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Abstract: An efficient one-pot synthetic method has been developed for the preparation of bicyclic car-
bamoyl pyridones from the known common intermediate methyl 5-((2,4-difluorobenzyl)carbamoyl)-
1-(2,2-dimethoxyethyl)-3-methoxy-4-oxo-1,4-dihydropyridine-2-carboxylate (8). The scalable protocol
is facile and employs readily available reagents, needing only a single purification as the final step.
The utility of the approach was demonstrated by preparing a library of HIV-1 integrase strand transfer
inhibitors (INSTIs) that differ by the presence or absence of a double bond in the B-ring of the bicyclic
carbamoyl pyridines 6 and 7. Several of the analogs show good antiviral potencies in single-round
HIV-1 replication antiviral assays and show no cytotoxicity in cell culture assays. In general, the
compounds with a B-ring double bond have higher antiviral potencies than their saturated congeners.
Our methodology should be applicable to the synthesis of a range of new metal-chelating analogs.

Keywords: HIV-1; integrase strand transfer inhibitor (INSTI); one-pot synthesis; catalytic hydrogenation;
bicyclic carbamoyl pyridones; metal chelation

1. Introduction

Bis-cationic magnesium (Mg2+) is the most abundant divalent cation in cells [1]. The
hydration shell and ligand geometries of Mg2+ contribute to its role in polynucleotide
folding and its frequent use by DNA and RNA polymerases and nucleases [2–5]. The
critical roles played by divalent metal chelation in essential viral enzymes have made
metal-chelating pharmacophores important components of a range of antiviral agents [6–8].
For example, HIV-1 replication involves the conversion of the single-stranded viral RNA
genome into linear dsDNA by the polymerase and ribonuclease H (RNase H) activities of
reverse transcriptase (RT), and subsequent incorporation of the viral DNA into the host
genome through the catalysis of viral integrase (IN). Two Mg2+ cations serve as cognate
catalytic cofactors for these enzymes [9–11]. Metal-chelating moieties are central compo-
nents of inhibitors directed against both RNase H [12,13] and integrase [14–21]. Integrase
strand transfer inhibitors (INSTIs) are of particular interest, with recently approved INSTIs
representing some of most effective anti-AIDS drugs [22].

Evolution of the metal-chelating motifs of INSTIs has played a key role in the im-
provements in the therapeutic efficacy of this class of drugs [14,20]. Of the five currently
FDA-approved INSTIs (the first-generation INSTIs Raltegravir (RAL, 1, approved in 2007)
and Elvitegravir (EVG, 2, approved in 2012), and second generation INSTIs Dolutegravir
(DTG, 3, approved in 2013), Bictegravir (BIC, 4, approved in 2018), and Cabotegravir (CAB,
5, approved in 2021)) the three second-generation drugs share a common metal-chelating
platform based on carbamoyl pyridone motifs (9-hydroxy-2H-pyrido [1,2-a]pyrazine-1,8-
dione 6 and the saturated congener 9-hydroxy-3,4-dihydro-2H-pyrido [1,2-a]pyrazine-1,8-
dione (7, Figure 1) [3,4,21,23]. These three INSTIs have additional rings appended onto
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their carbamoyl pyridone cores. The focus of our current work is to improve the synthe-
sis of metal-chelating carbamoyl pyridones from the monocyclic precursor 8 and to use
this protocol for the synthesis of analogs bearing a variety of N-2-alkyl substituents (R,
Figure 1). This work has led to the identification of potentially significant structure activity
relationship (SAR) correlations.
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Figure 1. (a) FDA-approved INSTIs 1–5 and mode of metal chelation 3. (b) Structures of bivalent
metal-chelating carbamoyl pyridones 6 and 7 and the monocyclic synthetic precursor 8.

2. Results and Discussion
2.1. Improved Synthetic Protocol to Prepare 2-Methyl Carbamoyl Pyridones 6 and 7

Synthesis of the bicyclic carbamoyl pyridone metal chelators of type 6 and 7 has previ-
ously involved multistep reaction sequences that entail purification after each step [24,25].
In some protocols the bicyclic pyridones have been obtained from aldehyde-containing
monocyclic precursors of type 9 (Scheme 1) under microwave conditions [24]. Such harsh
conditions may limit gram-scale synthesis. A more practical diversity-oriented synthesis
from a common intermediate could potentially overcome these issues and generate a library
of bicyclic pyridones through intermediate 10. In this regard, we designed a synthetic
protocol from the common precursor acetal 8 that produces bicyclic carbamoyl pyridones
of type 6 and 7 in fewer steps without reliance on special reaction conditions.

We began our synthesis with the common intermediate 8, which can be synthesized
on gram-scale [26] or obtained commercially. In our initial work, we heated 8 in formic acid
at 80 ◦C to effect conversion to the aldehyde 9 (Scheme 1) [26–28]. Following evaporation
of the solvent and drying under high vacuum, we obtained crude product 9 that was
used directly for the next step. Methyl amine hydrochloride was added to aldehyde 9
followed by acetic acid and the reaction mixture was stirred at reflux. This afforded the
bicyclic methyl-protected carbamoyl pyridone 10a in moderate yields (44% yield over two
steps). We examined the reaction under microwave conditions (140 ◦C, 1 h) as previously
reported [24]. However, those conditions resulted in lower yields (11%). The pyridone
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10a was subsequently demethylated using lithium bromide to yield the final carbamoyl
pyridone 6a in 60% yield after Prep-HPLC purification. In this way, we were able to convert
8 to 6a in 26% combined yield in three steps using two purifications (Scheme 1).
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We envisioned a more straightforward one-pot synthesis of 6a directly from the
common intermediate 8 that would not require intermediate purification. Accordingly,
the reaction sequence described above was repeated in a one-pot synthesis. The methyl-
protected enol 10a was not isolated directly. Rather, following the conversion of 10a to 6a,
solvent and acetic acid were removed by rotary evaporation and the resulting residue was
placed under high vacuum (30 min). Conversion of 8 to enol 6a was achieved in one-pot
fashion in 31% yield over three steps following HPLC purification (Scheme 1).

2.2. Synthesis of Libraries of 2-Alkyl Bicyclic Carbamoyl Pyridones

In clinically approved second-generation INSTIs, a heterocyclic functionality posi-
tioned to the “left” of the core carbamoyl bicyclic pyridone-containing metal-chelating
platform can have a significant impact on the ability of the compounds to potently inhibit
drug-resistant IN variants (Figure 1). Although such INSTIs have been developed empiri-
cally, a rationale for the potential roles played by this functionality is beginning to emerge
from high resolution structures of INSTIs bound to intasomes, where it is found that this
region of the INSTI contacts the β4-α2 loop of IN and helps the compounds retain better
potency against drug-resistant integrase mutants [20,22,29]. In the current work, we used
the optimized carbamoyl pyridone synthetic protocol to derive libraries of bicyclic analogs
having varied N-alkyl functionality that would project from this “left” region of the INSTI.
We prepared nine compounds with a double bond in the B-ring (6a–6i, Scheme 1). Catalytic
hydrogenation of the double bond in the B-ring afforded a parallel set of nine reduced
molecules (7a–7i, Scheme 1).

2.3. Determination of HIV-1 Antiviral Potencies

The bicyclic metal chelating carbamoyl pyridone moiety is common to second-
generation tricyclic INSTIs (3, 4, and 5, Figure 1). Analogs of the current study are simplified
analogs that lack a third ring. While our compounds contain a 2,4-difluorobenzyl amide
group, structurally similar bicyclic carbamoyl pyridones possessing a 4-fluorobenzyl amide
group have been previously reported [24]. The halogen substitution pattern of the benzy-
lamide moiety can affect inhibitory potencies of INSTIs [30]. We determined the antiviral
potencies of our compounds in single round HIV-1 replication assays using viral constructs
with wild-type IN [31]. Cytotoxicities were determined as previously described [31]. The
FDA-approved INSTIs 3, 4, and 5 showed similar antiviral EC50 values of approximately
2 nM (Table 1). In general, the potencies of bicyclic analogs 6 having an unsaturated bond at
the C4 position were insensitive to differences in N-methyl substituents. Most compounds
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uniformly exhibited single digit nanomolar antiviral potencies, with the exception of 6d
and 6e, which had antiviral EC50 values of approximately 11 nM and 17 nM, respectively.
Members of the unsaturated series 6 were uniformly found to exhibit low cytotoxicities
(CC50 > 250 nM), except for the N-methyl substituted analog 6a, which showed slightly
increased cytotoxicity (CC50 = 121 nM). In the case of isopropyl substitution (6b and 7b)
antiviral potencies were similar; however, cytotoxicities increased slightly after reduction
of the double bond (CC50 > 250 nM and 167 nM, respectively). A slight loss of antiviral po-
tency was observed with analogs having terminal hydroxy groups in the unsaturated series
6c, 6d, and 6e, (antiviral EC50 values of 4.8 nM, 10.8 nM, and 16.6 nM, respectively) with an
even greater loss of potency for their corresponding saturated analogs 7c, 7d, and 7e (EC50
values of 31.7 nM, 54.5 nM, and 75.7 nM, respectively). The unsaturated series compound
6f, which is a methyl-ether congener of primary alcohol 6c, does not have improved antivi-
ral potency relative to the unsaturated version 7f (EC50 = 4.6 nM). However, conversion of
the unsaturated analog 6c to yield compound 7c resulted in a six-fold decrease in potency
relative to 6c. Unsaturated analogs having terminal methoxy-containing N-substituents
(6g and 6h) showed antiviral potencies that were similar to the second-generation tricyclic
INSTIs 3, 4, and 5 (EC50 ≈ 2 nM for both series). Analogs 6g and 6h represent simplified
analogs of DTG (3) and CAB (5), respectively, in which the third ring (C-ring) is opened
and having doble bond in B-ring, but lacking α-methyl stereochemistry.

Table 1. Antiviral Potencies in Cells Infected with HIV-1 Vectors That Carry WT IN Mutants i.

