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Abstract: It has been found that the addition of CH2CN− anion to the carbonyl group of acylethynylp
yrroles, generated from acetonitrile and t-BuOK, results in the formation of acetylenic alcohols, which
undergo unexpectedly easy (room temperature) decomposition to ethynylpyrroles and cyanomethylp
henylketones (retro-Favorsky reaction). This finding allows a robust synthesis of ethynylpyrroles
in up to 95% yields to be developed. Since acylethynylpyrroles became available, the strategy thus
found makes ethynylpyrroles more accessible than earlier. The quantum-chemical calculations
(B2PLYP/6-311G**//B3LYP/6-311G**+C-PCM/acetonitrile) confirm the thermodynamic preference
of the decomposition of the intermediate acetylenic alcohols to free ethynylpyrroles rather than their
potassium derivatives.

Keywords: acylethynylpyrroles; alkynones; terminal alkynes; deacylation; retro-Favorsky reaction

1. Introduction

Ethynylpyrroles are valuable building blocks in the synthesis of many natural and
synthetic biologically active compounds, such as antibiotic roseophilin, a potent cytotoxic
agent against K562 human erythroid leukemia cells [1] and alkaloid quinolactacide with
insecticidal activity [2]. They are applied in the syntheses of inhibitors of EGFR tyrosine
kinase, an important target for anticancer drug design [3], the HMG-CoA reductase in-
hibitors for the treatment of hypercholesterolemia, hyperlipoproteinemia, hyperlipidemia
and atherosclerosis [4], selective dopamine D4 receptor ligands [5] and foldamers, syn-
thetic receptors, modified for encapsulation of dihydrogenphosphate ions [6]. Pyrroles
with terminal acetylenic substituents take part in the syntheses of both lipophilic and
highly hydrophilic BODIPY dyes, which fluoresce with high quantum yields and have low
cytotoxicity, which makes it possible to visualize cells [7].

These pyrroles are employed in the development of advanced materials capable of
detecting various organic and inorganic targets, such as tetrahedral oxoanions (H2PO4

−

and SO4
2−) [8] and pyrophosphate anions [9].

Also, high-tech materials, including ultrasensitive fluorescent probes for glucopy-
ranoside [10], photoswitchable materials [11–13], components of dye-sensitized solar
cells [14], monomers for organic thin-film transistors [15], prospective for energy stor-
age devices, electrochemically active photoluminescence films are based on terminal
ethynylpyrroles [16].

In light of the previous, it is clear that the improvement of the synthesis of ethynylpyrroles
is a challenge. Indeed, the approaches to the preparation of these functionalized pyrroles are
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mainly limited to the deprotection of substituted at the triple bond (usually with TMS/TIPS
groups) ethynylpyrroles, the products of the reaction of halopyrroles with the correspond-
ing terminal acetylenes (Sonogashira cross-coupling) [2,5,6,8,17–19]. However, in this case,
this coupling has limitations, since many halogenated pyrroles, except for representatives
with electron-withdrawing substituents, are neither readily available nor stable [20,21].
Variants of the cross-coupling, such as Negishi reaction of halopyrroles with ethynyl mag-
nesium chloride or zinc bromide [22] or cross-coupling of (1-methylpyrrol-2-yl)lithium
with fluoroacetylene [23], are used albeit less often. It should be especially emphasized
that almost all ethynylpyrroles synthesized by the above methods lack the substituents at
carbon atoms in the pyrrole ring, i.e., the assortment of accessible ethynylpyrrole remains
small and need to be extended.

Among other methods are Corey–Fuchs reaction of pyrrole-2-carbaldehydes with
CBr4 with further conversion of dibromoolefins to ethynylpyrroles under the action of
bases [1,3,7,24,25] and flash vacuum pyrolysis (FVP) of cyclic and linear 2-alkenylpyrroles
(750 ◦C), limited to a few examples [26–29] due to difficulties in hardware implementation
and requirements for substrates. Base-catalyzed elimination of ketones from tertiary
acetylenic alcohols (retro-Favorsky reaction), affording pyrroles with terminal acetylenic
substituents [30], is a rarer approach to such acetylenes because they could decompose or
polymerize at high temperatures (up to 180 ◦C) common for the realization of this synthesis.

The formation of ethynylpyrroles as a result of the deacylation of acylethynylpyrroles
was mentioned in only a few cases [31,32], and their yield was insignificant (though
alkynones without pyrrole substituents in the presence of alkali metal hydroxides un-
dergo hydrolytic cleavage to form terminal acetylenes [33–35]). For instance, when ben-
zoylethynylpyrrole was treated with NaOH in DMSO (45–50 ◦C, 4 h), debenzoylation
was detected by 1H NMR in negligible extent [31] and 7-days keeping of trifluroacetyl
ethynylpyrrole over Al2O3 led to the ethynylpyrrole in 24% yield [32]. Certainly, these
results were not suitable for the preparative synthesis of ethynylpyrroles.

Recently [36], we have disclosed the reaction of acylethynylpyrroles 1 with MeCN and
metal lithium affording pyrrolyl-cyanopyridines 2 in up 87% yield (Scheme 1).
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Scheme 1. Previous work. Reaction of acylethynylpyrroles with Li/MeCN system to give pyrrolyl-
cyanopyridines.

The synthesis was accompanied by the formation of propargyl alcohols 3 (up to 15%)
and small amounts of ethynylpyrroles 4 (up to 5%). The propargyl alcohols 3 were proved
to be intermediates in the synthesis of both pyridines and ethynylpyrroles.

