition, we hope
that these relations will contribute in the future to improving the interpretation of the
intersection points of the isentropic compressibility curves, as well as, contribute to finding
an uncritical method for calculating hydration numbers. Of course, this also requires
research on other systems, but our research will also contribute to this accordingly.

The calculated contribution of the –CH2– and –O– groups in the functions V0
m = f (xW),

E0
p,m = f (xW), and K0

S,m = f (xW) is satisfactory and shows opposite changes in the course
of these group contributions in the entire concentration rage of the DMF + W mixed solvent
at 298.15 K.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules28041519/s1. Table S1. Density of the pentaglyme + DMF + W
solution at pressure p = 0.100 ± 0.005MPa. Table S2. Density of the hexaglyme + DMF + W solution
at pressure p = 0.100 ± 0.005MPa. Table S3. Speed of sound in the pentaglyme + DMF + W solution
at pressure p = 0.100 ± 0.005MPa. Table S4. Speed of sound in the hexaglyme + DMF + W solution at
pressure p = 0.100± 0.005MPa. Table S5. The apparent molar volume of the pentaglyme in DMF + W
mixture. Table S6. The apparent molar volume of the hexaglyme in DMF + W mixture. Table S7.
Isentropic compressibility coefficient of the pentaglyme + DMF + W solution. Table S8. Isentropic
compressibility coefficient of the hexaglyme + DMF + W solution. Table S9. The apparent molar
isentropic compression of pentaglyme in the DMF + W solvent. Table S10. The apparent molar isentropic
compression of hexaglyme in the DMF + W solvent.
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