R No EC50 (nM) ii CC50 (µM) No EC50 (nM) CC50 (µM) Ratio iii
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EC50 values against the IN mutant S230N, which has been selected in vitro against an early 
Merck INSTI L810,830, a prototype for naphthyridine analogs [32]. Additionally, in our 

6c 4.8 ± 0.9 >250 7c 31.7 ± 3.8 >250 6.6

Molecules 2023, 27, x FOR PEER REVIEW 4 of 15 
 

 

group, structurally similar bicyclic carbamoyl pyridones possessing a 4-fluorobenzyl am-
ide group have been previously reported [24]. The halogen substitution pattern of the 
benzylamide moiety can affect inhibitory potencies of INSTIs [30]. We determined the 
antiviral potencies of our compounds in single round HIV-1 replication assays using viral 
constructs with wild-type IN [31]. Cytotoxicities were determined as previously described 
[31]. The FDA-approved INSTIs 3, 4, and 5 showed similar antiviral EC50 values of ap-
proximately 2 nM (Table 1). In general, the potencies of bicyclic analogs 6 having an un-
saturated bond at the C4 position were insensitive to differences in N-methyl substituents. 
Most compounds uniformly exhibited single digit nanomolar antiviral potencies, with the 
exception of 6d and 6e, which had antiviral EC50 values of approximately 11 nM and 17 
nM, respectively. Members of the unsaturated series 6 were uniformly found to exhibit 
low cytotoxicities (CC50 > 250 nM), except for the N-methyl substituted analog 6a, which 
showed slightly increased cytotoxicity (CC50 = 121 nM). In the case of isopropyl substitu-
tion (6b and 7b) antiviral potencies were similar; however, cytotoxicities increased slightly 
after reduction of the double bond (CC50 > 250 nM and 167 nM, respectively). A slight loss 
of antiviral potency was observed with analogs having terminal hydroxy groups in the 
unsaturated series 6c, 6d, and 6e, (antiviral EC50 values of 4.8 nM, 10.8 nM, and 16.6 nM, 
respectively) with an even greater loss of potency for their corresponding saturated ana-
logs 7c, 7d, and 7e (EC50 values of 31.7 nM, 54.5 nM, and 75.7 nM, respectively). The un-
saturated series compound 6f, which is a methyl-ether congener of primary alcohol 6c, 
does not have improved antiviral potency relative to the unsaturated version 7f (EC50 = 
4.6 nM). However, conversion of the unsaturated analog 6c to yield compound 7c resulted 
in a six-fold decrease in potency relative to 6c. Unsaturated analogs having terminal meth-
oxy-containing N-substituents (6g and 6h) showed antiviral potencies that were similar to 
the second-generation tricyclic INSTIs 3, 4, and 5 (EC50 ≈ 2 nM for both series). Analogs 6g 
and 6h represent simplified analogs of DTG (3) and CAB (5), respectively, in which the 
third ring (C-ring) is opened and having doble bond in B-ring, but lacking α-methyl ste-
reochemistry. 

Table 1. Antiviral Potencies in Cells Infected with HIV-1 Vectors That Carry WT IN Mutants i.. 

R No EC50 (nM) ii CC50 (µM) No EC50 (nM) CC50 (µM) Ratio iii 

 6a 2.7 ± 0.2 120.8 ± 2.7 7a 4.6 ± 0.7 >250 1.7 

 
6b 3.8 ± 0.6 >250 7b 3.0 ± 0.1 162.7 ± 8.0 0.79 

 
6c 4.8 ± 0.9 >250 7c 31.7 ± 3.8 >250 6.6 

 
6d 10.8 ± 1.7 >250 7d 54.5 ± 3.0 149.9 ± 3.9 5.0 

 
6e 16.6 ± 2.0 >250 7e 75.7 ± 7.4 >250 4.6 

 
6f 4.8 ± 0.2 >250 7f 4.6 ± 0.4 >250 0.96 

 6g 2.0 ± 0.2 >250 7g 4.0 ± 0.7 >250 2.0 

 6h 1.9 ± 0.4 >250 7h 3.9 ± 0.5 138.5 ± 8.5 2.1 

 
6i 4.2 ± 1.0 >250 7i 6.0 ± 1.2 >250 1.4 

i EC50 values obtained from cells infected with lentiviral vector that has either a WT or the indicated 
IN mutants; CC50 values cytotoxic concentration resulting in 50% reduction in the level of ATP in 
human osteosarcoma (HOS) cells. ii EC50 values for DTG, BIC, and CAB are 1.6 ± 0.9 nM, 1.9 ± 0.3 
nM, and 2.4 ± 0.2 nM, respectively. iii Ratio of the antiviral potencies after and before hydrogenation. 

To further evaluate the antiviral activities of select compounds, we determined their 
EC50 values against the IN mutant S230N, which has been selected in vitro against an early 
Merck INSTI L810,830, a prototype for naphthyridine analogs [32]. Additionally, in our 

6d 10.8 ± 1.7 >250 7d 54.5 ± 3.0 149.9 ± 3.9 5.0
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group, structurally similar bicyclic carbamoyl pyridones possessing a 4-fluorobenzyl am-
ide group have been previously reported [24]. The halogen substitution pattern of the 
benzylamide moiety can affect inhibitory potencies of INSTIs [30]. We determined the 
antiviral potencies of our compounds in single round HIV-1 replication assays using viral 
constructs with wild-type IN [31]. Cytotoxicities were determined as previously described 
[31]. The FDA-approved INSTIs 3, 4, and 5 showed similar antiviral EC50 values of ap-
proximately 2 nM (Table 1). In general, the potencies of bicyclic analogs 6 having an un-
saturated bond at the C4 position were insensitive to differences in N-methyl substituents. 
Most compounds uniformly exhibited single digit nanomolar antiviral potencies, with the 
exception of 6d and 6e, which had antiviral EC50 values of approximately 11 nM and 17 
nM, respectively. Members of the unsaturated series 6 were uniformly found to exhibit 
low cytotoxicities (CC50 > 250 nM), except for the N-methyl substituted analog 6a, which 
showed slightly increased cytotoxicity (CC50 = 121 nM). In the case of isopropyl substitu-
tion (6b and 7b) antiviral potencies were similar; however, cytotoxicities increased slightly 
after reduction of the double bond (CC50 > 250 nM and 167 nM, respectively). A slight loss 
of antiviral potency was observed with analogs having terminal hydroxy groups in the 
unsaturated series 6c, 6d, and 6e, (antiviral EC50 values of 4.8 nM, 10.8 nM, and 16.6 nM, 
respectively) with an even greater loss of potency for their corresponding saturated ana-
logs 7c, 7d, and 7e (EC50 values of 31.7 nM, 54.5 nM, and 75.7 nM, respectively). The un-
saturated series compound 6f, which is a methyl-ether congener of primary alcohol 6c, 
does not have improved antiviral potency relative to the unsaturated version 7f (EC50 = 
4.6 nM). However, conversion of the unsaturated analog 6c to yield compound 7c resulted 
in a six-fold decrease in potency relative to 6c. Unsaturated analogs having terminal meth-
oxy-containing N-substituents (6g and 6h) showed antiviral potencies that were similar to 
the second-generation tricyclic INSTIs 3, 4, and 5 (EC50 ≈ 2 nM for both series). Analogs 6g 
and 6h represent simplified analogs of DTG (3) and CAB (5), respectively, in which the 
third ring (C-ring) is opened and having doble bond in B-ring, but lacking α-methyl ste-
reochemistry. 

Table 1. Antiviral Potencies in Cells Infected with HIV-1 Vectors That Carry WT IN Mutants i.. 

R No EC50 (nM) ii CC50 (µM) No EC50 (nM) CC50 (µM) Ratio iii 

 6a 2.7 ± 0.2 120.8 ± 2.7 7a 4.6 ± 0.7 >250 1.7 

 
6b 3.8 ± 0.6 >250 7b 3.0 ± 0.1 162.7 ± 8.0 0.79 

 
6c 4.8 ± 0.9 >250 7c 31.7 ± 3.8 >250 6.6 

 
6d 10.8 ± 1.7 >250 7d 54.5 ± 3.0 149.9 ± 3.9 5.0 

 
6e 16.6 ± 2.0 >250 7e 75.7 ± 7.4 >250 4.6 

 
6f 4.8 ± 0.2 >250 7f 4.6 ± 0.4 >250 0.96 

 6g 2.0 ± 0.2 >250 7g 4.0 ± 0.7 >250 2.0 

 6h 1.9 ± 0.4 >250 7h 3.9 ± 0.5 138.5 ± 8.5 2.1 

 
6i 4.2 ± 1.0 >250 7i 6.0 ± 1.2 >250 1.4 

i EC50 values obtained from cells infected with lentiviral vector that has either a WT or the indicated 
IN mutants; CC50 values cytotoxic concentration resulting in 50% reduction in the level of ATP in 
human osteosarcoma (HOS) cells. ii EC50 values for DTG, BIC, and CAB are 1.6 ± 0.9 nM, 1.9 ± 0.3 
nM, and 2.4 ± 0.2 nM, respectively. iii Ratio of the antiviral potencies after and before hydrogenation. 

To further evaluate the antiviral activities of select compounds, we determined their 
EC50 values against the IN mutant S230N, which has been selected in vitro against an early 
Merck INSTI L810,830, a prototype for naphthyridine analogs [32]. Additionally, in our 

6e 16.6 ± 2.0 >250 7e 75.7 ± 7.4 >250 4.6
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group, structurally similar bicyclic carbamoyl pyridones possessing a 4-fluorobenzyl am-
ide group have been previously reported [24]. The halogen substitution pattern of the 
benzylamide moiety can affect inhibitory potencies of INSTIs [30]. We determined the 
antiviral potencies of our compounds in single round HIV-1 replication assays using viral 
constructs with wild-type IN [31]. Cytotoxicities were determined as previously described 
[31]. The FDA-approved INSTIs 3, 4, and 5 showed similar antiviral EC50 values of ap-
proximately 2 nM (Table 1). In general, the potencies of bicyclic analogs 6 having an un-
saturated bond at the C4 position were insensitive to differences in N-methyl substituents. 
Most compounds uniformly exhibited single digit nanomolar antiviral potencies, with the 
exception of 6d and 6e, which had antiviral EC50 values of approximately 11 nM and 17 
nM, respectively. Members of the unsaturated series 6 were uniformly found to exhibit 
low cytotoxicities (CC50 > 250 nM), except for the N-methyl substituted analog 6a, which 
showed slightly increased cytotoxicity (CC50 = 121 nM). In the case of isopropyl substitu-
tion (6b and 7b) antiviral potencies were similar; however, cytotoxicities increased slightly 
after reduction of the double bond (CC50 > 250 nM and 167 nM, respectively). A slight loss 
of antiviral potency was observed with analogs having terminal hydroxy groups in the 
unsaturated series 6c, 6d, and 6e, (antiviral EC50 values of 4.8 nM, 10.8 nM, and 16.6 nM, 
respectively) with an even greater loss of potency for their corresponding saturated ana-
logs 7c, 7d, and 7e (EC50 values of 31.7 nM, 54.5 nM, and 75.7 nM, respectively). The un-
saturated series compound 6f, which is a methyl-ether congener of primary alcohol 6c, 
does not have improved antiviral potency relative to the unsaturated version 7f (EC50 = 
4.6 nM). However, conversion of the unsaturated analog 6c to yield compound 7c resulted 
in a six-fold decrease in potency relative to 6c. Unsaturated analogs having terminal meth-
oxy-containing N-substituents (6g and 6h) showed antiviral potencies that were similar to 
the second-generation tricyclic INSTIs 3, 4, and 5 (EC50 ≈ 2 nM for both series). Analogs 6g 
and 6h represent simplified analogs of DTG (3) and CAB (5), respectively, in which the 
third ring (C-ring) is opened and having doble bond in B-ring, but lacking α-methyl ste-
reochemistry. 

Table 1. Antiviral Potencies in Cells Infected with HIV-1 Vectors That Carry WT IN Mutants i.. 