These results served as a clue to develop a novel synthesis of ethynylpyrroles, pro-
vided we could manage to turn the above side process into a major reaction. Our further
successful experiments confirmed this assumption. It appeared that if lithium metal is
replaced by t-BuOK, the reaction is shifted almost completely to the formation of side
ethynylpyrroles. The progress of this synthesis optimization is illustrated in Table 1,
wherein the most representative results are presented. As a reference compound, 3-(1-
benzyl-4,5,6,7-tetrahydro-1H-indol-2-yl)-1-(thiophen-2-yl)prop-2-yn-1-one (1a), was chosen
believing that the optimal conditions, found for this pyrrolyl acetylenic ketone of higher
complexity, will also be valid for the simpler congeners.
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In this paper, we report the exceptionally mild decarbonylation of acylethynylpyrroles,
readily available from the reaction of pyrroles with electrophilic haloacetylenes in the
medium of solid oxides and metal salts [32,37–40], under the action of CH2CN− anion
generated in situ in the system MeCN/t-BuOK.

2. Results and Discussion

As seen from Table 1, when the reaction was carried out by stirring acylethynylpyrrole
1a with 2 eq. n-BuLi in MeCN at room temperature under 1H NMR control, the isolated
crude product contained 12% of the target ethynylpyrrole 4a (Table 1, Entry 1), i.e., the
expected decarbonylation degree was noticeably increased. The major product, in this
case, became tertiary propargylic alcohol 3a (content in the reaction mixture was 78%).
Pyrrolylpyridine 2a, previously a major product [36], was also present in the reaction
mixture but in a much smaller amount (10%). Almost the same results were obtained in the
presence of 2 eq. of t-BuONa (Entry 3). But t-BuOLi turned out to be completely inactive in
this reaction (Entry 2): the starting acylethynylpyrrole 1a, in this case, was almost returned
from the reaction.

t-BuOK catalyzed the formation of ethynylpyrrole 4a much more actively: in the crude
product obtained with one equivalent of this base, the content of the ethynylpyrrole 4a in the
reaction mixture attained 66% (Entry 4). However, under these conditions, the conversion
of the starting acylethynylpyrrole 1a was only 82%, but the content of pyrrolylpyridine 2a
in the reaction mixture increased to 16%.

When 2 eq. t-BuOK were used, acylethynylpyrrole 1a reacted completely during
the same time, and the content of ethynylpyrrole 4a in the reaction mixture became 90%.
Pyrrolylpyridine 2a was also present as a by-product (10%) in the reaction mixture (Entry 5).

We found that it was possible to get rid of the pyridine almost completely (Entry 6
and 7) by carrying out the reaction in the mixed solvents (MeCN/THF or MeCN/DMSO
in volume ratio 1:1). Thus, under these conditions, the reaction was excellently selective
providing ethynylpyrrole 4a in ~80% isolated yield.

Table 1. Optimization of the ethynylpyrrole 4a synthesis by decarbonylation of acylethynylpyrrole 1a a.
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1a 2a 3a 4a

1 n-BuLi, 2 traces 10 78 12

2 t-BuOLi, 2 ~100 traces traces traces

3 t-BuONa, 2 traces traces 85 15

4 t-BuOK, 1 18 16 traces 66

5 t-BuOK, 2 traces 10 traces 90

6 b t-BuOK, 2 traces traces traces ~100 d
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a—reaction conditions: 0.5 mmol of 1a, acetonitrile (2.0 mL), 20–25 ◦C, nitrogen atmosphere. b—the reaction was
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Next, with the optimized reaction conditions (2 eq of t-BuOK, THF/MeCN, room
temperature, 1 h) in hand, we have evaluated the scope of this reaction using benzoyl-,
furoyl-, and thenoylethynylpyrroles with alkyl, aryl and hetaryl substituents at 4(4,5)-
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positions and methyl, benzyl, and vinyl moieties at the nitrogen atom of the pyrrole ring.
Eventually, the series of earlier unknown ethynylpyrroles 4a–k were synthesized in good
to excellent yields, the exception being pyrrole 4d (yield 36%) (Scheme 2).
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The method proved to be extendable over indole compounds, as shown in the ex-
ample of 3-benzoylethynylindole 5, which was transformed to the expected 1-methyl-3-
ethynylindole 6 under the same conditions (Scheme 3).
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Thus, this result shows that 3-ethynylindoles—valuable synthetic building blocks [41]—
could be more accessible than previously due to the above-elaborated strategy. Noteworthy
that the starting 3-acylethynylindoles can be easily prepared by the cross-coupling of the
corresponding N-substituted indoles with acylbromoacetylenes in solid Al2O3 media [42].

Also, we have attempted to extend the synthesis of ethynylpyrroles over the furan se-
ries. For this, we have chosen menthofuran, a natural antioxidant component of peppermint
oil [43]. It turned out that 2-benzoylethynylmenthofuran 7, which synthesis was previously
described in [44], underwent similar decarbonylation under the above conditions to give
the expected ethynyl derivative 8 in 80% yield (Scheme 4).
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Scheme 4. Reaction of 2-acylethynylmenthofuran 7 with t-BuOK.

The narrow range of the yields (74–95%) evidences that the structural effects on the
synthesis efficiency are insignificant that are likely to result from the complex character of
the process: (i) the formation of intermediate propargyl alcohols 3 and (ii) the decomposi-
tion of the latter. Besides, these steps are parallel to the formation of pyridine 2. Apart from
these competing factors, the yields are influenced by the isolation procedure (chromatog-
raphy on the SiO2), wherein a noticeable amount of the target products are lost (Table 1,
cf. 1H NMR and isolated yields). Nevertheless, the following general trend in yields may
be noted: alkyl substituents in the pyrrole ring slightly decrease the reaction efficiency
compared to aromatic substituents (74–86% vs. 84–95%). That can be referred to as a higher
acidophobicity of the alkyl pyrroles.

