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Abstract: Polygonati Rhizoma, a typical homology of medicine and food, possesses remarkable
anti‑fatigue, anti‑aging, metabolic regulatory, immunomodulatory, anti‑inflammatory, neuroprotec‑
tive, anti‑diabetes, and anti‑cancer effects. Among bioactive phytochemicals in Polygonati Rhizoma,
polysaccharides play important roles in the health‑promoting activities through the mechanisms
mentioned above and potential synergistic effects with other bioactives. In this review, we briefly
introduce the updated biosynthesis of polysaccharides, the purificationmethod, the structure charac‑
terization, and food applications, and discuss in detail the biological activities of Polygonati Rhizoma
polysaccharides and associatedmechanisms, aiming at broadening the usage of Polygonati Rhizoma
as functional food and medicine.

Keywords: Polygonati Rhizoma; homology of medicine and food; polysaccharides; health‑promoting
property; synergy mechanism

1. Introduction
Well‑recorded in theCommission of ChineseMedicineDictionary andCommission of

Chinese Pharmacopoeia, Polygonati Rhizoma (“Huangjing” in Chinese) possesses remark‑
able health‑promoting activities, including replenishing Qi, nourishing Yin, moistening
lungs, fortifying spleens, tonifying kidneys, replenishing energy, and strengthening im‑
munity [1,2]. Widely used in traditional Chinese medicine, Polygonati Rhizoma is used in
treating fevers of influenza, mastitis, dizziness, coughs, fatigue, feebleness, diabetes mel‑
litus, sexual dysfunction, indigestion, inappetence, backache, keen pain, and lung trou‑
ble [3–5]. As a typical homology of medicine and food, annual demand for Polygonati
Rhizoma continues to rise [6].

In particular, Polygonati Rhizoma is prepared from rhizomes of Polygonatum sibiricum
Redoute, P. kingianum Coll.et Hemsl and P. cyrtonemaHua [7–9]. Among the three raw tra‑
ditional herbs, P. cyrtonema is optimal both in quality and yield, endemic to China (central
and eastern) andwidely cultivated under forest [10]. Meanwhile, P. sibiricum is mainly dis‑
tributed in northern China, North Korea, and Mongolia [11]. Furthermore, P. kingianum,
also native to southern China, is mainly distributed in the Yunnan, Sichuan, Guizhou and
Guangxi provinces, among others [12]. Up to now, 365 kinds of commercial food products
and more than 500 patents associated with Polygonati Rhizome are available [13].

Mature rhizomes of P. sibiricum, P. kingianum, and P. cyrtonema are yellow and branched,
and need to be processed through the strategy of nine cycles of steaming and drying [14].
The processed Polygonati Rhizomes with enhanced function are black, soft, and sweet,
without causing throat irritation (Figure 1) [15]. Repeated steaming treatment could in‑
fluence physicochemical properties and bioactivities of Polygonati Rhizoma active sub‑
stances, as molecular weights, UV absorption, and antioxidant activity of polysaccharides
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were significantly increased [16]. If considering total saccharides, fructose (Fru) and phos‑
pholipids as themain quality indicators, four cycles of steaming‑drying should be the ideal
method to obtain better taste, flavor and functionality [14]. If considering antioxidant and
immunopotentiation activities, two cycles of continuous steaming‑drying would be the
best choice [17].
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Polygonati Rhizoma contains many bioactive substances, such as purine nucleoside [18],
carbohydrates [19,20], bioflavonoids [21], alkaloids [22], saponins [23,24], lignins, amino acids,
peptide, anthraquinone, cardiac glycosides, vitamins, and various acids [25,26]. Polysaccha‑
rides are major bioactive components and contributors to the sweet taste of Polygonati
Rhizoma which mainly exert metabolic regulation, immunomodulatory, anti‑fatigue, anti‑
aging, antiviral, anti‑inflammatory, antioxidant, antiatherosclerotic, liver protection, hy‑
polipidemic, anti‑osteoporosis, anti‑cancer, anti‑diabetic, and anti‑atherosclerotic activi‑
ties [27–29]. Polysaccharides also serve as evaluation markers in quality control of Polygo‑
nati Rhizoma and “Yuzhu” (P. odoratum) [30,31]. Polygonati Rhizoma has often been used
as an ingredient or supplement in the food industry due to its tonic effect and flavor prop‑
erties, which are mainly exerted by polysaccharides [11,32]. However, the attention to
Polygonati Rhizome polysaccharides is still insufficient. This review aimed at providing
updated and comprehensive information on Polygonati Rhizoma polysaccharides, hoping
to broaden its usage as functional food.