R No EC50 (nM) ii CC50 (µM) No EC50 (nM) CC50 (µM) Ratio iii 

 6a 2.7 ± 0.2 120.8 ± 2.7 7a 4.6 ± 0.7 >250 1.7 

 
6b 3.8 ± 0.6 >250 7b 3.0 ± 0.1 162.7 ± 8.0 0.79 

 
6c 4.8 ± 0.9 >250 7c 31.7 ± 3.8 >250 6.6 

 
6d 10.8 ± 1.7 >250 7d 54.5 ± 3.0 149.9 ± 3.9 5.0 

 
6e 16.6 ± 2.0 >250 7e 75.7 ± 7.4 >250 4.6 

 
6f 4.8 ± 0.2 >250 7f 4.6 ± 0.4 >250 0.96 

 6g 2.0 ± 0.2 >250 7g 4.0 ± 0.7 >250 2.0 

 6h 1.9 ± 0.4 >250 7h 3.9 ± 0.5 138.5 ± 8.5 2.1 

 
6i 4.2 ± 1.0 >250 7i 6.0 ± 1.2 >250 1.4 

i EC50 values obtained from cells infected with lentiviral vector that has either a WT or the indicated 
IN mutants; CC50 values cytotoxic concentration resulting in 50% reduction in the level of ATP in 
human osteosarcoma (HOS) cells. ii EC50 values for DTG, BIC, and CAB are 1.6 ± 0.9 nM, 1.9 ± 0.3 
nM, and 2.4 ± 0.2 nM, respectively. iii Ratio of the antiviral potencies after and before hydrogenation. 

To further evaluate the antiviral activities of select compounds, we determined their 
EC50 values against the IN mutant S230N, which has been selected in vitro against an early 
Merck INSTI L810,830, a prototype for naphthyridine analogs [32]. Additionally, in our 

6f 4.8 ± 0.2 >250 7f 4.6 ± 0.4 >250 0.96
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group, structurally similar bicyclic carbamoyl pyridones possessing a 4-fluorobenzyl am-
ide group have been previously reported [24]. The halogen substitution pattern of the 
benzylamide moiety can affect inhibitory potencies of INSTIs [30]. We determined the 
antiviral potencies of our compounds in single round HIV-1 replication assays using viral 
constructs with wild-type IN [31]. Cytotoxicities were determined as previously described 
[31]. The FDA-approved INSTIs 3, 4, and 5 showed similar antiviral EC50 values of ap-
proximately 2 nM (Table 1). In general, the potencies of bicyclic analogs 6 having an un-
saturated bond at the C4 position were insensitive to differences in N-methyl substituents. 
Most compounds uniformly exhibited single digit nanomolar antiviral potencies, with the 
exception of 6d and 6e, which had antiviral EC50 values of approximately 11 nM and 17 
nM, respectively. Members of the unsaturated series 6 were uniformly found to exhibit 
low cytotoxicities (CC50 > 250 nM), except for the N-methyl substituted analog 6a, which 
showed slightly increased cytotoxicity (CC50 = 121 nM). In the case of isopropyl substitu-
tion (6b and 7b) antiviral potencies were similar; however, cytotoxicities increased slightly 
after reduction of the double bond (CC50 > 250 nM and 167 nM, respectively). A slight loss 
of antiviral potency was observed with analogs having terminal hydroxy groups in the 
unsaturated series 6c, 6d, and 6e, (antiviral EC50 values of 4.8 nM, 10.8 nM, and 16.6 nM, 
respectively) with an even greater loss of potency for their corresponding saturated ana-
logs 7c, 7d, and 7e (EC50 values of 31.7 nM, 54.5 nM, and 75.7 nM, respectively). The un-
saturated series compound 6f, which is a methyl-ether congener of primary alcohol 6c, 
does not have improved antiviral potency relative to the unsaturated version 7f (EC50 = 
4.6 nM). However, conversion of the unsaturated analog 6c to yield compound 7c resulted 
in a six-fold decrease in potency relative to 6c. Unsaturated analogs having terminal meth-
oxy-containing N-substituents (6g and 6h) showed antiviral potencies that were similar to 
the second-generation tricyclic INSTIs 3, 4, and 5 (EC50 ≈ 2 nM for both series). Analogs 6g 
and 6h represent simplified analogs of DTG (3) and CAB (5), respectively, in which the 
third ring (C-ring) is opened and having doble bond in B-ring, but lacking α-methyl ste-
reochemistry. 

Table 1. Antiviral Potencies in Cells Infected with HIV-1 Vectors That Carry WT IN Mutants i.. 

R No EC50 (nM) ii CC50 (µM) No EC50 (nM) CC50 (µM) Ratio iii 

 6a 2.7 ± 0.2 120.8 ± 2.7 7a 4.6 ± 0.7 >250 1.7 

 
6b 3.8 ± 0.6 >250 7b 3.0 ± 0.1 162.7 ± 8.0 0.79 

 
6c 4.8 ± 0.9 >250 7c 31.7 ± 3.8 >250 6.6 

 
6d 10.8 ± 1.7 >250 7d 54.5 ± 3.0 149.9 ± 3.9 5.0 

 
6e 16.6 ± 2.0 >250 7e 75.7 ± 7.4 >250 4.6 

 
6f 4.8 ± 0.2 >250 7f 4.6 ± 0.4 >250 0.96 

 6g 2.0 ± 0.2 >250 7g 4.0 ± 0.7 >250 2.0 

 6h 1.9 ± 0.4 >250 7h 3.9 ± 0.5 138.5 ± 8.5 2.1 

 
6i 4.2 ± 1.0 >250 7i 6.0 ± 1.2 >250 1.4 

i EC50 values obtained from cells infected with lentiviral vector that has either a WT or the indicated 
IN mutants; CC50 values cytotoxic concentration resulting in 50% reduction in the level of ATP in 
human osteosarcoma (HOS) cells. ii EC50 values for DTG, BIC, and CAB are 1.6 ± 0.9 nM, 1.9 ± 0.3 
nM, and 2.4 ± 0.2 nM, respectively. iii Ratio of the antiviral potencies after and before hydrogenation. 

To further evaluate the antiviral activities of select compounds, we determined their 
EC50 values against the IN mutant S230N, which has been selected in vitro against an early 
Merck INSTI L810,830, a prototype for naphthyridine analogs [32]. Additionally, in our 

6g 2.0 ± 0.2 >250 7g 4.0 ± 0.7 >250 2.0
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group, structurally similar bicyclic carbamoyl pyridones possessing a 4-fluorobenzyl am-
ide group have been previously reported [24]. The halogen substitution pattern of the 
benzylamide moiety can affect inhibitory potencies of INSTIs [30]. We determined the 
antiviral potencies of our compounds in single round HIV-1 replication assays using viral 
constructs with wild-type IN [31]. Cytotoxicities were determined as previously described 
[31]. The FDA-approved INSTIs 3, 4, and 5 showed similar antiviral EC50 values of ap-
proximately 2 nM (Table 1). In general, the potencies of bicyclic analogs 6 having an un-
saturated bond at the C4 position were insensitive to differences in N-methyl substituents. 
Most compounds uniformly exhibited single digit nanomolar antiviral potencies, with the 
exception of 6d and 6e, which had antiviral EC50 values of approximately 11 nM and 17 
nM, respectively. Members of the unsaturated series 6 were uniformly found to exhibit 
low cytotoxicities (CC50 > 250 nM), except for the N-methyl substituted analog 6a, which 
showed slightly increased cytotoxicity (CC50 = 121 nM). In the case of isopropyl substitu-
tion (6b and 7b) antiviral potencies were similar; however, cytotoxicities increased slightly 
after reduction of the double bond (CC50 > 250 nM and 167 nM, respectively). A slight loss 
of antiviral potency was observed with analogs having terminal hydroxy groups in the 
unsaturated series 6c, 6d, and 6e, (antiviral EC50 values of 4.8 nM, 10.8 nM, and 16.6 nM, 
respectively) with an even greater loss of potency for their corresponding saturated ana-
logs 7c, 7d, and 7e (EC50 values of 31.7 nM, 54.5 nM, and 75.7 nM, respectively). The un-
saturated series compound 6f, which is a methyl-ether congener of primary alcohol 6c, 
does not have improved antiviral potency relative to the unsaturated version 7f (EC50 = 
4.6 nM). However, conversion of the unsaturated analog 6c to yield compound 7c resulted 
in a six-fold decrease in potency relative to 6c. Unsaturated analogs having terminal meth-
oxy-containing N-substituents (6g and 6h) showed antiviral potencies that were similar to 
the second-generation tricyclic INSTIs 3, 4, and 5 (EC50 ≈ 2 nM for both series). Analogs 6g 
and 6h represent simplified analogs of DTG (3) and CAB (5), respectively, in which the 
third ring (C-ring) is opened and having doble bond in B-ring, but lacking α-methyl ste-
reochemistry. 

Table 1. Antiviral Potencies in Cells Infected with HIV-1 Vectors That Carry WT IN Mutants i.. 

R No EC50 (nM) ii CC50 (µM) No EC50 (nM) CC50 (µM) Ratio iii 

 6a 2.7 ± 0.2 120.8 ± 2.7 7a 4.6 ± 0.7 >250 1.7 

 
6b 3.8 ± 0.6 >250 7b 3.0 ± 0.1 162.7 ± 8.0 0.79 

 
6c 4.8 ± 0.9 >250 7c 31.7 ± 3.8 >250 6.6 

 
6d 10.8 ± 1.7 >250 7d 54.5 ± 3.0 149.9 ± 3.9 5.0 

 
6e 16.6 ± 2.0 >250 7e 75.7 ± 7.4 >250 4.6 

 
6f 4.8 ± 0.2 >250 7f 4.6 ± 0.4 >250 0.96 

 6g 2.0 ± 0.2 >250 7g 4.0 ± 0.7 >250 2.0 

 6h 1.9 ± 0.4 >250 7h 3.9 ± 0.5 138.5 ± 8.5 2.1 

 
6i 4.2 ± 1.0 >250 7i 6.0 ± 1.2 >250 1.4 

i EC50 values obtained from cells infected with lentiviral vector that has either a WT or the indicated 
IN mutants; CC50 values cytotoxic concentration resulting in 50% reduction in the level of ATP in 
human osteosarcoma (HOS) cells. ii EC50 values for DTG, BIC, and CAB are 1.6 ± 0.9 nM, 1.9 ± 0.3 
nM, and 2.4 ± 0.2 nM, respectively. iii Ratio of the antiviral potencies after and before hydrogenation. 