It is known that MeCN is easily deprotonated by the action of alkali metals to give
acetonitrile dimers via the formation of an intermediate CH2CN− anion [45]. Also, it
was reported that CH2CN− anion was added to ketones to form tertiary cyanomethyl
alcohols [46–49]. Correspondingly, in the previous communication, we have shown that
the intermediate propargyl alcohol 3 are actually adducts of acylethynylpyrroles and
CH2CN− anion [36].

Although we failed to isolate propargyl alcohol 3a in the reaction mixture obtained in
the presence of t-BuOK, the results produced with t-BuONa allowed us to assume that in
the first case, the reaction also proceeded with the formation of the intermediate 3a, which
was rapidly decomposed.

To verify this assumption, propargyl alcohols 3a,c,d,f, prepared from acylethynylpyrroles
1a,c,d,f and acetonitrile in the presence of t-BuONa according to the modified protocol
(Scheme 5) [36], were rapidly and quantitatively converted in the presence of t-BuOK into
the corresponding ethynylpyrroles 4a,c,d,f (Scheme 5).
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We performed the reaction in an NMR tube in deuterated acetonitrile. Immediate
transformation of the characteristic signals of the protons of the benzoyl group at 8.16 ppm
to protons of Ph-substituent occurs after the addition of t-BuOK to acylethynylpyrrole
1c solution, which corresponds to the formation of the intermediate acetylenic alcohol 3c
(Scheme 3). Additionally, two nearly equal singlets at 6.30 (signal of H-3 of pyrrole ring
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in ethynylpyrrole 4c) and 6.44 ppm (signal of H-3 of pyrrole ring in intermediate alcohol
3c) appeared. The singlet at 6.44 ppm decreases rapidly and disappears after about 30 min
of reaction. After 1 h reaction mixture contained only terminal alkyne 4c with a fully
deuterated terminal acetylene position. Thus, the results confirm the proposed mechanism
of the formation of ethynylpyrroles via intermediate acetylenic alcohol decomposition.

Cyanomethyl ketone (on the example of cyanomethyl-(2-thienyl)ketone 9a), a second
product of the retro-Favorsky reaction, was detected (1H NMR) after acidification of the
aqueous suspension received during the workup of the reaction mixture (Scheme 6).
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Therefore, it is rigorously confirmed that in this reaction, ethynylpyrroles are the
products of tertiary propargyl alcohol 3 decomposition, the retro-Favorsky reaction, which
in this case occurs under extraordinarily mild (room temperature) conditions. Commonly
this reaction requires a considerably higher temperature [120–140 ◦C (1 mm)] [30].

It could be emphasized that tertiary propargyl alcohols are one of the most attractive
synthetic building blocks in organic synthesis [50–58]. This is primarily due to their bifunc-
tionality (acetylene and hydroxyl functions), owing to which they can undergo cascade or
multistage reactions with the formation of diverse compounds. In recent years, owing to
the development of efficient methods for the synthesis of enantiomerically pure tertiary
propargyl alcohols [59–61], interest in this class of compounds has increased significantly.

The tertiary propargyl alcohols here synthesized additionally contain one more syn-
thetically valuable functional group (CN group and active C-H bond adjusted to nitrile
function) and a pyrrole ring that significantly expands their potential for the design of
novel functionalized compounds.

Despite the experimental evidence highlighting the mechanism of the cascade reaction
studied, several mechanistic issues still need a quantum-chemical analysis. These issues
mainly relate to the key stage of the synthesis, i.e., the t-BuOK-catalyzed decomposition of
the intermediate propargyl alcohols 3. Here the following questions should be clarified:
(i) are the intermediates 3 decompose to the corresponding ketones 9 and potassium deriva-
tives 11 of ethynylpyrroles as so far usually considered or free ethynylpyrroles 4 and the
corresponding potassium enolates 10 (Scheme 7) are formed? Although the Favorsky retro-
reaction was synthetically thoroughly studied, this issue was never specially investigated.
(ii) Is the experimentally observed formation of enolate from propargyl alcohols kinetically
or thermodynamically controlled? (iii) Is the experimentally observed role of alkali metal
cation, which fully controls the synthesis direction, an intrinsic (intramolecular) feature of
the reaction, or is this influence of intermolecular solvation of the cations? (iv) What is the
contribution of the solvent effect to the thermodynamics of this reaction?

To gain a clearer understanding of these mechanistic points, we have performed the
quantum chemical calculations of the fundamental characteristics of the above reaction,
the Gibbs free energy change, ∆G, using the DFT-based computational approach, which
can be briefly referred to as B2PLYP/6-311G**//B3LYP/6-311G**+C-PCM/acetonitrile
(see Supplementary Materials for details) and assuming R1 = Me, R2 = R3 = H, R4 = Ph in
Scheme 5.
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According to the results obtained, path A, i.e., formation of the metallated ethynylpyrroles
and ketones (Scheme 5), is thermodynamically closed, whereas path B (Scheme 5), i.e.,
formation of the ethynylpyrrole and enolate, is thermodynamically opened (see SI for
details). The calculations indicate that the decomposition of intermediate 3 proceeds via the
formation of free ethynylpyrrole and potassium enolate. Also, these results evidence that
path B is thermodynamically controlled. The ∆G values for path B calculated for Li, Na and
K derivatives of propargyl alcohols 3 are −66.5, −78.6 and −88.3 kJ/mol, respectively. This
explains experimental results according to which with the t-BuOLi, no products are formed
(Table 1), while t-BuONa promotes the formation of sodium enolate, however stable under
reaction conditions, and with t-BuOK, the decomposition of potassium enolate occurs.
Thus, the effect of potassium alkali metal indeed has an intrinsic (intramolecular) character.

