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Abstract: Hypercoordinate transition-metal species are mainly dominated by the 18-valence-electron
(18ve) counting. Herein, we report ternary MAl6S6 (M = Ni, Pd, Pt) clusters with the planar hexaco-
ordinate metal (phM) centers, which feature 16ve counting instead of the classic 18ve rule. These
global-minimum clusters are established via unbiased global searches, followed by PBE0 and single-
point CCSD(T) calculations. The phM MAl6 units are stabilized by six peripheral bridging S atoms
in these star-like species. Chemical bonding analyses reveal that there are 10 delocalized electrons
around the phM center, which can render the aromaticity according to the (4n + 2) Hückel rule. It is
worth noting that adding an (or two) electron(s) to its π-type lowest unoccupied molecular orbital
(LUMO) will make the system unstable.

Keywords: planar hexacoordinate metal (phM) clusters; global minimum; chemical bonding;
16-valence-electron counting; σ aromaticity

1. Introduction

The design, synthesis, and characterization of new two-dimensional (2D) materials
have attracted wide attention in recent years, for unexpected properties and wide appli-
cations [1–5]. As its units or fragments, the corresponding planar clusters have gradually
become one of the focuses in cluster science. Planar hypercoordinate carbon species have
been explored for half a century due to their exotic structures, unusual chemical bonding,
as well as potential applications since Hoffmann et al. put forward the strategies for sta-
bilizing planar tetracoordinate carbon (ptC) structures in 1970 [6–13]. A variety of ptC,
planar pentacoordinate carbon (ppC), planar hexacoordinate carbon (phC) species were
predicted theoretically or characterized experimentally [14–25]. The atypical planar hyper-
coordination is not limited to carbon, which can be extended to other main group elements
and transition metals. Due to the electron-deficiency nature of boron, Bn

− clusters in the
size range of n = 3–40 have been confirmed to assume planar or quasi-planar structures, in
which some species can possess even higher coordination numbers [26,27]. Planar hepta-
and octacoordinate boron (p7B, p8B) centers can be stabilized in the beautiful molecular
wheels B8

− and B9
−, which were experimentally observed by Zhai in 2003 [28]. The wheel-

like ppB B6H5
+, ppBe BeCu5, p8Be BeB8

2−, p7Sc ScCu7, ppAl Cu5Al2+, ppGa Cu5Ga2+,
and star-like ppB BBe5Au5, phGa GaBe6Au6 were identified as the global minima [29–35].
Using size-selected anion photoelectron spectroscopy combined with ab initio calculations,
a series of transition-metal-centered monocyclic boron wheel clusters M©Bn (n = 8–10)
were reported by Wang and Boldyrev [36]. Among them, D8h-Co©B8

−, D9h-Ru©B9
−,

D10h-Ta©B10
− are the most representative molecular wheels, containing the planar octaco-

ordinate cobalt, planar nonacoordinate ruthenium, and planar decacoordinate tantalum,
respectively [37,38]. More importantly, an effective principle was proposed for designing
the stable M©Bn

k−, that is x =12-n-k, where x is the required valence of the transition-metal
M atom. Obviously, Co©B8

− and Ru©B9
− follow the formula exactly. For D10h-Ta©B10

−,
the corresponding electron counting formula needs to upgrade to x =16-n-k. It should
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be noted that these beautiful molecular wheels possess σ and π double aromaticity. In
2015, a series of planar wheel-type D6h M©B6H6

−/0/+ (M = Mn, Fe, and Co) clusters were
theoretically designed by Hou [39]. The H-bridged BenHn rings can be used to stabilize the
ppC, phB, and p7Au [40–42]. However, it is a failure to stabilize the transition metal atom
with a BenHn ring. Recently, the ppB BAl5S5

+, ppC CAl5O5
+, and CB5S5

+ molecular stars
were predicted in theory [43–45]. Very recently, the MB7O7

+ (M = Ni, Pd, Pt) stars were
reported as the global minima by Wu, which contain the p7M centers and possess the σ

aromaticity alone [46]. To better broaden the research field of the planar hypercoordinate
transition metals species, it is highly desirable to design the phM clusters, which is the
theme of our present study. To host a planar hypercoordinate transition metal center, the M
atom and surrounding ligands ring must match both geometrically and electronically. One
interesting question arises regarding how to design molecular stars containing the planar
hexacoordinate Ni/Pd/Pt centers.