2. Polysaccharide Phytosynthesis
Understanding themolecularmechanism of polysaccharide biosynthesis at themolec‑

ular level will be of benefit for modulating yield and properties of Polygonati Rhizoma
polysaccharides in large‑scale production. Polygonati Rhizoma polysaccharides are often
referred to as P. sibiricum polysaccharide (PSP), P. cyrtonema polysaccharide (PCP), and
P. kingianum polysaccharide (PKP) [33].

PSPcontentwaspositively correlatedwith the expressionpatternsofβ‑fructofuranosidase,
fructokinase, mannose‑1‑phosphate guanylyltransferase, and UDP‑glucose 6‑dehydrogenase,
but negatively correlated with the expression of hexokinase [34]. Most differential expression
of genes in different parts of P. sibiricum rhizomes was assigned to the “starch and sucrose
metabolism” pathway [35]. During the process of PSP biosynthesis, sucrose was converted to
D‑Glu‑6‑phosphate (D‑Glu‑6P), D‑Fru, and D‑Glu; then, D‑Glu‑6P was converted to α‑D‑Glu‑
1P by phosphoglucomutase or D‑Fru‑6P by Glu‑6P isomerase isomerization [35]. In addition,
UDP‑glucose‑6‑dehydrogenase and UDP‑glucuronic acid (GlcA) 4‑epimerase accomplished
the conversion for UDP‑Glu, UDP‑GlcA, and UDP‑galacturonic acid (GalA). Finally, these ac‑
tivated sugar units were assembled into growing polysaccharide chains by corresponding gly‑
cosyltransferases [35].

The content of PKP was negatively correlated with fibrous root number, stem diam‑
eter, leaf width, leaf length, and the fresh weight of the above ground parts [36]. Of note,
polysaccharide accumulation was greatly influenced by growth age. Among 2–5‑year‑old
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P. kingianum, polysaccharide content was the highest in 4‑year‑old plants by seed repro‑
duction [36].

Based on transcriptome sequencing, 89 unigenes encoding enzymes associated with
polysaccharide biosynthesis were found in P. cyrtonema [37]. The content of PCP was
positively associated with expression levels of mannose‑6‑phosphate isomerase, Meval‑
onate kinase, 4‑hydroxy‑3‑methylbut‑2‑enyl diphosphate reductase, UDP‑apiose/xylose
synthase, GDP‑L‑fucose synthase, hydroxymethylglutaryl CoA synthase, (E)‑4‑hydroxy‑
3‑methylbut‑2‑enyl‑diphosphate synthase, 2‑C‑methyl‑D‑erythritol 2,4‑cyclodiphosphate
synthase, and farnesyl diphosphate synthase [37]. UDP glycosyltransferases and transcrip‑
tion factors involved in polysaccharide biosynthesis were also identified [38].

3. Chemistry of Polygonati Rhizoma Polysaccharides
3.1. Summary of Extraction and Purification

Traditionally, Polygonati Rhizoma is pretreated with hot water to obtain crude polysaccha‑
rides, then subjected to ethanol precipitation to remove inactive substances and proteins [39]. Ex‑
traction efficiency could be affected by several factors, including temperature, time, extraction
frequency, and solvent. The temperature, time, and liquid/solid ratio range within 80–100 ◦C,
2–3 h, and 1:(10–30) g/mL, respectively [30]. Meanwhile, Polygonati Rhizoma polysaccha‑
rides are often purifiedusingDEAE‑Cellulose52, DEAE‑Sepharose Fast Flow ion‑exchange
chromatography, Sephadex G‑75 gel filtration chromatography, and Sephacryl G‑150 col‑
umn chromatography [40,41]. In addition, enzymatic hydrolysis extraction, ultrasonic
crushing and extraction, andmicrowave‑assisted extraction, are also used for extraction of
Polygonati Rhizoma polysaccharide [36]. Dilute lye can improve yield through destroying
the cell wall and facilitating release of Polygonati Rhizoma polysaccharides from cell [36].