To further evaluate the antiviral activities of select compounds, we determined their 
EC50 values against the IN mutant S230N, which has been selected in vitro against an early 
Merck INSTI L810,830, a prototype for naphthyridine analogs [32]. Additionally, in our 

6h 1.9 ± 0.4 >250 7h 3.9 ± 0.5 138.5 ± 8.5 2.1
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group, structurally similar bicyclic carbamoyl pyridones possessing a 4-fluorobenzyl am-
ide group have been previously reported [24]. The halogen substitution pattern of the 
benzylamide moiety can affect inhibitory potencies of INSTIs [30]. We determined the 
antiviral potencies of our compounds in single round HIV-1 replication assays using viral 
constructs with wild-type IN [31]. Cytotoxicities were determined as previously described 
[31]. The FDA-approved INSTIs 3, 4, and 5 showed similar antiviral EC50 values of ap-
proximately 2 nM (Table 1). In general, the potencies of bicyclic analogs 6 having an un-
saturated bond at the C4 position were insensitive to differences in N-methyl substituents. 
Most compounds uniformly exhibited single digit nanomolar antiviral potencies, with the 
exception of 6d and 6e, which had antiviral EC50 values of approximately 11 nM and 17 
nM, respectively. Members of the unsaturated series 6 were uniformly found to exhibit 
low cytotoxicities (CC50 > 250 nM), except for the N-methyl substituted analog 6a, which 
showed slightly increased cytotoxicity (CC50 = 121 nM). In the case of isopropyl substitu-
tion (6b and 7b) antiviral potencies were similar; however, cytotoxicities increased slightly 
after reduction of the double bond (CC50 > 250 nM and 167 nM, respectively). A slight loss 
of antiviral potency was observed with analogs having terminal hydroxy groups in the 
unsaturated series 6c, 6d, and 6e, (antiviral EC50 values of 4.8 nM, 10.8 nM, and 16.6 nM, 
respectively) with an even greater loss of potency for their corresponding saturated ana-
logs 7c, 7d, and 7e (EC50 values of 31.7 nM, 54.5 nM, and 75.7 nM, respectively). The un-
saturated series compound 6f, which is a methyl-ether congener of primary alcohol 6c, 
does not have improved antiviral potency relative to the unsaturated version 7f (EC50 = 
4.6 nM). However, conversion of the unsaturated analog 6c to yield compound 7c resulted 
in a six-fold decrease in potency relative to 6c. Unsaturated analogs having terminal meth-
oxy-containing N-substituents (6g and 6h) showed antiviral potencies that were similar to 
the second-generation tricyclic INSTIs 3, 4, and 5 (EC50 ≈ 2 nM for both series). Analogs 6g 
and 6h represent simplified analogs of DTG (3) and CAB (5), respectively, in which the 
third ring (C-ring) is opened and having doble bond in B-ring, but lacking α-methyl ste-
reochemistry. 

Table 1. Antiviral Potencies in Cells Infected with HIV-1 Vectors That Carry WT IN Mutants i.. 

R No EC50 (nM) ii CC50 (µM) No EC50 (nM) CC50 (µM) Ratio iii 

 6a 2.7 ± 0.2 120.8 ± 2.7 7a 4.6 ± 0.7 >250 1.7 

 
6b 3.8 ± 0.6 >250 7b 3.0 ± 0.1 162.7 ± 8.0 0.79 

 
6c 4.8 ± 0.9 >250 7c 31.7 ± 3.8 >250 6.6 

 
6d 10.8 ± 1.7 >250 7d 54.5 ± 3.0 149.9 ± 3.9 5.0 

 
6e 16.6 ± 2.0 >250 7e 75.7 ± 7.4 >250 4.6 

 
6f 4.8 ± 0.2 >250 7f 4.6 ± 0.4 >250 0.96 

 6g 2.0 ± 0.2 >250 7g 4.0 ± 0.7 >250 2.0 

 6h 1.9 ± 0.4 >250 7h 3.9 ± 0.5 138.5 ± 8.5 2.1 

 
6i 4.2 ± 1.0 >250 7i 6.0 ± 1.2 >250 1.4 

i EC50 values obtained from cells infected with lentiviral vector that has either a WT or the indicated 
IN mutants; CC50 values cytotoxic concentration resulting in 50% reduction in the level of ATP in 
human osteosarcoma (HOS) cells. ii EC50 values for DTG, BIC, and CAB are 1.6 ± 0.9 nM, 1.9 ± 0.3 
nM, and 2.4 ± 0.2 nM, respectively. iii Ratio of the antiviral potencies after and before hydrogenation. 

To further evaluate the antiviral activities of select compounds, we determined their 
EC50 values against the IN mutant S230N, which has been selected in vitro against an early 
Merck INSTI L810,830, a prototype for naphthyridine analogs [32]. Additionally, in our 

6i 4.2 ± 1.0 >250 7i 6.0 ± 1.2 >250 1.4

i EC50 values obtained from cells infected with lentiviral vector that has either a WT or the indicated IN mutants;
CC50 values cytotoxic concentration resulting in 50% reduction in the level of ATP in human osteosarcoma (HOS)
cells. ii EC50 values for DTG, BIC, and CAB are 1.6 ± 0.9 nM, 1.9 ± 0.3 nM, and 2.4 ± 0.2 nM, respectively. iii Ratio
of the antiviral potencies after and before hydrogenation.

To further evaluate the antiviral activities of select compounds, we determined their
EC50 values against the IN mutant S230N, which has been selected in vitro against an
early Merck INSTI L810,830, a prototype for naphthyridine analogs [32]. Additionally,
in our single round infection assays, we have shown that the S230N mutant displays a
modest drop in susceptibility to DTG (7.9± 1.3 nM), which is atypical for an IN single
mutant [33]. Compounds 6d (15.4 ± 0.3 nM), 6e (30.7 ± 1.4 nM), 7c (38.0 ± 3.8 nM), and 7e
(100.8 ± 17.5 nM) all retained most of their potency against the IN mutant S230N, while
compounds 6c (9.3 ± 1.9 nM) and 7d (97.0 ± 16.9 nM), displayed minor losses in potency
against this IN mutant (Table 2).
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Table 2. Antiviral Potencies in Cells Infected with HIV-1 Vectors Bearing the S230N IN Mutant i.

R No EC50 (nM) No EC50 (nM) Ratio ii
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single round infection assays, we have shown that the S230N mutant displays a modest 
drop in susceptibility to DTG (7.9± 1.3 nM), which is atypical for an IN single mutant [33]. 
Compounds 6d (15.4 ± 0.3 nM), 6e (30.7 ± 1.4 nM), 7c (38.0 ± 3.8 nM), and 7e (100.8 ± 17.5 
nM) all retained most of their potency against the IN mutant S230N, while compounds 6c 
(9.3 ± 1.9 nM) and 7d (97.0 ± 16.9 nM), displayed minor losses in potency against this IN 
mutant (Table 2). 

Table 2. Antiviral Potencies in Cells Infected with HIV-1 Vectors Bearing the S230N IN Mutant i.. 

R No EC50 (nM) No EC50 (nM) Ratio ii 

 
6c WT 4.8 ± 0.9  

S230N 9.3 ± 1.9 
7c WT 31.7 ± 2.8 

S230N 38.0 ± 3.8 
6.6 

4.08 

 
6d WT 10.8 ± 1.7 

S230N 15.4 ± 0.3 7d WT 54.5 ± 3.0 
S230N 97.0 ± 16.9 

5.0 
6.29 

 
6e WT 16.6 ± 2.0 

S230N 30.7 ± 1.4 
7e WT 75.7 ± 7.4 

S230N 100.8 ± 17.5 
4.6 

3.28 
i EC50 values obtained from cells infected with lentiviral vector in which IN contains the S230N mu-
tant. ii Ratio of the antiviral potencies after and before hydrogenation.  

2.4. Potential Role of Unsaturation in the B-Ring 
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2.4. Potential Role of Unsaturation in the B-Ring

The data in Table 1 reveal that the bicyclic carbamoyl pyridones having a double
bond in their B-ring exhibit higher antiviral potencies than their saturated counterparts. A
graphical comparison of antiviral potencies for unsaturated versus saturated congeners
is provided (Figure 2). Unsaturation in the B-ring may contribute to improved antiviral
potency for at least two reasons. First, as shown by superimposing in silico generated
minimized structures of 6a and 7a (Figure 3), the double bond in the bicyclic system results
in greater planarity as compared to the more buckled ring system of the saturated congeners.
This results in a slight out-of-plane alignment of the metal-chelating B-ring amide carbonyl
oxygen. Maintaining planarity of chelating heteroatoms may potentially contribute to more
facile Mg2+ chelation. Second, by forming an electron-rich aromatic system, unsaturation
in the B-ring may also contribute to improved potency by enhancing stacking interactions
of the bicyclic carbamoyl pyridone ring system with the terminal adenosine nucleobase
of the viral DNA. Stacking of the adenosine with the INSTI has been suggested to favor
binding [34].
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corresponding saturated analog 7a showing buckling of the respective B-rings that leads to a slight
out-of-plane tilting of the B-ring carboxamide carbonyl. Structure generation and minimization was
performed with MolSoft ICM software using standard parameters [35].

3. Conclusions

We present one-pot synthetic methodology that yields a common bicyclic carbamoyl
platform starting from the acetal intermediate 8. This represents an improvement in previ-
ous multistep approaches, which had required special reaction conditions and purification
at each step. The new molecules synthesized in our current manuscript represent simplified
analogs of the FDA-approved second-generation tricyclic INSTIs. Single digit nanomolar
antiviral potencies were observed for several compounds, with analogs 6g and 6h having
antiviral potencies similar to the FDA-approved second-generation INSTIs. The antiviral
data suggests that there is the potential importance of a double bond in the B-ring. Im-
proved potency of the unsaturated compounds may derive from induced planarity in the
bicyclic carbamoyl pyridone rings as well as improved stacking interactions with the viral
DNA terminal adenosine nucleobase. Our work opens the possibility of delivering poten-
tial bicyclic and tricyclic carbamoyl pyridone-containing INSTIs (including FDA-approved
second-generation INSTIs) from appropriate amines/amino alcohols in a one-pot operation
with a single purification. The synthesis and bio-evaluation of analogs using the disclosed
protocol is currently underway in our laboratory.

4. Experimental Section
4.1. General Synthesis

Proton (1H) and carbon (13C) NMR spectra (see the Supplementary Materials) were
recorded on a Varian 400 MHz spectrometer and are reported in ppm relative to TMS
and referenced to the solvent in which the spectra were collected. Solvent was removed
by rotary evaporation under reduced pressure, and anhydrous solvents were obtained
commercially and used without further drying. Purification by silica gel chromatography
was performed using Combi flash with EtOAc−hexanes or MeOH in DCM solvent systems;
otherwise noted. Preparative high-pressure liquid chromatography (Prep-HPLC) was
conducted using a Waters Prep LC4000 system having photodiode array detection and
Phenomenex C18 columns (catalog no. 00G-4436-P0-AX, 250 mm× 21.2 mm 10 µm particle
size, 110 Å pore) at a flow rate of 20 mL/min. Binary solvent systems consisting of A = 0.1%
aqueous TFA and B = 0.1% TFA in acetonitrile were employed with linear gradients
from 0–100% B. Products were obtained as amorphous solids following lyophilization.
Electrospray ionization-mass spectrometric (ESI-MS) results were acquired with an Agilent
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LC/MSD system equipped with a multimode ion source. Purities of samples subjected to
biological testing were assessed using this system and shown to be ≥95%. High resolution
mass spectrometric (HRMS) readings were acquired by LC/MS-ESI using LTQ-Orbitrap-XL
at 30K resolution. All the reactions were carried out under inert atmosphere using an argon
balloon; otherwise noted.

4.2. Methyl 5-((2,4-Difluorobenzyl)carbamoyl)-1-(2,2-dimethoxyethyl)-3-methoxy-4-oxo-1,4-
dihydropyridine-2-carboxylate (8)

Common intermediate 8 was synthesized according to literature procedures [26], mp
85–90 ◦C; 1H NMR (400 MHz, CDCl3) δ 10.38 (t, J = 5.3 Hz, 1 H), 8.41 (s, 1H), 7.42–7.33 (m,
1H), 6.87-6.75 (m, 2H), 4.63 (d, J = 5.3 Hz, 2 H), 4.50 (t, J = 4.8 Hz, 1H), 4.04 (d, J = 4.8 Hz,
2H), 3.99 (s, 3H), 3.96 (s, 3H), 3.39 (s, 6H); 13C NMR (101 MHz, CDCl3) δ 173.2, 164.1, 162.2
(dd, J = 248, 12 Hz, 1C), 162.2, 160.8 (dd, J = 248, 12 Hz, 1C), 149.4, 144.5, 134.9, 130.7 (dd,
J = 9.6, 5.8 Hz, 1C), 121.5 (dd, J = 15.1, 3.6 Hz, 1C), 119.3, 111.1 (dd, J = 21.1, 3.7 Hz, 1C),
103.7 (t, J = 25.4, 1C), 102.7, 60.7, 56.8, 55.6, 53.4, 36.5 (d, J = 3.8, 1C); ESI-MS: 441 (M + H).