Our design idea is shown in Scheme 1. Geometrically, the star-like B6O6 ring is too
small to hold a Ni atom. It is imperative to increase the geometrical size of the ligand ring.
Our preliminary calculations show that D6h NiAl6O6 is only a transition state structure.
Can we stabilize the Ni/Pd/Pt atoms using a larger Al6S6 ring? The answer is positive.
Geometrically, the Al6S6 ring is suitable to hold the Ni/Pd/Pt transition metal center. As
we all know, 18-valence-electron (18ve) counting is popular for transition metal species. It
is easy to think of MAl6S6

2− (M = Ni, Pd, Pt) systems first. However, MAl6S6
2− (M = Ni,

Pd, Pt) are the third-order saddle points on the corresponding energy surfaces, at the
PBE0/def2-TZVP level. Removing one electron from MAl6S6

2−, the MAl6S6
− (M = Ni,

Pd, Pt) are formed. Unfortunately, MAl6S6
− (M = Ni, Pd, Pt) are still unstable, which

are only the second-order saddle points. Thus, both 18ve and 17ve counting are invalid.
Frequency analyses indicate that neutral MAl6S6 (M = Ni, Pd, Pt) are the true minima at
the PBE0/def2-TZVP level. Thus, 16ve counting seems to be an appropriate electronic rule
to design the phM species.
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Scheme 1. Basic idea of designing phM MAl6S6 (M = Ni, Pd, Pt) clusters.

The present paper reports ternary S-bridged MAl6S6 (M = Ni, Pd, Pt) molecular stars,
which contain the planar hexacoordinate transition metal centers. Interestingly, MAl6S6
(M = Ni, Pd, Pt) possesses 10σ aromaticity alone, whose transition metal centers follow
the 16ve counting instead of the typical 18ve rule. The MAl6S6 (M = Ni, Pd, Pt) species
reported in this paper will provide new candidates for further exploration of 2D materials.

2. Computational Details

The potential energy surfaces of MAl6S6 (M = Ni, Pd, Pt) were explored by the Co-
alescence Kick (CK) algorithm [47,48], at the PBE0/Lanl2DZ level of theory [49]. Both
singlet and triplet surfaces were considered. More than 8000 stationary points (4000 singlets
and 4000 triplets) were probed for each of the MAl6S6 (M = Ni, Pd, Pt) clusters. Subse-
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quent structural optimizations were carried out for the low-lying isomers using the PBE0
method with the def2-TZVP basis set [50]. Frequency calculations were performed at
the same level to ensure that all the structures are true minima on the potential energy
surface. The energies were refined by the single point CCSD(T)/def2-TZVP calculations
at the PBE1PBE/def2-TZVP geometries [51]. The final relative energies were determined
by the CCSD(T)/def2-TZVP energy plus the PBE0/def2-TZVP zero-point energy correc-
tions. Born–Oppenheimer molecular dynamic (BOMD) simulations were performed at the
PBE0/def2-SVP level [52].

To obtain Wiberg bond indices (WBIs) and natural atomic charges, natural bond orbital
(NBO) analyses were conducted at the PBE0/def2-TZVP level using NBO6.0 [53]. The
atomic composition of canonical molecular orbitals (CMOs), adaptive natural density par-
titioning (AdNDP), and electron localization function (ELF) analyses were accomplished
using the Multiwfn program [54–56]. Nucleus-independent chemical shifts (NICSs) and
iso-chemical shielding surfaces in the z direction (ICSSzz) were calculated to assess aro-
maticity [57,58]. All electronic structure calculations were carried out using the Gaussian
16 package [59]. Molecular structures, CMO pictures, AdNDP, and ELF results were
visualized using CYLview [60] and GaussView, respectively.