A high diversity of existing PSPs was reported in different research, which might be
due to maturity, geographic location, environmental circumstances, extraction methods,
and analytical procedures [30]. PSP was also extracted with CO2‑triggered switchable
hydrophilicity solvents containing amines and water, and a yield of 399.2 mg/g was ob‑
tained at a solid‑liquid ratio of 1:20, extraction temperature of 50 ◦C, ultrasonic power of
500W, and extraction time of 60min [42]. No large‑scale or industrialization extraction and
purification methods of Polygonati Rhizoma polysaccharides have been reported. Thus,
advanced extraction technology could be used to extract Polygonati Rhizoma polysaccha‑
rides, such as aqueous two‑phase extraction [43,44], subcritical water extraction [45,46],
pulsed electric field‑assisted extraction [47,48], and membrane separation technology [49].

3.2. Structure of Polygonati Rhizoma Polysaccharides
Structures of Polygonati Rhizoma polysaccharides were often established by acid hydroly‑

sis, Fourier transform infrared spectroscopy, nuclear magnetic resonance (NMR) spectroscopic
analyses, high‑resolution mass spectrometry, ultra‑high‑performance liquid chromatography‑
quadrupole trap tandem mass spectrometry (UHPLC‑MS/MS), high‑performance gel perme‑
ation chromatography, high‑performance liquid chromatography (HPLC)‑fluorescence detec‑
tionwith pre‑column derivatization, acid hydrolysis combinedwith high‑performance anion ex‑
change chromatography with pulsed amperometric detection, methylation analysis combined
with gas chromatography‑mass spectrometry (GS‑MS), as well as chemical evidence [50–54].

Polygonati Rhizoma polysaccharides and oligosaccharides could be decomposed into
monosaccharides during the repeated steaming process [55]. Monosaccharide composition
differed after steaming: the content of Gal and β‑1,4‑mannopyranose increased and the con‑
tent of Glu and mannose (Man) decreased, while glycosidic linkage β‑1,4‑galactopyranose
appeared [17]. The FTIR spectra showed that Polygonati Rhizoma polysaccharides possessed
different degrees of esterification [56]. The microwave‑assisted degradation approach could
lower the molecular weight of PSP, but greatly improve bioactivity, such as antioxidant activ‑
ity [57]. PSP, PCP, and PKP all had triple‑helical structures with β‑D‑fructofuranosyl (Fruf),
α‑D‑glucopyranose (Glcp, α‑D‑galactopyranose sugar residues, and anO‑acetyl group [58].
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There are five types of PSP, i.e., pectin [59–61], fructan [29], glucogalactomannan [30],
arabinogalactan‑type polysaccharides [62], and glucomannans [63]. Crude PSP contains car‑
bohydrates (85.1–88.3%), proteins (4.51–11.9%), and uronic acid (1.79–7.47%) [36]. Methanol‑
ysis combined with the TFA hydrolysis method could be used for pectin extraction [60,61].
PSP contains different percentage compositions of Man (62.3–76.3%), Glu (15.2–20.3%),
galactose (Gal) (4.35–15.3%), and arabinose (Ara) (4.00–7.65%), and small amounts of Fru,
rhamnose (Rha), Xyl, GalA, and GlcA, as well as branched homogalactan and galactoman‑
nans (Table 1) [36]. Another report showed that crude PSP possessed high contents of
Glu (15.1%), Gal (29.6%), and Man (36.1%) [64]. PSP0‑PSP9, extracted from each cycle of
steaming‑drying, varied in molecular weights, but had similar backbones and chemical
groups [65]. However, both biological and chemical variance of PSPs revealed consider‑
able segregation of PSP0, PSP1‑ PSP4 and PSP5‑PSP9 [65].