The computed O-Li, O-Na and O-K bond lengths in alkali metal derivatives of propar-
gyl alcohols are 1.71, 2.08, and 2.43 Å, respectively, and in the corresponding enolates are
1.83, 2.16, 2.61 Å, respectively. These values correlate with the literature data: 1.95 Å (O-Li),
2.14–2.32 Å (O-Na), 2.60–2.80 Å (O-K) [62], respectively. The reported bond energies are
343, 255 and 238 kJ/mol [63]. From these results, it becomes clear why with t-BuOK, the
pyridines 2 are not formed: the abstraction of a proton from the CHCN moiety would lead
to dianionic-like species that are thermodynamically unfavorable. In the cases of Li- and
Na-derivatives of propargyl alcohols, the negative charges on oxygen are smaller since
they are tighter ion pairs, especially with lithium cation. Therefore, the reaction takes
other directions: with Li cation, expectedly, pyridines are formed, and with t-BuONa, the
propargyl alcohol decomposition slows down (Table 1, Entry 3).

The mechanism of ethynylpyrroles formation from potassium derivatives of propargyl
alcohols (on the example of alcoholate 12, R1 = Me, R2 = R3 = H, R4 = Ph) likely represents
an intramolecular process (Scheme 8) [36], involving the Csp-CH bond cleavage with
simultaneous transfer of a proton from the CH bond.
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This process is probably facilitated by the intramolecular interaction (coordination)
between potassium cation and CN-bond (intermediate A). This is supported by the fact
that the calculated K· · ·N distance in the potassium derivative of propargyl alcohol (3.87 or
4.12 Å, depending on the molecular conformation, see Supplementary Materials) is smaller
than the sum of the van der Waals radii of these atoms (4.2 Å). The above-mentioned
two conformations are separated only by 0.8 kJ/mol. Since the latter value is well within
the error margin of our computational scheme, they both can be considered legitimate
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propargyl alcohol equilibrium ground-state molecular structures (see Supplementary Mate-
rials for more details).

The ∆G values computed for the formation of ethynylpyrroles with the participation
of the solvent (MeCN) and then without (gas phase) are close (−88.3 and −84.5 kJ/mol).
This means that the contribution of the solvent effect is negligible.

The experiments with MeNO2 showed that in this solvent, the reaction did not proceed
at all: the starting acylethynylpyrrole was recovered completely. In our previous work [36],
we reported the reaction of benzoylethynylpyrrole 1a with isobutyronitrile and valeronitrile
in the presence of lithium metal. In both cases, respective intermediate alcohols were
isolated in 60 and 26% yields. In the presence of t-BuOK, both were readily transformed to
corresponding ethynylpyrrole 4a.

3. Experimental Section
3.1. General Information

IR spectra were obtained on a “Bruker IFS-25” spectrometer (Bruker, Billerica, MA,
USA) (KBr pellets or films in 400–4000 cm−1 region). 1H (400.13 MHz) and 13C (100.6 MHz)
NMR spectra were recorded on a “Bruker Avance 400” instrument (Bruker, Billerica, MA,
USA) in CDCl3. The assignment of signals in the 1H NMR spectra was made using COSY
and NOESY experiments. Resonance signals of carbon atoms were assigned based on 1H-
13C HSQC and 1H-13C HMBC experiments. The 1H chemical shifts (δ) were referenced to
the residual solvent protons (7.26 ppm, CDCl3), and the 13C chemical shifts were expressed
with respect to the deuterated solvent (77.16 ppm). Coupling constants in hertz (Hz) were
measured from one-dimensional spectra, and multiplicities were abbreviated as follows:
br (broad), s (singlet), d (doublet), t (triplet), and m (multiplet). The chemical shifts were
recorded in ppm. The (C, H, N) microanalyses were performed on a Flash EA 1112 CHNS-
O/MAS (CHN Analyzer) instrument (Thermo Finnigan, Italy). Sulfur was determined
by complexometric titration with Chlorasenazo III. Fluorine content was determined on a
SPECOL 11 (Carl Zeiss Jena, Germany) spectrophotometer. Melting points (uncorrected)
were determined with SMP50 Stuart Automatic melting point (Cole-Palmer Ltd. Stone,
Staffordshire, UK).

3.2. Synthesis of Ethynylpyrroles 4a–k, Ethynylindole 6, Ethynylfuran 8, General Procedure

Acylethynylpyrrole 1a–k, 3-acylethynylindole 5 or 2-acylethynylfuran 7 (1 mmol) was
dissolved in dry THF/MeCN (1:1, 4 mL), and then t-BuOK (224 mg, 2 mmol) was added
to reaction mixture under nitrogen. Reaction mixture was stirred at room temperature for
1 h while turning into an orange suspension. Then reaction mixture was diluted with cold
(0–5 ◦C) water (30 mL) and extracted by cold (0–5 ◦C) n-hexane (3 × 10 mL). Combined
extracts were washed with water (3 × 5 mL) and dried over Na2SO4. The residue, after
removing solvent, was purified by flash chromatography (dried SiO2, n-hexane) to afford
ethynylpyrrole 4a–k, ethynylindole 6 and ethynylfuran 8.