4.3. N-(2,4-Difluorobenzyl)-9-methoxy-2-methyl-1,8-dioxo-1,8-dihydro-2H-pyrido
[1,2-a]pyrazine-7-carboxamide (10a)

To a 25 mL single-necked round bottom flask equipped with a magnetic stirring bar
and a reflux condenser was added and acetal 8 (500 mg, 1.14 mmol, 1.0 equiv.) and formic
acid (20 mL) and the resulting mixture was heated at 80 ◦C under an inert atmosphere
using argon balloon for the next 3 h until the LCMS indicates complete consumption of the
starting material to corresponding aldehyde 9. The solvent formic acid was evaporated
over rotavapor, and a high vacuum was applied to remove traces of formic acid. To
the crude aldehyde 9, was added dry acetonitrile (15 mL) followed by the addition of
methylamine hydrochloride (230 mg, 3.4 mmol, 3.0 equiv.) and acetic acid (0.23 mL,
3.97 mmol, 3.5 equiv.), and the resulting reaction mixture was refluxed for next 16 h; the
product 10a was confirmed by LCMS. After completion of the reaction the solvent was
removed, the residue was dissolved in DCM (50 mL), and washings (3 × 15 mL H2O) were
given. The organic layer was separated and dried over sodium sulfate and concentrated.
The crude product was then purified by Combi-Flash (MeOH in DCM; 1–10%) to afford
the expected compound as a white solid (187 mg, 44% yield over two steps). 1H NMR
(400 MHz, CDCl3) δ 10.55 (t, J = 5.9 Hz, 1H), 8.60 (s, 1H), 7.38 (td, J = 8.7, 6.5 Hz, 1H),
6.89–6.76 (m, 2H), 6.67 (d, J = 6.2 Hz, 1H), 6.42 (d, J = 6.2 Hz, 1H), 4.66 (d, J = 5.9 Hz, 2H),
4.07 (s, 3H), 3.42 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 172.8, 163.6, 162.1 (dd, J = 248.2,
11.9, 1C), 161.1 (dd, J = 249.3, 12.0, 1C), 154.5, 153.5, 137.6, 130.6 (dd, J = 9.6, 5.7, 1C), 128.9,
121.2 (dd, J = 15.4, 4.0, 1C), 120.8, 119.9, 111.2 (dd, J = 21.2, 3.8, 1C), 110.7, 103.8 (t, J = 25.3,
1C), 61.1, 36.7 (d, J = 3.8, 1C), 36.1. ESI-MS m/z: 376.00 (M + H)+.

4.4. N-(2,4-Difluorobenzyl)-9-hydroxy-2-methyl-1,8-dioxo-1,8-dihydro-2H-pyrido
[1,2-a]pyrazine-7-carboxamide (6a)

To a 25 mL single-necked round bottom flask equipped with reflux condenser and
magnetic stirring bar was added compound 10a (200 mg, 0.5 mmol, 1 equiv.) and lithium
bromide (102 mg, 1.172 mmol, 2.2 equiv.) followed by addition of dry acetonitrile (10 mL)
under argon atmosphere and the reaction was refluxed for the next 12–16 h. Once the
reaction was complete as indicated by the LCMS, the reaction was cooled to room tem-
perature and acetic acid (91 µL, 1.599 mmol, 3 equiv. in 3 mL H2O) was added to the
reaction and stirred for the next 3 h at ambient temperature. Acetonitrile was removed over
rotavapor and the resulting suspension of the final enone product 6a in H2O was filtered
through Whatman’s filter paper. The filtrate was again diluted with H2O (5 mL × 3) and
the resulting solid product was collected by filtration. The product was then dissolved in
DMSO and purified by Prep-HPLC using a binary mixture of 0.1% TFA in acetonitrile and
0.1% TFA in H2O as eluents to afford the product 6a as a white solid (117 mg, 60% yield).
1H NMR (400 MHz, DMSO-d6) δ 12.09 (s, 1H), 10.59 (t, J = 5.9 Hz, 1H), 8.78 (s, 1H), 7.48 (d,
J = 6.2 Hz, 1H), 7.46–7.38 (m, 1H), 7.29–7.20 (m, 1H), 7.10–7.02 (m, 1H), 6.92 (d, J = 6.2 Hz,
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1H), 4.57 (d, J = 5.9 Hz, 2H), 3.32 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 168.0, 163.4,
161.5 (dd, J = 245.2, 12.3 Hz, 1C), 160.3 (dd, J = 247.6, 12.6 Hz, 1C), 152.6, 134.9, 130.8 (dd,
J = 10.0, 6.2 Hz, 1C), 122.2 (dd, J = 15.1, 3.5 Hz, 1C), 119.8, 117.8, 117.3, 112.8, 111.3 (dd,
J = 20.9, 3.6 Hz, 1C), 103.8 (t, J = 25.7 Hz, 1C), 35.8 (d, J = 3.5 Hz, 1C), 34.8. HRMS-ESI (m/z)
calcd for (C17H13F2N3O4 + H)+: 362.0947, found: 362.0955.

4.5. General Procedure I: One-Pot Synthesis of 6a–6i

To a 25 mL single-necked round bottom flask equipped with a magnetic stirring bar
and a reflux condenser was added and acetal 8 (1 equiv.) and formic acid (20 mL for 1 g)
and the resulting mixture were heated at 80 ◦C under an inert atmosphere using argon
balloon for the next 3 h until the LCMS indicates complete consumption of the starting
material to the corresponding aldehyde. The solvent formic acid was evaporated over
rotavapor, and a high vacuum was applied to remove traces of formic acid. To the crude
aldehyde 9, was added dry acetonitrile (20 mL for 1 g) followed by the addition of amine
(3 equiv.) and acetic acid (3.5 equiv.), and the resulting reaction mixture was refluxed for
the next 16 h; the product 10 was confirmed by LCMS. The solvent was evaporated on
rotavapor, and a high vacuum was applied to remove solvent traces. To the crude product
10, was added lithium bromide (2.2 equiv.) followed by the addition of dry acetonitrile
(20 mL for 1 g) under argon atmosphere, and the reaction was refluxed for the next 12–16 h.
Once the reaction was complete as indicated by the LCMS, the reaction was cooled to room
temperature and acetic acid (3 equiv. in 3–5 mL H2O) was added to the reaction and stirred
for the next 3 h at ambient temperature. Acetonitrile was removed over rotavapor and the
resulting suspension of the final enone product 6 in H2O was filtered through Whatman’s
filter paper and the filtrate was again diluted with H2O (5 mL × 3) and the resulting solid
product was collected by filtration. The product was then dissolved in DMSO and purified
by Prep-HPLC.

4.6. N-(2,4-Difluorobenzyl)-9-hydroxy-2-methyl-1,8-dioxo-1,8-dihydro-2H-pyrido
[1,2-a]pyrazine-7-carboxamide (6a)

White solid (267 mg, 31% yield from 1 g of 8), mp 275–280 ◦C; 1H NMR (400 MHz,
DMSO-d6) δ 12.09 (s, 1H), 10.59 (t, J = 5.9 Hz, 1H), 8.78 (s, 1H), 7.48 (d, J = 6.2 Hz, 1H),
7.46–7.38 (m, 1H), 7.29–7.20 (m, 1H), 7.10–7.02 (m, 1H), 6.92 (d, J = 6.2 Hz, 1H), 4.57 (d,
J = 5.9 Hz, 2H), 3.32 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 168.0, 163.4, 161.5 (dd,
J = 245.2, 12.3 Hz, 1C), 160.3 (dd, J = 247.6, 12.6 Hz, 1C), 152.6, 134.9, 130.8 (dd, J = 10.0,
6.2 Hz, 1C), 122.2 (dd, J = 15.1, 3.5 Hz, 1C), 119.8, 117.8, 117.3, 112.8, 111.3 (dd, J = 20.9,
3.6 Hz, 1C), 103.8 (t, J = 25.7 Hz, 1C), 35.8 (d, J = 3.5 Hz, 1C), 34.8. HRMS-ESI (m/z) calcd
for (C17H13F2N3O4 + H)+: 362.0947, found: 362.0955.

4.7. N-(2,4-Difluorobenzyl)-9-hydroxy-2-isopropyl-1,8-dioxo-1,8-dihydro-2H-pyrido
[1,2-a]pyrazine-7-carboxamide (6b)

White solid, 29% yield, 130 mg from 500 mg of 8, mp 180-182 ◦C; 1H NMR (400 MHz,
DMSO-d6) δ 12.26 (s, 1H), 10.61 (t, J = 5.9 Hz, 1H), 8.80 (s, 1H), 7.56 (d, J = 6.4 Hz, 1H),
7.48–7.41 (m, 1H), 7.30–6.21 (m, 1H), 7.13–7.02 (m, 1H), 7.05 (d, J = 6.4 Hz, 1H), 4.88 (hept,
J = 6.8 Hz, 1H), 4.57 (d, J = 5.9 Hz, 2H), 1.29 (d, J = 6.8 Hz, 6H). 13C NMR (101 MHz,
DMSO-d6) δ 168.1, 163.4, 161.5 (dd, J = 245.5, 12.2 Hz, 1C), 160.3 (dd, J = 247.4, 12.3 Hz, 1C),
160.2, 158.4, 158.1, 153.1, 134.8, 130.9 (dd, J = 9.8, 6.0 Hz, 1C), 122.2 (dd, J = 15.2, 3.7 Hz, 1C),
117.7, 117.3, 114.3, 113.6, 111.4 (dd, J = 21.1, 3.6 Hz, 1C), 103.8 (t, J = 25.7 Hz, 1C), 45.8, 35.8
(d, J = 3.6 Hz, 1C), 19.9. HRMS-ESI (m/z) calcd for (C19H17F2N3O4 + H)+: 390.1260, found:
390.1267.

4.8. N-(2,4-Difluorobenzyl)-9-hydroxy-2-(6-hydroxyhexyl)-1,8-dioxo-1,8-dihydro-2H-pyrido
[1,2-a]pyrazine-7-carboxamide (6c)

White solid, 28% yield, 290 mg from 1 g of 8, mp 216-220 ◦C; 1H NMR (400 MHz,
DMSO-d6) δ 12.14 (s, 1H), 10.59 (t, J = 5.8 Hz, 1H), 8.77 (s, 1H), 7.50 (d, J = 6.2 Hz, 1H),
7.46–7.39 (m, 1H), 7.29–7.22 (m, 1H), 7.07–7.11 (m, 1H), 6.96 (d, J = 6.2 Hz, 1H), 4.56 (d,
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J = 5.8 Hz, 2H), 4.33 (bs, 1H), 3.74 (t, J = 7.2 Hz, 2H), 3.38 (d, J = 6.4 Hz, 2H), 1.70–1.57 (m,
2H), 1.47–1.36 (m, 2H), 1.36–1.24 (m, 4H). 13C NMR (101 MHz, DMSO-d6) δ 168.1, 163.4,
161.5 (dd, J = 245.4, 12.1 Hz, 1C), 160.6, 160.2 (dd, J = 247.3, 12.4 Hz, 1C), 152.9, 134.9, 130.8
(dd, J = 19.9, 6.1 Hz, 1C), 122.2 (dd, J = 15.2, 3.7 Hz, 1C), 118.7, 117.8, 117.3, 113.1, 111.3 (dd,
J = 21.1, 3.6 Hz, 1C), 103.8 (t, J = 25.8 Hz, 1C), 60.5, 47.0, 35.8 (d, J = 3.4 Hz, 1C), 32.3, 27.6,
25.8, 25.1. HRMS-ESI (m/z) calcd for (C22H23F2N3O5 + H)+: 448.1679, found: 448.1690.