Table 1. Structure comparison among PCP, PKP, and PSP polysaccharides.

Type Molecular Weight Composition Reference

PSP (2.2–4400) × 103 Da Man, Glu Gal, Ara, Fru, Rha, Xyl, GalA,
GlcA, homogalactan, and galactomannans [36,58]

PCP (8.5–42,400) × 103 Da Glu, Man, Rha, Gal, Rib, Ara, Fruf, Glcp [66,67]

PKP 8.7 × 103 Da Fru, Glu, Gal, Man, Xyl, Ara, Man, and
β1,2‑link Glc [58]

PCP mainly contained Glu, Man, Rha, Gal, ribose (Rib), and Ara [66,67]. PCP was
formed by a branched fructan core with (2→6)‑linked‑D‑Fruf residues every three (2→1)‑
linked‑D‑Fruf residues, and an average degree of polymerization of 28 [25]. PCP‑1 pos‑
sessed a (2→1)‑linked β‑D‑Fruf backbone, as well as (2→6)‑linked β‑D‑Fruf side chains
with an internal α‑D‑Glcp in neokestose form [68]. PCP0‑PCP5 (105‑107 Da), extracted con‑
secutively and steamed for 0–5 times, showed irregularly spherical conformation in aque‑
ous solution [17,69]. The process of steaming led to significant structural changes of PCP,
including molecular degradation, aggregation, and depolymerization [16]. The molecu‑
lar weights of PCP changed during repeated steaming, first increasing with steaming and
then decreasing with further steaming [17]. P. cyrtonema fructan contained a (2→6) linked
β‑D‑Fruf residue backbone along with an internal α‑D‑Glcp residue and two (2→1) linked
β‑D‑Fruf residue branches [70]. P. cyrtonema galactan was (1→4)‑β‑D‑galactan branched
with a single β‑D‑Gal at the C‑6 at about every nine residues in the main chain [70].

PKP mainly contained Fru, Glu, Gal, Man, Xyl, Ara, Man, and β1,2‑link Glu [71].

4. Applications for Health‑Promoting Activities
Polygonati Rhizoma polysaccharides, Polygonati Rhizomawater extracts rich in polysac‑

charides, and herbal medicine formulation containing Polygonati Rhizoma polysaccharides
all showed typical antioxidant, anti‑aging, anti‑fatigue, metabolic regulation, immunomodu‑
latory, anti‑inflammatory, anti‑diabetic, antiatherosclerotic, hypolipidemic, anti‑osteoporosis,
and anti‑cancer activities through a synergy mechanism [72].

4.1. Antioxidant and Anti‑Aging Activities
Aging, a progressive decline of physiological functions in human life, is a major risk

for various types of chronic diseases [73,74]. As the global elderly population will reach
more than 2.1 billion by 2050, effectively alleviating aging is of great significance [75,76].
The number of diseases associated with aging increases gradually on a global scale [77,78].
In particular, aging is generally characterized by the imbalance between oxidative stress‑
induced damage and an organism’s antioxidant defenses [79–81]. Antioxidants, abundant
in fruits, vegetables and herbs, can effectively resist oxidative stress [82,83]. As of now,
there is no therapy or drugs able to cure aging‑related diseases. Nutritional intervention
might be an effective strategy to promote healthy aging and improve quality of life [84,85].
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Polysaccharides of Polygonati Rhizoma exerted strong free radical‑scavenging abili‑
ties, metal chelating activity, and significant reducing capacity [40,58]. PCP showed higher
DPPH radical scavenging ability (IC50 = 2.04 mg/mL) than PSP (IC50 = 3.07 mg/mL) and
PKP (IC50 = 4.10 mg/mL), while PSP exhibited higher ABTS radical‑scavenging abilities
(IC50 = 0.68 mg/mL) than PCP (IC50 = 0.85 mg/mL) and PKP (IC50 = 1.61mg/mL) [58]. At
a concentration of 5.0 mg/mL, the hydroxyl radical‑scavenging abilities of PCP, PSP, and
PKP were 88.82%, 77.18%, and 72.75%, respectively [58]. As the steaming process pro‑
gressed, the radical scavenging activity of PSPs increased gradually [65]. In heart‑aging
mice, PSP could decrease reactive oxygen species (ROS) and malondialdehyde (MDA), in‑
crease the level of superoxide dismutase (SOD), as well as inhibit DNA damages and lipid
peroxidation through reducing expression of 8‑hydroxydeoxyguanosine and 4‑hydroxy‑2‑
nonenal [86]. In atherosclerosis male rabbits, PSP protected endothelial cells from injury
and apoptosis induced by H2O2 and lipopolysaccharide (LPS), and reduced the intimal
foam cell number [87]. In HT‑22 cells, PSP attenuated LPS‑induced production of ROS [88].
PCPS (4.24 × 104 Da) showed strong effects in preventing oxidative damage through ac‑
tivating erythroid 2‑related factor 2 (Nrf2)/HO‑1 antioxidant signaling [89]. PCP could
reduce oxidative stress‑induced ROS accumulation and alleviate ferroptosis via activat‑
ing NRF2/HO‑1 signaling pathway, thus attenuating neuronal‑regulated cell death in mi‑
croglia [90].