1-Benzyl-2-ethynyl-4,5,6,7-tetrahydro-1H-indole (4a). Yield: 197 mg (84%), colorless oil; 1H
NMR (400.13 MHz, CDCl3): δ 7.37–7.24 (m, 3H, Hm,p, Ph), 7.13–7.08 (m, 2H, Ho, Ph), 6.37
(s, 1H, H-3, pyrrole), 5.14 (s, 2H, CH2-Ph), 3.35 (s, 1H, ≡CH), 2.54–2.49 (m, 2H, CH2-7),
2.43–2.38 (m, 2H, CH2-4), 1.82–1.68 (m, 4H, CH2-5, CH2-6); 13C NMR (100.6 MHz, CDCl3):
δ 138.3, 130.9, 128.7 (2C), 127.3, 126.7 (2C), 118.0, 114.2, 99.7, 81.2, 77.0, 47.9, 23.5, 23.2, 23.1,
22.5; IR (KBr) 3287, 3087, 3063, 3030, 2928, 2849, 2097, 1495, 1457, 1388, 1357, 1301, 1130,
1077, 1029, 928, 795, 722, 696, 545, 457 cm−1; Anal. Calcd for C17H17N: C, 86.77; H, 7.28; N,
5.95%. Found: C, 86.47; H, 7.31; N, 6.14%.

2-Ethynyl-1-methyl-4,5,6,7-tetrahydro-1H-indole (4b). Yield: 137 mg (86%), white crystals, mp
53–54 ◦C; 1H NMR (400.13 MHz, CDCl3): δ 6.26 (s, 1H, H-3, pyrrole), 3.50 (s, 3H, NMe),
3.37 (s, 1H, ≡CH), 2.52–2.50 (m, 2H, CH2-7), 2.47–2.45 (m, 2H, CH2-4), 1.83–1.80 (m, 2H,
CH2-5), 1.73–1.71 (m, 2H, CH2-6); 13C NMR (100.6 MHz, CDCl3,): δ 130.9, 117.4, 113.6,
112.6, 81.1, 76.9, 30.8, 23.6, 23.2, 23.0, 22.4; IR (film) 3288, 3100, 2929, 2847, 2097, 1570, 1462,
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1442, 1386, 1302, 1130, 1055, 790, 667, 536 cm−1; Anal. Calcd for C11H13N: C, 82.97; H, 8.23;
N, 8.80%. Found: C, 82.71; H, 8.44; N, 8.58%.

2-Ethynyl-1-vinyl-4,5,6,7-tetrahydro-1H-indole (4c). Yield: 127 mg (74%), colorless oil; 1H
NMR (400.13 MHz, CDCl3): δ 6.97 (dd, J = 16.1, 9.4 Hz, 1H, Hx), 6.34 (s, 1H, H-3, pyrrole),
5.34 (d, J = 16.1 Hz, 1H, Ha), 4.83 (d, J = 9.4 Hz, 1H, Hb), 3.39 (s, 1H, ≡CH), 2.66–2.63 (m,
2H, CH2-7), 2.48–2.45 (m, 2H, CH2-4), 1.83–1.80 (m, 2H, CH2-5), 1.71–1.69 (m, 2H, CH2-6);
13C NMR (100.6 MHz, CDCl3): δ 130.5, 119.5, 116.8, 112.3, 102.1, 99.7, 82.1, 76.8, 24.2, 23.4,
23.1, 23.0; IR (film) 3292, 3128, 3049, 2932, 2849, 2099, 1643, 1577, 1483, 1438, 1387, 1324,
1294, 1136, 966, 871, 802, 669, 558 cm−1; Anal. Calcd for C12H13N: C, 84.17; H, 7.65; N,
8.18%. Found: C, 83.85; H, 7.81; N, 8.36%.

5-Ethynyl-2,3-dimethyl-1-vinyl-1H-pyrrole (4d). Yield: 52 mg (36%), colorless oil; 1H NMR
(400.13 MHz, CDCl3): δ 6.91 (dd, J = 16.0, 9.2 Hz, 1H, Hx), 6.36 (s, 1H, H-3, pyrrole), 5.46 (d,
J = 16.1 Hz, 1H, Ha), 4.94 (d, J = 9.2 Hz, 1H, Hb), 3.37 (s, 1H, ≡CH), 2.21 (s, 3H, Me), 1.99
(s, 3H, Me); 13C NMR (100.6 MHz, CDCl3): δ 130.8, 127.8, 119.0, 116.7, 111.6, 104.5, 81.7,
76.9, 11.4, 11.1; IR (film) 3291, 3106, 2920, 2866, 2099, 1643, 1483, 1432, 1392, 1335, 1310, 1162,
1113, 965, 879, 806, 671, 562 cm−1; Anal. Calcd for C10H11N: C, 82.72; H, 7.64; N, 9.65%.
Found: C, 82.94; H, 7.49; N, 9.80%.

2-Ethynyl-1-methyl-5-phenyl-1H-pyrrole (4e). Yield: 172 mg (95%), colorless oil; 1H NMR
(400.13 MHz, CDCl3): δ 7.42–7.34 (m, 5H, Ph), 6.55 (d, J = 3.8 Hz, 1H, H-3, pyrrole), 6.16 (d,
J = 3.8 Hz, 1H, H-4, pyrrole), 3.69 (s, 3H, NMe), 3.44 (s, 1H, ≡CH); 13C NMR (100.6 MHz,
CDCl3): δ 136.7, 132.9, 128.9 (2C), 128.6 (2C), 127.5, 116.1, 115.6, 108.6, 82.0, 76.5, 33.2; IR
(film) 3287, 3106, 3060, 2948, 2102, 1602, 1498, 1457, 1390, 1324, 1234, 1155, 1074, 1028, 758,
698, 568 cm−1; Anal. Calcd for C13H11N: C, 86.15; H, 6.12; N, 7.73%. Found: C, 85.75; H,
5.86; N, 7.48%.