4.9. N-(2,4-Difluorobenzyl)-9-hydroxy-2-(5-hydroxypentyl)-1,8-dioxo-1,8-dihydro-2H-pyrido
[1,2-a]pyrazine-7-carboxamide (6d)

White solid, 15% yield, 103 mg from 700 mg of 8, mp 203-205 ◦C; 1H NMR (400 MHz,
DMSO-d6) δ 12.14 (s, 1H), 10.59 (t, J = 5.9 Hz, 1H), 8.78 (s, 1H), 7.50 (d, J = 6.2 Hz, 1H),
7.48–7.37 (m, 1H), 7.30–7.20 (m, 1H), 7.11–7.03 (m, 1H), 6.96 (d, J = 6.2 Hz, 1H), 4.57 (d,
J = 5.9 Hz, 2H), 4.37 (bs, 1H), 3.74 (t, J = 7.2 Hz, 2H), 3.38 (t, J = 6.3 Hz, 2H), 1.65 (p,
J = 7.5 Hz, 2H), 1.44 (dt, J = 8.6, 6.2 Hz, 2H), 1.32 (tt, J = 9.6, 5.7 Hz, 2H). 13C NMR (101 MHz,
DMSO-d6) δ 168.1, 163.4, 161.5 (dd, J = 245.5, 12.3 Hz, 1C), 160.6, 160.2 (dd, J = 247.0, 12.3
Hz, 1C), 152.9, 134.9, 130.8 (dd, J = 9.8, 6.0 Hz, 1C), 122.2 (dd, J = 15.2, 3.6 Hz, 1C), 118.7,
117.8, 117.3, 113.1, 111.4 (dd, J = 21.1, 3.6 Hz, 1C), 103.8 (t, J = 25.7 Hz, 1C), 60.4, 47.0, 35.8 (d,
J = 3.5 Hz, 1C), 32.0, 27.5, 22.5. HRMS-ESI (m/z) calcd for (C21H21F2N3O5 + H)+: 434.1522,
found: 434.1531.

4.10. N-(2,4-Difluorobenzyl)-9-hydroxy-2-(4-hydroxybutyl)-1,8-dioxo-1,8-dihydro-2H-pyrido
[1,2-a]pyrazine-7-carboxamide (6e)

White solid, 10% yield, 100 mg, from 1 g of 8, mp 207-210 ◦C; 1H NMR (400 MHz,
DMSO-d6) δ 12.14 (s, 1H), 10.59 (t, J = 5.9 Hz, 1H), 8.77 (s, 1H), 7.50 (d, J = 6.2 Hz, 1H),
7.45–7.38 (m, 1H), 7.26–7.19 (m, 1H), 7.10–7.03 (m, 1H), 6.96 (d, J = 6.2 Hz, 1H), 4.56 (d,
J = 5.9 Hz, 2H), 4.46 (bs, 1H), 3.76 (t, J = 7.2 Hz, 2H), 3.44–3.39 (m, 2H), 1.68 (p, J = 7.5 Hz,
2H), 1.44 (dt, J = 13.1, 6.4 Hz, 2H). 13C NMR (101 MHz, DMSO-d6) δ 168.1, 163.4, 161.5 (dd,
J = 245.4, 12.1 Hz, 1C), 160.6, 160.3 (dd, J = 247.3, 12.3 Hz, 1C), 160.20, 152.9, 134.9, 130.94,
130.8 (dd, J = 9.8, 6.1 Hz, 1C), 122.2 (dd, J = 15.2, 3.7 Hz, 1C), 118.7, 117.8, 117.3, 113.1, 111.4
(dd, J = 21.1, 3.6 Hz, 1C), 103.83 (t, J = 25.7 Hz, 1C), 60.2, 46.9, 35.9 (d, J = 3.5 Hz, 1C), 29.3,
24.5. HRMS-ESI (m/z) calcd for (C20H19F2N3O5 + H)+: 420.1366, found: 420.1370.

4.11. N-(2,4-Difluorobenzyl)-9-hydroxy-2-(6-methoxyhexyl)-1,8-dioxo-1,8-dihydro-2H-pyrido
[1,2-a]pyrazine-7-carboxamide (6f)

White solid, 23% yield, 120 mg from 500 mg of 8, mp 188-190 ◦C; 1H NMR (400 MHz,
DMSO-d6) δ 12.14 (s, 1H), 10.59 (t, J = 5.9 Hz, 1H), 8.78 (s, 1H), 7.50 (d, J = 6.3 Hz, 1H),
7.47–7.38 (m, 1H), 7.30–7.21 (m, 1H), 7.11–7.02 (m, 1H), 6.96 (d, J = 6.3 Hz, 1H), 4.57 (d,
J = 5.9 Hz, 2H), 3.77–3.69 (m, 2H), 3.29 (t, J = 6.5 Hz, 2H), 3.20 (s, 3H), 1.69–1.59 (m, 2H), 1.48
(td, J = 10.1, 8.5, 5.3 Hz, 2H), 1.31 (dd, J = 6.9, 3.5 Hz, 4H). 13C NMR (101 MHz, DMSO-d6) δ
168.1, 163.4, 161.5 (dd, J = 245.6, 12.2 Hz, 1C), 160.6, 160.3 (dd, J = 247.5, 12.4 Hz, 1C), 152.9,
134.9, 130.8 (dd, J = 9.9, 6.3 Hz, 1C), 122.2 (dd, J = 15.2, 3.6 Hz, 1C), 118.7, 117.8, 117.3, 113.1,
111.4 (dd, J = 21.0, 3.6 Hz, 1C), 103.8 (t, J = 25.8 Hz, 1C), 71.7, 57.7, 46.9, 35.8 (d, J = 3.4, 1C),
28.8, 27.5, 25.7, 25.3. HRMS-ESI (m/z) calcd for (C23H26F2N3O5 + H)+: 462.1835, found:
462.1817.

4.12. N-(2,4-Difluorobenzyl)-9-hydroxy-2-(3-methoxypropyl)-1,8-dioxo-1,8-dihydro-2H-pyrido
[1,2-a]pyrazine-7-carboxamide (6g)

White solid, 32% yield, 307 mg from 1 g of 8, mp 200-203 ◦C; 1H NMR (400 MHz,
DMSO-d6) δ 12.12 (s, 1H), 10.59 (t, J = 5.9 Hz, 1H), 8.78 (s, 1H), 7.49 (d, J = 6.2 Hz, 1H),
7.46–7.38 (m, 1H), 7.29–7.20 (m, 1H), 7.09–7.04 (m, 1H), 6.91 (d, J = 6.2 Hz, 1H), 4.56 (d,
J = 5.9 Hz, 2H), 3.80 (t, J = 7.1 Hz, 2H), 3.37 (t, J = 6.1 Hz, 2H), 3.22 (s, 3H), 1.88 (p, J = 6.3 Hz,
2H). 13C NMR (101 MHz, DMSO-d6) δ 168.1, 163.4, 161.5 (dd, J = 245.5, 12.3 Hz, 1C), 160.7,
160.2 (dd, J = 245.5, 12.3 Hz, 1C), 152.9, 134.9, 130.8 (dd, J = 9.9, 6.0 Hz, 1C), 122.2 (dd,
J = 25.3, 3.7 Hz, 1C), 118.9, 117.8, 117.9, 113.0, 111.4 (dd, J = 20.9, 3.6 Hz, 1C), 103.8 (t,
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J = 25.8 Hz, 1C), 68.9, 57.9, 44.8, 35.8 (d, J = 3.6 Hz, 1C), 27.6. HRMS-ESI (m/z) calcd for
(C20H19F2N3O5 + H)+: 420.1366, found: 420.1372.

4.13. N-(2,4-Difluorobenzyl)-9-hydroxy-2-(2-methoxyethyl)-1,8-dioxo-1,8-dihydro-2H-pyrido
[1,2-a]pyrazine-7-carboxamide (6h)

White solid, 33% yield, 151 mg from 500 mg of 8, mp 250-152 ◦C; 1H NMR (400 MHz,
DMSO-d6) δ 12.01 (s, 1H), 10.57 (t, J = 5.9 Hz, 1H), 8.77 (s, 1H), 7.47 (d, J = 6.3 Hz, 1 H),
7.49–7.38 (m, 1H), 7.29–7.20 (m, 1H), 7.10–7.03 (m, 1H), 6.89 (d, J = 6.3 Hz, 1H), 4.57 (d,
J = 5.9 Hz, 2H), 3.94 (t, J = 5.3 Hz, 2H), 3.60 (t, J = 5.3 Hz, 2H), 3.27 (s, 3H). 13C NMR
(101 MHz, DMSO-d6) δ 168.1, 163.4, 161.5 (dd, J = 245.5, 12.3 Hz, 1C), 160.6, 160.3 (dd,
J = 247.8, 12.5 Hz, 1C), 153.0, 135.1, 130.8 (dd, J = 9.7, 6.0 Hz, 1C), 122.2 (dd, J = 15.3, 3.8 Hz,
1C), 119.2, 117.6, 117.3, 112.7, 111.4 (dd, J = 21.2, 3.6 Hz, 1C), 103.8 (t, J = 25.7 Hz, 1C),
68.9, 58.1, 46.4, 35.9 (d, J = 3.5 Hz, 1C). HRMS-ESI (m/z) calcd for (C18H17F2N3O5 + H)+:
406.1209, found: 406.1195.

4.14. N-(2,4-Difluorobenzyl)-9-hydroxy-2-(4-methylpentan-2-yl)-1,8-dioxo-1,8-dihydro-2H-pyrido
[1,2-a]pyrazine-7-carboxamide (6i)

White solid, 36% yield, 180 mg from 500 mg of 8, mp 199-203 ◦C; 1H NMR (400 MHz,
DMSO-d6) δ 12.24 (s, 1H), 10.59 (t, J = 5.9 Hz, 1H), 8.80 (s, 1H), 7.56 (d, J = 6.4 Hz, 1H),
7.47–7.38 (m, 1H), 7.30–7.19 (m, 1H), 7.12–7.04 (m, 1H), 7.02 (d, J = 6.4 Hz, 1H), 4.96–4.79
(m, 1H), 4.57 (d, J = 5.9 Hz, 2H), 1.71 (dd, J = 11.0, 7.5 Hz, 1H), 1.41 (dddd, J = 13.9, 11.7,
7.2, 3.7 Hz, 2H), 1.26 (d, J = 6.8 Hz, 3H), 0.87 (dd, J = 9.1, 6.0 Hz, 6H). 13C NMR (101 MHz,
DMSO-d6) δ 168.1, 163.4, 161.5 (dd, J = 245.7, 12.4 Hz, 1C), 160.5, 160.3 (dd, J = 247.4, 12.6 Hz,
1C), 153.1, 134.9, 130.8 (dd, J = 9.8, 6.1 Hz, 1C), 122.2 (dd, J = 15.4, 3.7 Hz, 1C), 117.6, 117.2,
114.2, 113.8, 111.4 (dd, J = 21.2, 3.7 Hz, 1C), 103.8 (t, J = 25.8 Hz, 1C), 47.6, 42.5, 35.8 (dd,
J = 3.6 Hz, 1C), 24.2, 22.7, 21.8, 18.9. HRMS-ESI (m/z) calcd for (C22H23F2N3O4 + H)+:
432.1729, found: 432.1716.