Polygonati Rhizoma polysaccharides could significantly reduce the MDA content of
skeletal muscle and serum, enhance the activity of SOD and glutathione peroxidase (GSH‑
Px), anddecrease free radical activity [91]. During the aging process, seriousmitochondrial
DNA damage and repair genes activities were observed. Polygonati Rhizoma polysac‑
charides exert an anti‑aging effect through improving energy metabolism of liver mito‑
chondria, reducing the expression of DNA polymerase γ, and enhancing the activities
of respiratory chain enzyme complexes [91]. In mouse brain cells, Polygonati Rhizoma
polysaccharides showed obvious anti‑aging effects through increasing Na+‑K+‑ATP and
Ca2+‑ATP activity via Ca2+ overload, as well as reduced the level of lipid peroxide, lipofus‑
cin, and B‑type monoamine oxidase [91]. In natural menopausal rats, Polygonati Rhizoma
polysaccharides delayed senescence through enhancing antioxidant capacity and improv‑
ing blood lipidmetabolism [36]. In D‑Gal‑induced rats, PSP (100mg/kg) showed antiaging
activity through effectively improving learning and memory abilities, reversing patholog‑
ical changes of kidneys, down‑regulating expression of the FOXO3a gene in renal tissue,
regulating Klotho‑fibroblast growth factor‑23 endocrine axis, alleviating oxidative stress,
and balancing calcium and phosphorus metabolism [92,93]. Collectively, PSP might serve
as a potential effective constituent for anti‑aging therapy.

4.2. Immunomodulatory Effects
Immunosuppression, a state of temporary or permanent immunity dysfunction, could

make an organism more sensitive to pathogens. The search for effective methods to pre‑
vent and treat immunosuppressive diseases is vital. Natural products, such as herbal
medicines rich in antioxidants, exert immunomodulatory effects towards chronic diseases
through stimulating the immune system [94,95]. Natural immune modulators can effec‑
tively defeat disorders through up‑ or down‑regulating immune response without unde‑
sired adverse effects [96,97]. Molecules, participating in immune activation, can induce im‑
mune responses against infectious diseases [98]. Polygonati Rhizoma possesses immune
enhancement activities mainly through activating the immune system, improving growth
and activity of immune cells, and promoting synthesis of antibodies [2].