3. Results and Discussion
3.1. Structures and Stability

The optimized global minima (GMs) structures of ternary MAl6S6 (M = Ni, Pd, Pt)
clusters were depicted in Figure 1, at the PBE0/def2-TZVP level. The phM GMs (1–3)
assume the perfect D6h symmetry, which is composed of the M center, Al6 ring, and six S
bridges at the periphery. Geometrically, the star-like Al6S6 ring is suitable for hosting these
hexacoordinate planar transition metals (phMs) with the high symmetry of D6h, which has
good tolerance and can be adjusted according to the size of the central atom. Frequency
analyses indicate that the empty D6h Al6S6 ring is unstable, which is only a transition state
at PBE0/def2-TZVP level. Introducing a transition metal atom into its center can help to
stabilize it. Alternative optimized low-lying structures are shown in Figure 2. To check for
consistency in terms of structures and energetics, the corresponding B3LYP/def2-TZVP
calculations and vibrational analyses were further done for 1–3 and the low-lying isomers,
as well as the single-point CCSD(T)/def2-TZVP//B3LYP/def2-TZVP calculations [61,62].
As shown in Figure 2, the CCSD(T)//B3LYP energetics data (in square brackets) are closely
consistent with those at single-point CCSD(T)//PBE0. Thus, we shall only discuss the
PBE0 and CCSD(T)//PBE0 data in the following discussion.
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Figure 1. Optimized global-minimum structures 1–3 of MAl6S6 (M = Ni, Pd, Pt) at the PBE0/def2-
TZVP level. The bond distances are labeled in angstroms.

At the CCSD(T)//PBE0 level, the GMs 1, 2, 3 lie 5.36, 19.25, and 23.69 kcal mol−1 lower
than the second low-lying isomers 1B, 2B, and 3B, respectively. Their optimized Cartesian
coordinates for GMs 1–3 and the low-lying isomers 1B–3E are provided in Table S1 (ESI†).
In these low-lying isomers, all Al atoms tend to coordinate directly to the M center, whereas
most of the S atoms are situated on the periphery and link with Al atoms as the bridges
(µ2-S). It should be noted that there is one µ3-S atom is bound to the M center as the face-
capping group in 1B/1C/1D/2B/2D/3B/3C/3E. However, there is no terminal µ1-S atom
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in these low-lying isomers. The central M atom has a coordination number of six/seven,
while the coordination number of the Al atom is three/four in 1B–3E. The most stable
triplet structures are obviously higher than 1E, 2E, and 3E in energy at the CCSD(T) level,
respectively. Thus, the phM 1, 2, and 3 stars are the GMs on the potential energy surfaces.
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TZVP level, along with their four lowest-lying isomers (nB–nE). Relative energies are listed in
kcal mol−1 at the single-point CCSD(T) level using their PBE0 geometries, with zero-point energy
(ZPE) corrections at PBE0. Shown in square brackets for comparison are the energetics at single-point
CCSD(T)/def2-TZVP//B3LYP/def2-TZVP level, including ZPE corrections at B3LYP.