2-Ethynyl-5-(4-methylphenyl)-1-vinyl-1H-pyrrole (4f). Yield: 174 mg (84%), colorless oil; 1H
NMR (400.13 MHz, CDCl3): δ 7.34–7.28 (m, 2H, Ho, Ph), 7.24–7.17 (m, 2H, Hm, Ph), 6.82
(dd, J = 15.9, 9.0 Hz, 1H, Hx), 6.63 (d, J = 3.8 Hz, 1H, H-3 pyrrole), 6.17 (d, J = 3.8 Hz, 1H,
H-4, pyrrole), 5.53 (d, J = 15.9 Hz, 1H, Ha), 4.99 (d, J = 9.0 Hz, 1H, Hb), 3.43 (s, 1H, ≡CH),
2.38 (s, 3H, Me); 13C NMR (100.6 MHz, CDCl3): δ 137.6, 136.1, 131.1, 129.6, 129.2 (2C), 129.1
(2C), 118.5, 114.5, 109.9, 107.0, 82.5, 76.8, 21.3; IR (KBr) 3287, 3112, 3024, 2921, 2102, 1643,
1547, 1510, 1466, 1419, 1389, 1324, 1297, 1226, 1113, 963, 889, 822, 775, 672, 571, 500 cm−1;
Anal. Calcd for C15H13N: C, 86.92; H, 6.32; N, 6.76%. Found: C, 86.68; H, 6.51; N, 6.85%.

1-Benzyl-2-ethynyl-5-(4-methoxyphenyl)-1H-pyrrole (4g). Yield: 253 mg (88%), white crystals;
mp 92–93 ◦C; 1H NMR (400.13 MHz, CDCl3): δ 7.30–7.22 (m, 3H, Hm,p, Ph), 7.20–7.15 (m,
2H, Ho, Ph), 6.99–6.93 (m, 2H, Hm, Ph), 6.87–6.82 (m, 2H, Ho, Ph), 6.63 (d, J = 3.7 Hz, 1H,
H-3 pyrrole), 6.16 (d, J = 3.7 Hz, 1H, H-4, pyrrole), 5.25 (s, 2H, CH2-Ph), 3.80 (s, 3H, MeO),
3.29 (s, 1H, ≡CH); 13C NMR (CDCl3, 100.6 MHz): δ 159.3, 138.8, 136.7, 130.4 (2C), 128.6
(2C), 127.2, 126.3 (2C), 125.3, 116.1, 115.5, 114.0 (2C), 108.8, 81.8, 76.6, 55.4, 48.9; IR (KBr)
3287, 3087, 3063, 3031, 2955, 2934, 2836, 2100, 1611, 1575, 1547, 1510, 1463, 1442, 1392, 1358,
1321, 1288, 1249, 1178, 1110, 1087, 1031, 977, 909, 836, 767, 731, 695, 575, 524, 459 cm−1; Anal.
Calcd for C20H17NO: C, 83.59; H, 5.96; N, 4.87; O, 5.57%. Found: C, 83.31; H, 6.02; N, 5.02%.

2-Ethynyl-5-(2-fluorophenyl)-1-vinyl-1H-pyrrole (4h). Yield: 192 mg (91%), colorless oil; 1H
NMR (400.13 MHz, CDCl3): δ 7.40–7.30 (m, 2H, Hm, Ph), 7.22–7.08 (m, 2H, Ho,p, Ph), 6.84
(dd, J = 15.9, 8.9 Hz, 1H, Hx), 6.66 (d, J = 3.7 Hz, 1H, H-3 pyrrole), 6.24 (d, J = 3.7 Hz, 1H,
H-4, pyrrole), 5.34 (d, J = 15.9 Hz, 1H, Ha), 4.91 (d, J = 8.9 Hz, 1H, Hb), 3.45 (s, 1H, ≡CH);
13C NMR (100.6 MHz, CDCl3): δ 159.9 (d, J = 249.1 Hz, C-2, 2-FC6H4), 132.1 (d, J = 2.0 Hz,
C-6, 2-FC6H4), 130.9, 130.1 (d, J = 8.2 Hz, C-4, 2-FC6H4), 129.2, 124.24 (d, J = 3.3 Hz, C-5,
2-FC6H4), 120.6 (d, J = 15.5 Hz, C-1, 2-FC6H4), 118.1, 116.1 (d, J = 22.0 Hz, C-3, 2-FC6H4),
115.2, 111.8, 106.4, 82.7, 76.4; IR (KBr) 3293, 3115, 3068, 2924, 2104, 1645, 1580, 1547, 1498,
1465, 1397, 1300, 1229, 1109, 963, 890, 817, 780, 759, 672, 577, 471 cm−1; Anal. Calcd for
C14H10FN: C, 79.60; H, 4.77; F, 8.99; N, 6.63%. Found: C, 79.24; H, 4.96; F, 8.75; N, 6.39%.
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5-Ethynyl-2,3-diphenyl-1-vinyl-1H-pyrrole (4i). Yield: 242 mg (90%), white crystals; mp 93–94
◦C; 1H NMR (400.13 MHz, CDCl3): δ 7.39–7.34 (m, 3H, Ho,p, Ph), 7.31–7.26 (m, 2H, Ho, Ph),
7.21–7.15 (m, 2H, Hm, Ph), 7.15–7.09 (m, 3H, Hm,p, Ph), 6.84 (s, 1H, H-3 pyrrole), 6.71 (dd,
J = 15.9, 9.2 Hz, 1H, Hx), 5.47 (d, J = 15.9 Hz, 1H, Ha), 4.91 (d, J = 9.2 Hz, 1H, Hb), 3.46 (s,
1H, ≡CH); 13C NMR (100.6 MHz, CDCl3): δ 135.1, 131.9, 131.8, 131.4 (2C), 130.8, 128.7 (2C),
128.3 (2C), 128.2 (3C), 126.1, 123.8, 118.6, 113.7, 106.5, 82.8, 76.5; IR (KBr) 3274, 3080, 3057,
2923, 2100, 1641, 1601, 1557, 1495, 1446, 1386, 1320, 1305, 1177, 1031, 964, 889, 800, 769, 699,
587, 522 cm−1; Anal. Calcd for C20H15N: C, 89.19; H, 5.61; N, 5.20%. Found: C, 88.89; H,
5.45; N, 5.34%.