The immunomodulatory effect of polysaccharides from Polygonati Rhizoma is illus‑
trated in Figure 2. In cyclophosphamide (CY)‑induced immunosuppressed‑mice, PSP can
improve immunosuppression through recovering body mass, accelerating the recovery
of spleen and thymus indexes, enhancing immunocyte proliferation responses (T cell, B
cell, and splenocytes), elevating peritoneal macrophage phagocytosis, increasing blood
erythrocyte counts, elevating CD4+/CD8+ ratio, accelerating the recovery of natural killer
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cell activity, and dose‑dependently restoring the levels of serum immune factors, including
interleukin (IL)‑2, tumor necrosis factor (TNF)‑α, IL‑8, and IL‑10 [39,99]. Polygonati Rhi‑
zoma polysaccharides can also promote the formation of hemolysin involved in humoral
immune function, as well as improve phagocytic activity of peritoneal macrophages [36].
P. cyrtonema fructooligosaccharide, graminan‑type fructan with a degree of polymeriza‑
tion of 5–10, could significantly reduce the level of pro‑inflammatory cytokines (TNF‑α,
IL‑1β) in serum, increase mice survival rate from 12.5% to 54%, and reduce inflammatory
monocyte accumulation in lung tissue of peritonitis‑induced mice [100]. In CY‑induced
immunosuppressed chickens (481‑day‑old), PSP showed protective effects via accelerat‑
ing the recovery of relative weights of immune organs, stimulating immunoglobulin and
antioxidant indexes in serum, improving the proliferation of peripheral blood T lympho‑
cytes, promoting immune organs cells to enter into S and G2/M phases, upregulating the
expression of immune factors (IL‑2, IL‑6 and interferon‑γ), and inhibiting the apoptosis in
spleen, thymus, and bursa of Fabricius [101]. Moreover, PSP also enhanced growth per‑
formance, as daily weight gain and serum protein production were elevated, while feed
conversion ratios were decreased [101].
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Figure 2. Schematic illustrating of immunomodulatory effects of Polygonati Rhizoma.

In RAW264.7 macrophages, Polygonati Rhizoma polysaccharides (100‑400 µg/mL) regu‑
lated polarization through increasing secretion levels of pro‑inflammatory cytokines (TNF‑α,
IL‑12, IL‑1β, and NO); reducing the levels of IL‑10, arginase‑1 (Arg‑1), and TGF‑β; elevat‑
ing M1 characteristic surface molecule CD86; and reducing M2 surface molecule CD206 ex‑
pression without any cytotoxic effects [58]. Particularly, M1‑polarized macrophages could
mediate host defense against the microbial infections and tumors, while M2 macrophages,
featuring CD206, IL‑10, Arg‑1, and TGF‑β, were involved in immune tolerance and tumor
progression [58]. Furthermore, PSP‑induced dendritic‑like morphological changes caused
IkB‑αdegradation, promptedNF‑kBp65 translocation into the nucleus, and increased the pro‑
duction of immune‑associated factors including NO, TNF‑α, inducible nitric oxide synthase
(iNOS), COX‑2, NF‑kB, phosphorylated p38MAPK, and IL‑6 [102]. PCP‑1 exhibited immune‑
stimulating activity on cell viability and IL‑6 production in RAW 264.7 macrophages [28].
CTAB‑modified PSP‑Cubs could enhance the proliferation of splenic lymphocytes [103].

Comparedwith raw rhizome, PCP steamed for 2–4 h had higher immunological activ‑
ities [16]. Long steaming time (6–12 h) could exert negative impacts on the immunological
activities of PCP [16]. PSPs (PSP1, PSP2, PSP3 and PSP4) with different monosaccharide
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composition and chemical structure exerted different abilities to activate phagocytic activ‑
ity in vitro [41]. In particular, PSP3 possessed the best immunomodulatory function, show‑
ing great potential as an immunomodulator [41]. Steamed PCP significantly increased
scavenging activity, while native PCP had the best immunostimulatory effect regarding
NO production and phagocytosis [99].

4.3. Potential Antidiabetic/Antiobesity Effects
Diabetes mellitus (DM), including type 1 (T1DM) and type 2 (T2DM), is characterized

by chronic metabolic disorder along with multiple organ failure [104,105]. In particular,
T2DM is characterized by hyperglycemia due to a defect in insulin secretion of pancreatic
β‑cells and insulin resistance [106]. Polygonati Rhizoma has been used in the treatment
of diabetes, hyperlipidemia, and related metabolic syndrome for centuries [107–109]. In
particular, Polygonati Rhizoma polysaccharides alleviated hyperglycemia and reduced ox‑
idative stress, and further delayed the progression of diabetic retinopathy and cataracts
(Table 2).