The bond distances, Wiberg bond indices (WBIs), and natural population analysis
(NPA) charges can help us to explore the bonding characters of 1–3, which are shown
in Figure 1 and Table 1. As shown in Figure 1, the calculated Ni–Al bond distance in 1
is 2.54 Å, which is longer than the Ni–Al covalent single bond length (2.36 Å) based on
covalent atomic radii proposed by Pyykkö [63]. Because of the perfect D6h symmetry, the
Al–Al bond distance in 1 is also 2.54 Å, which is close to the recommended single bond
(2.52 Å). The Al–S distance 2.18 Å, is between the Al-S single bond (2.29 Å) and Al=S double
bonds (2.07 Å). Considering the differences in electronegativity of the elements (Ni:1.9,
Al:1.5, S:2.5), Ni-Al and Al-S bonding can be sort of polar in nature. Thus, it is not easy to
judge the bond strength just by the bond distances. WBIs and NPA charges offer valuable
bonding information. As shown in Table 1, the WBINi–Al 0.22 and WBIAl–Al 0.40, are less
than 0.5, indicating their delocalized bonding nature. The WBIAl–S in 1 is 0.88, suggesting
that the Al–S bonding is quite strong, which is consistent with the conclusions from the
analyses of bond distances. With the increases in the size of central M atoms, the changes in
the corresponding bond distances have almost the same trends. Interestingly, the Pd–Al in
2 has exactly equal bond distance with the Pt–Al (2.58 Å) in 3. The WBIPd–Al and WBIPt–Al
are 0.23 and 0.25, respectively. It should be noted that the periphery Al–S bond distances in
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1–3 seem to be almost unchanged (from 2.18 to 2.19 Å), as well as their WBIs. Indeed, the
bridging S atoms can help to make the relatively flexible Al6 ring more rigid to some extent.

Table 1. The lowest vibrational frequencies (νmin/cm−1), HOMO-LUMO gaps (Gap/eV), Wiberg
bond indices, and atomic nature charges (q, |e|) of MAl6S6 (M = Ni, Pd, Pt) at the PBE0/def2-
TZVP level.

Species νmin Gap WBIM-Al WBIAl-Al WBIAl-S qM qAl qS

1 NiAl6S6 17 3.24 0.22 0.40 0.88 −0.30 0.84 −0.79

2 PdAl6S6 27 3.23 0.23 0.38 0.87 −0.42 0.87 −0.80

3 PtAl6S6 24 3.26 0.25 0.36 0.87 −0.54 0.89 −0.80

Due to the electronegativity differences, there is obvious electron transfer from the
Al atoms to the central M and periphery S atoms. As shown in Table 1, the NPA charges
on Ni, Al, and S atoms are −0.30, +0.84, and −0.79 |e|, respectively, thus 1 features the
negative–positive–negative charge distribution pattern, which favors the stabilization of
the species via Coulomb attractions. Since Pd, Pt and Ni are in the same group in the
periodic table, the charge distributions in 2 and 3 are basically similar to those of 1. It
should be noted that the transition metals carry only a small number of negative charges,
making them easier to stabilize. According to NPA charge data, MAl6S6 (M = Ni, Pd, Pt)
can approximately be formulated as [MAl6]6+[S6]6−.

For a thermodynamically stable cluster, its kinetic stability is equally important for
experimental realization. Are these perfect phM MAl6S6 (M = Ni, Pd, Pt) stars dynamically
stable? Born–Oppenheimer molecular dynamics (BOMD) simulations were performed
for clusters 1–3, at the PBE0/def2-SVP level, for 30 ps at room temperature (298 K). The
root-mean-square deviations (RMSD, relative to the PBE0/def2-SVP optimized structures)
of the structures are depicted in Figure 3. The average RMSD values of 1–3 are in the
0.28~0.36 Å range, indicating that their original structures can be maintained during the
30 ps simulations. As a technical note, the major spikes in 1 are due to the inversion vibra-
tion of Al/S up and down the molecular planes, suggesting that the Al6 ring is relatively
soft. As the size of the central M atom increases, the vibration decreases. The BOMD
data suggest that 1–3 species also have reasonable kinetic stability against isomerization
and decomposition.