2-Ethynyl-1-methyl-5-(thiophen-2-yl)-1H-pyrrole (4j). Yield: 174 mg (93%), colorless oil; 1H
NMR (400.13 MHz, CDCl3): δ 7.32–7.28 (m, 1H, H-5, thiophene), 7.10–7.05 (m, 2H, H-3,4,
thiophene), 6.51 (d, J = 3.9 Hz, 1H, H-3 pyrrole), 6.26 (d, J = 3.9 Hz, 1H, H-4, pyrrole), 3.76 (s,
3H, N-CH3), 3.43 (s, 1H, ≡CH); 13C NMR (100.6 MHz, CDCl3): δ 134.4, 129.2, 127.5, 125.8,
125.3, 116.6, 115.6, 109.7, 99.7, 82.2, 33.2; IR (KBr) 3288, 3106, 3074, 2944, 2922, 2101, 1445,
1417, 1395, 1345, 1314, 1201, 1034, 845, 766, 698, 570, 493 cm−1; Anal. Calcd for C11H9NS: C,
70.55; H, 4.84; N, 7.48; S, 17.12%. Found: C, 70.26; H, 4.69; N, 7.28; S, 16.82%.

1-Benzyl-2-ethynyl-1H-pyrrole (4k). Yield: 145 mg (80%), colorless oil; 1H NMR (400.13
MHz, CDCl3): δ 7.36–7.27 (m, 3H, Hm,p, Ph), 7.16–7.14 (m, 2H, Ho, Ph), 6.68–6.65 (m, 1H,
H-3, pyrrole), 6.54–6.51 (m, 1H, H-5, pyrrole), 6.13–6.10 (m, 1H, H-4, pyrrole), 5.19 (s, 2H,
CH2-Ph), 3.33 (s, 1H, ≡CH); 13C NMR (CDCl3, 100.6 MHz): δ 137.9, 128.8 (2C), 127.7, 127.3
(2C), 123.1, 116.0, 114.7, 108.7, 81.7, 76.0, 51.3; IR (KBr) 3288, 3106, 3064, 3031, 2925, 2853,
2103, 1495, 1466, 1455, 1435, 1300, 1018, 722, 694, 569, 522 cm−1; Anal. Calcd for C13H11N:
C, 86.15; H, 6.12; N, 7.73%. Found: C, 85.84; H, 5.89; N, 7.45%.

3-Ethynyl-1-methyl-1H-indole (6). Yield: 113 mg (73%); Spectral characteristics are the same
as previously published [64].

2-Ethynyl-3,6-dimethyl-4,5,6,7-tetrahydrobenzofuran (8). Yield: 139 mg (80%), colorless oil; 1H
NMR (400.13 MHz, CDCl3): δ 3.55 (s, 1H, ≡CH), 2.67–2.62 (m, 1H, CH), 2.33–2.30 (m, 2H,
CH2), 2.19–2.12 (m, 1H, CH), 2.00 (s, 3H, Me), 1.93–1.91 (m, 1H, CH), 1.85–1.81 (m, 1H, CH),
1.36–1.30 (m, 1H, CH), 1.07 (d, J = 6.7 Hz, 3H, CHMe); 13C NMR (100.6 MHz, CDCl3): δ
152.1, 131.5, 127.2, 118.4, 83.8, 74.7, 31.7, 31.2, 29.6, 21.5, 20.0, 9.0; IR (KBr) 3293, 2923, 2849,
2103, 1628, 1558, 1456, 1379, 1295, 1257, 1150, 1107, 1066, 1041, 774, 692 cm−1; Anal. Calcd
for C12H14O: C, 82.72; H, 8.10; O, 9.18%. Found: C, 82.94; H, 7.88%.

3.3. Synthesis of Propargyl Alcohols 3a,c,d,f

Acylethynylpyrrole 1a,c,d,f (1 mmol) was dissolved in dry MeCN (4 mL), and then
t-BuONa (192 mg, 2 mmol) was added to reaction mixture under nitrogen and reaction
mixture was stirred at room temperature for 1 h. Then reaction mixture was diluted with
water (30 mL) and extracted by diethyl ether (3 × 10 mL). Extracts were washed with water
(3 × 5 mL) and dried over Na2SO4. The residue after removing solvents was fractionated
by column chromatography (SiO2, n-hexane:diethyl ether, 10:1) to afford propargyl alcohol
3a,c,d,f.

5-(1-Benzyl-4,5,6,7-tetrahydro-1H-indol-2-yl)-3-hydroxy-3-(thiophen-2-yl)pent-4-ynenitrile (3a).
Spectral characteristics are the same as previously published [36].