Table 2. Metabolic regulation mechanism of Polygonati Rhizoma polysaccharides.

Model Active
Components Dose Putative Mechanism References

NCI‑H716 cells Polygonatum
polysaccharides

25–100 µg/mL for
2h stimulate GLP‑1 production [58]

HepG2 cells PKPs‑1 0.78–100 mg/L for
24 h upregulate the levels of Glu utilization efficiency [66]

STZ‑induced
diabetic mice PKPs‑1

1190 mg/kg once
daily for 15

consecutive days

improve insulin tolerance; affect metabolism of
serum lipids; activate PI3K/AKT signaling

pathway; increase expression of IRS‑1, PI3K, and
AKT

[66]

STZ‑induced
diabetic SD rats PSP 200–800 mg/kg·d

for 12 weeks

lower levels of FBG and glycated hemoglobin;
improve polydipsia, polyphagia, polyuria and

weight loss; delay cataract progression; suppress
oxidative stress reaction; alleviate retinal
vasculopathy; elevate levels of insulin and
C‑peptide in plasma; inhibit formation of
advanced glycosylation end products

[108]

T2DM rats PKP 0.1 g/kg for 56 days increase the content of fasting insulin and lowered
the levels of FBG [109]

IR‑3T3‑L1
adipocytes PSP 50–250 µg/mL alleviate inflammatory cytokines; promoting Nrf2

expression [110]

In diabetic rats, PSP lowered the levels of fasting blood glucose (FBG) and glycated
hemoglobin, improved clinical symptoms (polydipsia, polyphagia, polyuria and weight
loss), delayed cataract progression, suppressed oxidative stress reaction, alleviated retinal
vasculopathy, and elevated the levels of insulin and C‑peptide in plasma [110,111]. More‑
over, PSP can slow the progression of diabetic retinopathy and cataracts through allevi‑
ating hyperglycemia and reducing oxidative stress [111]. In NCI‑H716 cells, Polygonati
Rhizoma polysaccharides stimulated the production of glucagon‑like peptide‑1 [58]. In
IR‑3T3‑L1 adipocytes, PSP alleviated inflammatory cytokines (IL‑1β, IL‑6, and TNF‑α) and
promoted Glu uptake via promotingNrf2 expression [110]. PKPs‑1 exhibited obvious anti‑
hyperglycemic activity through improving insulin tolerance and affecting metabolism of
serum lipids [71]. Moreover, PKPs‑1 increased expression of insulin receptor substrate‑1,
phosphoinositide 3‑kinase (PI3K), and serine/threonine kinase (AKT), as the PI3K/AKT sig‑
naling pathway was involved in the regulation of Glu metabolism [71]. In T2DM rats, oral
administration of PKP increased the content of fasting insulin and lowered the levels of
FBG [109].
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The water extract of Polygonati Rhizoma and Codonopsis Radix (PRCR), mainly the
polysaccharide fraction, showed effective hypoglycemic effects through upregulation of
the IRS1/PI3K/AKT signalingpathway and inhibition of IRS1phosphorylation in the T2DM
mouse model treated with PRCR extracts, as levels of total cholesterol, and triacylglycerol,
alanine aminotransferase and aspartate aminotransferase were significantly reduced com‑
pared with the non‑treated model group mice [112]. Polysaccharides and water extract
of P. kingianum rhizome could alter the abundance of gut microbes and miRNAs expres‑
sion, which further regulate lipid metabolism in HFD‑rats [113]. In particular, the miR‑
484‑Bacteroides/Roseburia axis acted as an important bridge hub, connecting the entire
miRNA‑gut microbiota network [113].

4.4. Bone Homeostasis Benefits
Osteoporosis, a common systemic skeletal disease, could affect 40%ofChinesewomen

and cause more than 2 million osteoporotic fractures every year [114,115]. Osteoporosis is
characterized by low bone mass, increased bone fragility, degeneration of microstructure,
and susceptibility to fractures [50]. In particular, the occurrence of osteoporosis is increas‑
ing as populations age, and estrogen deficiency is speculated to be themost common cause
of osteoporosis [50].