3.2. Chemical Bonding

To further understand the electronic structures and stability of MAl6S6 (M = Ni, Pd, Pt)
clusters, it is essential to perform in-depth chemical bonding analyses. Here, we chose to
carry out AdNDP analyses for these phM stars. AdNDP is an extension of the NBO analysis,
which recovers not only the Lewis bonding elements (lone pairs and 2c-2e bonds) but also
delocalized nc-2e bonds. The AdNDP scheme for NiAl6S6 is illustrated in Figure 4, which
is relatively straightforward for comprehension. There are 64 valence electrons in NiAl6S6,
which can be attributable to five subsets from (a) to (e), according to the CMO orbital
composition and structural characteristics. As shown in Figure 4a, there are three 1c-2e lone
pairs (LPs) on the central Ni atom, with the occupation numbers (ON) from 2.00 to 1.97 |e|.
Subset (b) indicates that there are six 1c-2e LPs of the periphery S atoms (ON = 1.96 |e|).
Subset (c) contains 12 typical 2c-2e Al-S localized σ bonds on the peripheral Al6S6 ring
(ON = 1.96 |e|). In Subset (d), there are six delocalized 3c-2e π bonds on the Al-S-Al
triangles, with the ON 2.00 |e|. The residual 10 electrons can correspond to five 7c-2e
delocalized σ bonds on the NiAl6 unit, which are depictured in subset (e). Thus, the phM
NiAl6S6 possesses 10σ aromaticity, according to the classical (4n + 2) Hückel rule. The
orbital composition of occupied CMOs for 1 is listed in Table S2, which further supports
the above AdNDP results. The AdNDP bonding patterns of 2 and 3 are very similar to 1,
which are shown in Figure S1 and Figure S2, respectively.
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A total of 64 valence electrons are ideal for these σ aromatic phM stars, and even
one additional electron can deteriorate their electronic stability. Table S3 listed the LU-
MOs and atomic composition of 1–3. For such delocalized orbitals, intuitively, adding
electrons to them will be beneficial to the stability of the systems. However, the result is
counter-intuitive. As depictured in Figure 5, D6h NiAl6S6

− (2A2u) is only a second-order
saddle point on the potential energy surface, with two small imaginary frequencies at
the PBE0/def2-TZVP level. It should be noted that the singly occupied molecular orbital
(SOMO) of NiAl6S6

− is a typical delocalized π orbital. In general, the electron on π-SOMO
should be beneficial to the stability of the system. Even then, the D6h NiAl6S6

− anion
is not stable. Why is the phM NiAl6S6

− star unstable? We briefly answer this question.
The electron on SOMO has both positive and negative effects on the stability of the plane
structure of NiAl6S6

−. On the one hand, π delocalization can help to disperse electrons
from the central transition metal Ni atom. However, the charge on Ni is only −0.34 |e|,
which makes this effect contribute a little to the stability of the NiAl6S6

− star. In addition,
although the SOMO is a bonding orbital in general, it has some antibonding components.
The π-LPs of S atoms play a crucial role in the anti-bonding characters, which account for
27.2% of the total. The combination of these two factors makes the electrons on SOMO
contribute very little to the stability of the system. On the other hand, both Ni-Al and Al-Al
bond distances are equal to 2.49 Å, which is obviously shorter than those in NiAl6S6 (2.54 Å).
According to the NPA distribution, the charge of the Al atom is +0.75 |e| in NiAl6S6

−.
The relatively short Al-Al bond distances make the electrostatic repulsion between them
increase obviously, which makes the plane structure of D6h NiAl6S6

− become unstable.
Similarly, D6h NiAl6S6

2− dianion is the third-order saddle point on the potential energy
surface, whose Ni center satisfies the 18ve rule. Thus, 18ve counting is not a prerequisite
for the planar hypercoordinate transition metals species.
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also listed.

3.3. σ-Aromaticity

In general, many beautiful planar molecules are associated with aromaticity, which
is very important for the stability of the system. Aromaticity can be described not only
qualitatively but also quantitatively. To further strengthen the AdNDP analyses presented
above, detailed ELF analyses were performed for the MAl6S6 (M = Ni, Pd, Pt) stars. As
shown in Figure 6, the bifurcation values of ELFσ in 1–3 are 0.80, 0.74, and 0.74, respectively.
Thus, the MAl6S6 (M = Ni, Pd, Pt) stars are σ aromatic according to the ELF criteria, which
are consistent with our conclusion of AdNDP analyses.