3-Hydroxy-3-phenyl-5-(1-vinyl-4,5,6,7-tetrahydro-1H-indol-2-yl)pent-4-ynenitrile (3c). Yield:
224 mg (71%), yellow oil; 1H NMR (400.13 MHz, CDCl3): δ 7.72–7.71 (m, 2H, Ho, Ph),
7.44–7.37 (m, 3H, Hm,p, Ph), 6.98 (dd, J = 15.9, 9.3 Hz, 1H, Hx), 6.40 (s, 1H, H-3, pyrrole),
5.34 (d, J = 15.9 Hz, 1H, Ha), 4.88 (d, J = 9.3 Hz, 1H, Hb), 3.03 (d, J = 4.8 Hz, 2H, CH2CN),
2.85 (s, 1H, OH), 2.67–2.65 (m, 2H, CH2-7), 2.49–2.47 (m, 2H, CH2-4), 1.83–1.81 (m, 2H,
CH2-5), 1.74–1.73 (m, 2H, CH2-6); 13C NMR (CDCl3, 100.6 MHz): δ 141.7, 131.5, 130.4, 129.0,
128.8 (2C), 125.4 (2C), 119.9, 117.3, 116.4, 111.3, 103.2, 92.9, 81.4, 71.0, 35.7, 24.1, 23.3, 23.1,
23.0. IR (film) 3422, 3062, 3030, 2931, 2851, 2215, 1643, 1492, 1447, 1383, 1295, 1241, 1143,
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1102, 1053, 968, 910, 805, 765, 733, 700, 646 cm−1; Anal. Calcd for C21H20N2O: C, 79.72; H,
6.37; N, 8.85; O, 5.06%. Found: C, 79.44; H, 6.20; N, 8.59%.

5-(4,5-Dimethyl-1-vinyl-1H-pyrrol-2-yl)-3-hydroxy-3-phenylpent-4-ynenitrile (3d). Yield: 197 mg
(68%), yellow crystals, mp 101–102 ◦C; 1H NMR (400.13 MHz, CDCl3): δ 7.72–7.70 (m, 2H,
Ho, Ph), 7.42–7.40 (m, 2H, Hm,p, Ph), 6.91 (dd, J = 15.9, 9.1 Hz, 1H, Hx), 6.41 (s, 1H, H-3,
pyrrole), 5.45 (d, J = 15.9 Hz, 1H, Ha), 4.99 (d, J = 9.1 Hz, 1H, Hb), 3.02 (d, J = 5.1 Hz, 2H,
CH2CN), 2.86 (s, 1H, OH), 2.22 (s, 3H, Me), 2.00 (s, 3H, Me); 13C NMR (100.6 MHz, CDCl3):
δ 141.7, 130.6, 128.9, 128.7 (2C), 128.6, 125.4 (2C), 119.5, 117.0, 116.4, 110.6, 105.6, 92.6, 81.4,
70.9, 35.6, 11.3, 11.1; IR (KBr) 3422, 3062, 3030, 2921, 2215, 1643, 1493, 1449, 1392, 1357, 1304,
1172, 1100, 1049, 967, 910, 809, 765, 733, 700, 634 cm−1; Anal. Calcd for C19H18N2O: C, 78.59;
H, 6.25; N, 9.65; O, 5.51%. Found: C, 78.22; H, 6.02; N, 9.42%.

3-Hydroxy-3-phenyl-5-(5-(4-methylphenyl)-1-vinyl-1H-pyrrol-2-yl)pent-4-ynenitrile (3f). Yield:
281 mg (80%), yellow oil; 1H NMR (CDCl3, 400 MHz): δ 7.74–7.72 (m, 2H, Ho, Ph), 7.45–7.39
(m, 2H, Hm,p, Ph), 7.31 (d, J = 7.9 Hz, 2H, Ho, C6H4), 7.21 (d, J = 7.9 Hz, 2H, Hm, C6H4), 6.83
(dd, J = 15.8, 8.9 Hz, 1H, Hx), 6.67 (d, J = 3.8 Hz, 1H, H-4, pyrrole), 6.22 (d, J = 3.8 Hz, 1H,
H-3, pyrrole), 5.52 (d, J = 15.8 Hz, 1H, Ha), 5.05 (d, J = 8.9 Hz, 1H, Hb), 3.06 (d, J = 5.0 Hz,
2H, CH2CN), 2.85 (s, 1H, OH), 2.39 (s, 3H, Me); 13C NMR (CDCl3, 100.6 MHz): δ 141.6,
137.8, 136.8, 131.2, 129.4, 129.3 (2C), 129.1 (3C), 128.8 (2C), 125.4 (2C), 118.9, 116.3, 113.7,
110.1, 108.0, 93.1, 81.4, 71.0, 35.6, 21.4; IR (KBr) 3416, 3061, 3028, 2922, 2218, 1643, 1515, 1472,
1449, 1418, 1389, 1324, 1301, 1224, 1112, 1042, 964, 909, 823, 773, 733,701, 622, 503 cm−1,
Anal. Calcd for C24H20N2O: C, 81.79; H, 5.72; N, 7.95; O, 4.54%. Found: C, 81.35; H, 5.60;
N, 7.68%.

4. Conclusions

In conclusion, we have found efficient and extraordinarily easy (room temperature)
access to ethynylpyrroles via decarbonylation of available acylethynylpyrroles. The re-
action proceeds in the MeCN-THF/t-BuOK system via the addition of CH2CN− anion
to the carbonyl group of acylethynylpyrroles followed by retro-Favorsky reaction of the
intermediated propargylic alcohols. Thermodynamic aspects of the intermediate alcohol
decomposition have been considered in the framework of B2PLYP/6-311G**//B3LYP/6-
311G**+C-PCM/acetonitrile methodology. The substrate scope of the reaction includes
benzoyl-, furoyl-, thenoylethynylpyrroles with alkyl, vinyl, aryl and hetaryl substituents at
1(4,5)-positions of the pyrrole ring, and methyl, benzyl, and vinyl moieties at the nitrogen
atom, as well as acylethynyl derivatives of 1-methylindole and menthofuran.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28031389/s1. Synthesis of ethynylpyrroles 4a–k, ethynylin-
dole 6, ethynylfuran 8 (S3–S7); Synthesis of propargyl alcohols 3a,c,d,f (S7–S8); Quantum chemical
calculations details (S9–S12); 1H and 13C NMR spectra of synthesized compounds 3a,c,d,f, 4a–k, 6, 8
(S13–S44). References [36,64–74] are cited in the Supplementary Materials.
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