4.15. Reduction of Double Bond in the Ring B via Catalytic Hydrogenation: Synthesis of
N-(2,4-Difluorobenzyl)-9-hydroxy-2-methyl-1,8-dioxo-1,3,4,8-tetrahydro-2H-pyrido
[1,2-a]pyrazine-7-carboxamide (7a)

To a 25 mL single-necked round bottom flask was added compound 6a (50 mg,
0.14 mmol, 1.0 equiv.), which was subjected to the catalytic hydrogenation reaction using
10 mmol% (10% Pd/C, 15 mg, 0.1 equiv.) in a binary mixture of solvents (DMF:MeOH;
2:3, 10 mL) under hydrogen balloon for 20 h. the reaction was the filtered through celite
to remove active palladium and repeatedly washed with methanol (4–5 × 5 mL). The
filtrate was then concentrated over rotavapor, and crude product was dissolved in DMSO
(3 mL) and isolated using Prep-HPLC to afford 7a as a white solid (13 mg, 26% yield ), mp
247–252 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 12.57 (s, 1H), 10.44 (t, J = 5.9 Hz, 1H), 8.40
(s, 1H), 7.41–7.34 (m, 1H), 7.28–7.19 (m, 1H), 7.11–7.02 (m, 1H), 4.54 (d, J = 5.9 Hz, 2H),
4.45–4.31 (m, 2H), 3.82–3.67 (m, 2H), 3.06 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 170.2,
163.9, 162.9, 161.5 (dd, J = 245.4, 12.2 Hz, 1C), 160.2 (dd, J = 247.4, 12.3 Hz, 1C), 154.0, 139.9,
130.7 (dd, J = 9.9, 6.3 Hz, 1C), 122.3 (dd, J = 15.1, 3.7 Hz, 1C), 117.4, 114.9, 111.3 (dd, J = 21.1,
3.7 Hz, 1C), 103.8 (d, J = 25.7 Hz, 1C), 48.7, 45.7, 35.7 (d, J = 3.6 Hz, 1C), 34.1. HRMS-ESI
(m/z) calcd for (C17H15F2N3O4 + H)+: 364.1103, found: 364.1112.

4.16. General Procedure II: Synthesis of Saturated Compounds 7b–7i

The titled compounds were synthesized as per the catalytic hydrogenation reaction
procedure used for the compound 7a and isolated using Prep-HPLC (binary mixture of
0.1% TFA in acetonitrile and 0.1% TFA in H2O as eluents).

4.17. N-(2,4-Difluorobenzyl)-9-hydroxy-2-isopropyl-1,8-dioxo-1,3,4,8-tetrahydro-2H-pyrido
[1,2-a]pyrazine-7-carboxamide (7b)

White solid, 78% yield, 55 mg from 70 mg of 6b, mp 281-287 ◦C; 1H NMR (400 MHz,
DMSO-d6) δ 12.61 (s, 1H), 10.46 (t, J = 5.9 Hz, 1H), 8.41 (s, 1H), 7.44–7.36 (m, 1H), 7.24
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(m, 1H), 7.11–7.01 (m, 1H), 4.80–4.67 (m, 1H), 4.54 (d, J = 5.9 Hz, 2H), 4.41–4.32 (m, 2H),
3.68 (m, 2H), 1.16 (s, 6H). 13C NMR (101 MHz, DMSO-d6) δ 170.2, 163.9, 162.0, 161.4 (dd,
J = 245.3, 12.2 Hz, 1C), 160.2 (dd, J = 247.2, 12.4 Hz, 1C), 154.2, 139.7, 130.7 (dd, J = 9.9,
6.2 Hz, 1C), 122.4 (dd, J = 15.2, 3.6 Hz, 1C), 117.5, 114.9, 111.3 (dd, J = 21.1, 3.6 Hz, 1C), 103.8
(t, J = 25.8 Hz, 1C), 49.2, 44.5, 37.7, 35.7, (d, J = 3.6 Hz, 1C), 18.7. HRMS-ESI (m/z) calcd for
(C19H19F2N3O4 + H)+: 392.1416, found: 392.1426.

4.18. N-(2,4-Difluorobenzyl)-9-hydroxy-2-(6-hydroxyhexyl)-1,8-dioxo-1,3,4,8-tetrahydro-2H-pyrido
[1,2-a]pyrazine-7-carboxamide (7c)

White solid, 27% yield, 55 mg from 200 mg of 6c, mp 208-210 ◦C; 1H NMR (400 MHz,
DMSO-d6) δ 12.56 (s, 1H), 10.44 (t, J = 5.9 Hz, 1H), 8.40 (s, 1H), 7.43–7.35 (m, 1H), 7.29–7.22
(m, 1H), 7.10–7.04 (m, 1H), 4.54 (d, J = 5.9 Hz, 2H), 4.41–4.34 (m, 2H), 3.80–3.73 (m, 2H),
3.48 (t, J = 7.3 Hz, 2H), 3.38 (t, J = 6.4 Hz, 2H), 1.57 (p, J = 7.3 Hz, 2H), 1.42 (p, J = 6.4 Hz,
2H), 1.36–1.24 (m, 4H). 13C NMR (101 MHz, DMSO-d6) δ 170.2, 163.9, 162.6, 161.5 (dd,
J = 245.2, 12.3 Hz, 1C), 160.2 (dd, J = 247.3, 12.4 Hz, 1C), 154.2, 139.9, 130.7 (dd, J = 9.8,
6.1 Hz, 1C), 122.4 (dd, J = 15.3, 3.6 Hz, 1C), 117.4, 114.9, 111.3 (dd, J = 21.1, 3.6 Hz, 1C),
103.8 (t, J = 25.8 Hz, 1C), 60.6, 49.0, 46.4, 43.8, 35.7 (d, J = 3.6 Hz, 1C), 32.3, 26.4, 26.0, 25.2.
HRMS-ESI (m/z) calcd for (C22H25F2N3O5 + H)+: 450.1835, found: 450.1844.

4.19. N-(2,4-Difluorobenzyl)-9-hydroxy-2-(5-hydroxypentyl)-1,8-dioxo-1,3,4,8-tetrahydro-2H-pyrido
[1,2-a]pyrazine-7-carboxamide (7d)

White solid, 59% yield, 42 mg from 70 mg of 6d, mp 201-207 ◦C; 1H NMR (400 MHz,
DMSO-d6) δ 12.56 (s, 1H), 10.44 (t, J = 5.9 Hz, 1H), 8.40 (s, 1H), 7.43–7.34 (m, 1H), 7.27–7.18
(m, 1H), 7.10–7.02 (m, 1H), 4.53 (d, J = 5.9 Hz, 2H), 4.42–4.32 (m, 2H), 3.78–3.73 (m, 2H), 3.48
(t, J = 7.2 Hz, 2H), 3.38 (t, J = 6.4 Hz, 2H), 1.58 (hept, J = 8.8, 7.9 Hz, 2H), 1.44 (dt, J = 14.2,
6.7 Hz, 2H), 1.35–1.22 (m, 2H). 13C NMR (101 MHz, DMSO-d6) δ 170.2, 163.9, 162.6, 161.5
(dd, J = 245.3, 12.3 Hz, 1C), 160.2 (dd, J = 247.4, 12.4 Hz, 1C), 154.2, 139.9, 130.7 (dd, J = 9.9,
6.2 Hz, 1C), 122.4 (dd, J = 15.3, 3.6 Hz, 1C), 117.4, 114.9, 111.3 (dd, J = 21.1, 3.8 Hz, 1C), 103.8
(t, J = 25.6 Hz, 1C), 60.5, 49.0, 46.4, 43.8, 35.7 (d, J = 3.5 Hz, 1C), 32.1, 26.2, 22.7. HRMS-ESI
(m/z) calcd for (C21H23F2N3O5 + H)+: 436.1679, found: 436.1686.

4.20. N-(2,4-Difluorobenzyl)-9-hydroxy-2-(4-hydroxybutyl)-1,8-dioxo-1,3,4,8-tetrahydro-2H-pyrido
[1,2-a]pyrazine-7-carboxamide (7e)

White solid, 63% yield, 16 mg from 25 mg of 6e, mp 210-215 ◦C; 1H NMR (400 MHz,
DMSO-d6) δ 12.56 (s, 1H), 10.44 (t, J = 5.9 Hz, 1H), 8.40 (s, 1H), 7.44–7.34 (m, 1H), 7.29–7.20
(m, 1H), 7.11–7.02 (m, 1H), 4.54 (d, J = 5.9 Hz, 2H), 4.43–4.32 (m, 2H), 3.80–3.71 (m, 2H), 3.50
(t, J = 7.3 Hz, 2H), 3.42 (t, J = 6.3 Hz, 2H), 1.69–1.55 (m, 2H), 1.44 (dt, J = 8.8, 6.4 Hz, 2H). 13C
NMR (101 MHz, DMSO-d6) δ 170.2, 163.9, 162.6, 161.4 (dd, J = 245.4, 12.1 Hz, 1C), 160.2 (dd,
J = 247.4, 12.5 Hz, 1C) 154.2, 139.9, 130.7 (dd, J = 9.9, 6.2 Hz, 1C), 122.3 (dd, J = 15.3, 3.6 Hz,
1C), 117.4, 114.9, 111.3 (dd, J = 21.1, 3.6 Hz, 1C), 103.8 (t, J = 25.9 Hz, 1C), 60.2, 49.0, 46.3,
43.8, 35.7 (d, J = 3.5 Hz, 1C), 29.6, 23.1. HRMS-ESI (m/z) calcd for (C20H21F2N3O5 + H)+:
422.1522, found: 422.1528.