As an independent, semi-quantitative measure of aromaticity in the systems, NICS
plays an important role in the characterization of aromaticity. The negative NICS(0) and
NICS(1) values can reflect σ and π aromaticity, respectively. As shown in Figure S3, the
NICS(0) values at the Al-M-Al triangles are in the range of −32.0~−63.8 ppm for 1–3,
suggesting they possess typical σ aromaticity. For the Al-S-Al triangles of 1–3, the NICS(1)
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values are from −4.0 to −6.5 ppm, indicating they have a certain degree of π aromaticity.
However, evaluating NICS values at some point seems to be inadequate. To more intuitively
observe the aromaticity, the color-filled maps of ICSSzz(0) of 1–3 are plotted in Figure 7. It
should be noted that positive ICSSzz values indicate diatropic ring currents and aromaticity.
The calculated ICSSzz data provide a quantitative assessment, fully supporting the idea of
σ aromaticity in MAl6S6 (M = Ni, Pd, Pt) stars.
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3.4. Simulated IR Spectrums

To facilitate future experimental characterization, the IR spectrums of the phM stars
1, 2, and 3 were simulated at the PBE0/def2-TZVP level. As depictured in Figure 8, the
strongest IR absorption peak occurs at 568 cm−1, which mainly originates from inplane
asymmetrical Al-S stretching vibrations. The peak at 461 cm−1, is mainly generated by cou-
pled vibrations of Al-S, Al-Ni, and Al-Al in-plane asymmetrical stretching vibrations. The
weak peak at 248 cm−1, corresponds to asymmetrical Ni-Al in-plane stretching vibrations.
The weak peak at 67 cm−1 is the result of the up-and-down movements of the phNi center
within the Al6 ring along the molecular axis. As shown in Figure S4, the locations and
intensity of absorption peaks in 2 (PdAl6S6) and 3 (PtAl6S6) are basically like those of 1.
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4. Summary

In summary, we have designed the phM MAl6S6 (M = Ni, Pd, Pt) stars. Based on
extensive searches and high-level calculations, these perfect phM stars turned out to be
the global minima on the potential energy surfaces. In addition, the dynamic simulations
revealed that they possess good kinetic stabilities. The formation of peripheral 2c-2e Al-S
σ bonds, 3c-2e Al-S-Al π bonds, and the 10σ aromaticity contribute to the stabilization of
phM-containing structures in MAl6S6 (M = Ni, Pd, Pt) species. Thus, these phM species
may be targeted in future experiments and enrich the planar hypercoordinate transition
metals chemistry.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28030942/s1, Table S1: Cartesian coordinates for global-
minimum (GM) clusters 1–3 of the MAl6S6 (M = Ni, Pd, Pt) series at the PBE0/def2-TZVP level,
along with four lowest-lying nB–nE isomeric structures.; Table S2: Orbital composition analysis for
the canonical molecular orbitals (CMOs) of GM NiAl6S6 (1, D6h, 1A1g) cluster. Main components
greater than 15% are shown in bold; Table S3: Orbital composition analysis for the lowest unoccupied
molecular orbitals (LUMOs) of the MAl6S6 (M = Ni, Pd, Pt) series; Figure S1: The AdNDP bonding
pattern of PdAl6S6. Occupation numbers (ONs) are shown; Figure S2: The AdNDP bonding pattern
of PtAl6S6. Occupation numbers (ONs) are shown; Figure S3: Nucleus independent chemical
shifts (NICSs) for clusters 1–3. Here the NICS(0) data (blue color) are calculated at the center of
the Al-M-Al (M = Ni, Pd, Pt) triangle, whereas the NICS(1) values (red color) are at 1 Å above the
center of the Al-S-Al triangle; Figure S4: Calculated IR spectrums of PdAl6S6 and PtAl6S6 at the
PBE0/def2-TZVP level.
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