4.21. N-(2,4-Difluorobenzyl)-9-hydroxy-2-(6-methoxyhexyl)-1,8-dioxo-1,3,4,8-tetrahydro-2H-pyrido
[1,2-a]pyrazine-7-carboxamide (7f)

White solid, 50% yield, 35 mg from 70 mg of 6f. mp 228-232 ◦C; 1H NMR (400 MHz,
DMSO-d6) δ 12.56 (s, 1H), 10.44 (t, J = 5.9 Hz, 1H), 8.40 (s, 1H), 7.44–7.35 (m, 1H), 7.28–7.19
(m, 1H), 7.10–7.01 (m, 1H), 4.54 (d, J = 5.9 Hz, 2H), 4.43–4.31 (m, 2H), 3.83–3.69 (m, 2H),
3.48 (t, J = 7.3 Hz, 2H), 3.29 (t, J = 6.5 Hz, 2H), 3.20 (s, 3H), 1.57 (p, J = 7.2 Hz, 2H), 1.49 (p,
J = 6.8 Hz, 2H), 1.31 (h, J = 6.1 Hz, 4H). 13C NMR (101 MHz, DMSO-d6) δ 170.2, 163.9, 162.6,
161.4 (dd, J = 245.4, 12.4 Hz, 1C), 160.3 (dd, J = 247.2, 12.4 Hz, 1C), 154.2, 139.9, 130.7 (dd,
J = 9.8, 6.1 Hz, 1C), 122.4 (dd, J = 15.3, 3.7 Hz, 1C), 117.4, 114.9, 111.3 (dd, J = 21.1, 3.6 Hz,
1C), 103.8 (t, J = 25.7 Hz, 1C), 71.8, 57.5, 49.0, 46.3, 43.8, 35.7 (d, J = 3.6 Hz, 1C), 28.9, 26.3,
25.9, 25.3. HRMS-ESI (m/z) calcd for (C23H27F2N3O5 + H)+: 464.1992, found: 464.1977.
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4.22. N-(2,4-Difluorobenzyl)-9-hydroxy-2-(3-methoxypropyl)-1,8-dioxo-1,3,4,8-tetrahydro-2H-pyrido
[1,2-a]pyrazine-7-carboxamide (7g)

White solid, 56% yield, 90 mg from 150 mg of 6g, mp 250-252 C; 1H NMR (400 MHz,
DMSO-d6) δ 12.53 (s, 1H), 10.44 (t, J = 5.9 Hz, 1H), 8.40 (s, 1H), 7.42–7.38 (m, 1H), 7.28–7.19
(m, 1H), 7.12–6.99 (m, 1H), 4.54 (d, J = 5.9 Hz, 2H), 4.44–4.32 (m, 2H), 3.80–3.71 (m, 2H),
3.54 (t, J = 7.1 Hz, 2H), 3.37 (t, J = 6.1 Hz, 2H), 3.23 (s, 3H), 1.82 (p, J = 6.3 Hz, 2H). 13C
NMR (101 MHz, DMSO-d6) δ 170.1, 163.9, 162.7, 161.5 (dd, J = 245.2, 12.0 Hz, 1C), 160.2 (dd,
J = 247.4, 12.4 Hz, 1C), 154.1, 139.9, 130.7 (dd, J = 9.8, 6.1 Hz, 1C), 122.4 (dd, J = 15.3, 3.7 Hz,
1C), 117.4, 114.9, 111.3 (dd, J = 21.1, 3.6 Hz, 1C), 103.8 (t, J = 25.8 Hz, 1C), 69.4, 57.9, 49.0,
44.2, 44.1, 35.7 (d, J = 3.5 Hz, 1C), 26.6. HRMS-ESI (m/z) calcd for (C20H21F2N3O5 + H)+:
422.1522, found: 422.1528.

4.23. N-(2,4-Difluorobenzyl)-9-hydroxy-2-(2-methoxyethyl)-1,8-dioxo-1,3,4,8-tetrahydro-2H-pyrido
[1,2-a]pyrazine-7-carboxamide (7h)

White solid, 54% yield, 55 mg from 100 mg of 6h, mp 207-210 ◦C; 1H NMR (400 MHz,
DMSO-d6) δ 12.43 (s, 1H), 10.43 (t, J = 5.9 Hz, 1H), 8.39 (s, 1H), 7.44–7.34 (m, 1H), 7.28–7.19
(m, 1H), 7.11–7.02 (m, 1H), 4.54 (d, J = 5.9 Hz, 2H), 4.41–4.29 (m, 2H), 3.82–3.77 (m, 2H), 3.68
(t, J = 5.3 Hz, 2H), 3.56 (d, J = 5.3 Hz, 2H), 3.27 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ
170.1, 163.8, 162.7, 161.4 (dd, J = 245.1, 12.1 Hz, 1C), 160.3 (dd, J = 247.3, 12.0 Hz, 1C), 154.2,
140.0, 130.8 (dd, J = 9.8, 6.1 Hz, 1C), 122.4 (dd, J = 15.4, 3.6 Hz, 1C), 117.3, 114.9, 111.3 (dd,
J = 21.1, 3.6 Hz, 1C), 103.8 (t, J = 25.8 Hz, 1C), 68.9, 58.1, 49.1, 46.0, 44.8, 35.7 (d, J = 3.6 Hz,
1C). HRMS-ESI (m/z) calcd for (C19H19F2N3O5 + H)+: 408.1366, found: 408.1349.

4.24. N-(2,4-Difluorobenzyl)-9-hydroxy-2-(4-methylpentan-2-yl)-1,8-dioxo-1,3,4,8-tetrahydro-
2H-pyrido [1,2-a]pyrazine-7-carboxamide (7i)

White solid, 85% yield, 85 mg from 100 mg of 6i, mp190-192 ◦C; 1H NMR (400 MHz,
DMSO-d6) δ 12.59 (s, 1H), 10.45 (t, J = 5.9 Hz, 1H), 8.41 (s, 1H), 7.45–7.33 (m, 1H), 7.27–7.20
(m, 1H), 7.10–7.02 (m, 1H), 4.82–4.68 (m, 1H), 4.54 (d, J = 5.9 Hz, 2H), 4.45–4.24 (m, 2H),
3.74–3.55 (m, 2H), 1.56 (ddd, J = 14.0, 9.7, 5.0 Hz, 1H), 1.51–1.38 (m, 1H), 1.24 (ddd, J = 13.8,
8.7, 5.3 Hz, 1H), 1.14 (d, J = 6.7 Hz, 3H), 0.88 (t, J = 6.7 Hz, 6H). 13C NMR (101 MHz,
DMSO-d6) δ 170.2, 163.9, 162.4, 161.4 (dd, J = 245.4, 12.4 Hz, 1C), 160.2 (dd, J = 247.3,
12.4 Hz, 1C), 154.3, 139.8, 130.7 (dd, J = 9.8, 6.1 Hz, 1C), 122.4 (dd, J = 15.3, 3.6 Hz, 1C), 117.5,
114.9, 111.3 (dd, J = 20.9, 3.6 Hz, 1C), 103.8 (t, J = 25.9 Hz, 1C), 49.2, 46.5, 41.4, 37.7, 35.7
(d, J = 3.4 Hz, 1C), 24.4, 22.9, 21.9, 17.5. HRMS-ESI (m/z) calcd for (C22H25F2N3O4 + H)+:
434.1886, found: 434.1872.

4.25. Determination of Antiviral Potencies and Cellular Cytotoxicities

Human embryonic kidney cell culture cell line 293 was acquired from the American
Type Culture Collection (ATCC). The human osteosarcoma cell line, HOS, was obtained
from Dr. Richard Schwartz (Michigan State University, East Lansing, MI, USA) and grown
in Dulbecco’s modified Eagle’s medium (Invitrogen, Carlsbad, CA, USA) supplemented
with 5% (v/v) fetal bovine serum, 5% newborn calf serum, and penicillin (50 units/mL)
plus streptomycin (50 µg/mL; Quality Biological, Gaithersburg, MD, USA). The trans-
fection vector, pNLNgoMIVR-∆LUC was made from pNLNgoMIVR-∆Env.HSA by re-
moving the HSA reporter gene and replacing it with a luciferase reporter gene between
the NotI and XhoI restriction sites. To produce the new IN mutant S230N used in this
study, the IN open reading frame was removed from pNLNgoMIVR-∆ENV.LUC by di-
gestion with KpnI and SalI, and the resulting fragment was inserted between the KpnI
and SalI sites of pBluescript KS+. Using that construct as the wild-type template, we
prepared the following HIV-1 IN mutant S230N using the QuikChange II XL site-directed
mutagenesis kit (Agilent Technologies, Santa Clara, CA, USA) protocol. The following
sense oligonucleotides were used with matching cognate antisense oligonucleotides (not
shown) (Integrated DNA Technologies, Coralville, IA, USA) in the mutagenesis: S230N
5′-CGGGTTTATTACAGGGACAACAGAGATCCAGTTTGGAAA-3′. The DNA sequence
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of the IN mutant S230N construct was verified independently by DNA sequence deter-
mination. The mutated IN coding sequences from pBluescript KS+ were then subcloned
into pNLNgoMIVR-∆Env.LUC (between the KpnI and SalI sites) to produce mutant HIV-1
constructs, which were also checked by DNA sequencing. VSV-g-pseudotyped HIV was
produced by transfections of 293 cells as mentioned earlier. On the day prior to transfection,
293 cells were plated on 100 mm diameter dishes at a density of 1.5 × 106 cells per plate.
Next, 293 cells were transfected with 16 µg of pNLNgoMIVR-∆LUC and 4 µg of pHCMV-g
(obtained from Dr. Jane Burns, University of California, San Diego) using the calcium phos-
phate method. At approximately 6 h after the calcium phosphate precipitate was added,
293 cells were washed twice with phosphate-buffered saline (PBS) and incubated with
fresh media for 48 h. The virus-containing supernatants were then harvested, clarified by
low-speed centrifugation, filtrated, and diluted for preparation in antiviral infection assays.
On the day prior to the screen, HOS cells were seeded in a 96-well luminescence cell culture
plate at a density of 4000 cells in 100 µL per well. On the day of the screen for cellular
cytotoxicity determination, cells were treated with compounds from a concentration range
of 250 µM to 0.05 µM and then incubated at 37 ◦C for 48 h. On the day of the screen for
antiviral activity infection assays, cells were treated with compounds from a concentration
range of 5 µM to 0.0001 µM using 11 serial dilutions and then incubated at 37 ◦C for 3 h. Af-
ter compound incorporation and activation in the cell, 100 µL of virus-stock (WT or mutant)
diluted to achieve a luciferase signal between 0.2 and 1.5 Relative Luciferase Units (RLUs)
was added to each well and further incubated at 37 ◦C for 48 h. Cellular cytotoxicity was
measured by using the ATP Lite Luminescence detection system and monitored by adding
50 µL of cell lysis buffer from the Luminescence ATP detection assay to each well followed
by mixing at 700 rpm at room temperature for 5 min using a compact thermomixer. After
addition of 50 µL of reconstituted Luminescence ATP detection assay reagent to all wells
except for the negative control/background wells, the plates were mixed at 700 rpm at room
temperature for 5 min using a compact thermomixer, incubated at room temperature for
20 min to allow time for signal development, and finally, cytotoxicity was determined using
the microplate reader. Infectivity was measured by using the Steady-lite plus luminescence
reporter gene assay system (PerkinElmer, Waltham, MA, USA). Luciferase activity was
measured by adding 100 µL of Steady-lite plus buffer (PerkinElmer) to the cells, incubating
at room temperature for 20 min, and measuring luminescence using a microplate reader.
Both cytotoxicity and antiviral activity were normalized to the cellular cytotoxicity and in-
fectivity in cells that featured the absence of target compounds, respectively. KaleidaGraph
(Synergy Software, Reading, PA) was used to perform non-linear regression analysis on the
data. EC50 and CC50 values were determined from the fit model [31].

Supplementary Materials: NMR spectra of the synthesized compounds are available in the support-
ing information: https://www.mdpi.com/article/10.3390/molecules28031428/s1.
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