PSP showed protective effects on ovariectomy‑induced bone loss in rats through in‑
creasing bonemineral density, enhancing expression of basic fibroblast growth factor, low‑
ering expression of bone gla protein and tartarate‑resistant acid phosphatase, as well as
decreasing levels of sera TNF‑α and bone‑specific alkaline phosphatase [19]. In mice, PSP
could promote osteogenic differentiation of bone marrow stromal cells through the in‑
creasing nuclear accumulation of β‑catenin and elevating expression of osteoblast‑related
genes [116]. Moreover, PSP inhibited the receptor activator of NF‑κB ligand (RANKL)‑
induced osteoclastogenesis, and exerted prophylatic protection against LPS‑induced oste‑
olysis in mice [116]. PSP inhibited osteoporosis through promoting osteoblast formation
and blocking osteoclastogenesis via the Wnt/β‑catenin signalling pathway [116].

In bonemesenchymal stem cells, PSP canpromote osteoblastic differentiation through
increasing nuclear accumulation of β‑catenin via the ERK/glycogen synthase kinase 3β
(GSK‑3β)/β‑catenin signaling pathway, as PSP upregulated nuclearβ‑catenin and reduced
the level of GSK‑3/β [117]. Crude PSP showed osteogenic activity through promoting
the differentiation and mineralization of MC3T3‑E1 cells in vitro [50]. In bone‑marrow‑
derived mice macrophages, PSP inhibited osteoclastogenesis through the Hippo signaling
pathway based on miR‑1224, as the expression level of the target gene Limd1 was signifi‑
cantly increased [118].

4.5. Antimicrobial Activity
PSP could effectively promote the biomass, biofilm, and acetic acid production in Lac‑

tobacillus faecis, a specific probiotic in the intestinal tract [119]. Particularly, PSP promoted
the quorum sensing system of L. faecis through enhancing the transcription of oppA and
expression of oppD protein [119]. The proliferation of beneficial microbiotas, containing
Parabacteroides and Bifidobacterium, was positively associated with PSP treatment [120].
PSP from steamed rhizome could significantly convert fatty acids into short‑chain fatty
acids (like acetic acid and propionic acid), and long‑chain fatty acids (like cis, cis, cis‑9,12,15‑
linolenic acid, cis‑6‑octadecenoic acid, and cis‑9‑octadecenoic acid) [120]. Furthermore,
PSP also regulated the production and metabolism of short‑chain fatty acids of L. faecis
via upregulating the expression of ldh and metE gene and ADH2 protein, and downreg‑
ulated the expression of the mvK gene [119]. Similarly, fructan and galactan extracted
from P. cyrtonema rhizome possess prebiotic activity, which could remarkably promote the
growth of Bifidobacterium and Lactobacillus strains [70].

PSP decreased the abundance of harmful microbiota Shigella [120]. PSP could inhibit
the growth of Escherichia coli, Bacillus subtilis, and Staphylococcus aureuswith the minimum
inhibitory concentration (MIC) of 1.23 mg/mL, 0.98 mg/mL, and 1.31 mg/mL [121], respec‑
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tively. The hydrolyzed PCP fragment B3, containing 1‑kestose and the neokestose series
of oligosaccharides without branches, showed antiherpetic activity against herpes simplex
virus type 2 (HSV‑2) in vero cell culture [122]. Compared with PCP and sulfonylated
derivative, the phorphorylatedderivative or sulfated derivative exhibited higher inhibitory
activity against HSV, inferring that function groups were important for the antiherpetic
activity [123]. In T2DM rats, oral administration with PKP could improve intestinal mi‑
croecology through decreasing the abundances of Bacteroidetes and Proteobacteria, but in‑
creasing that of Firmicutes [109].

4.6. Anti‑Fatigue Activities and Anti‑Depression Benefits
Fatigue, a failure to maintain the required or expected power output in people with

stress, is generally divided into physical and mental fatigue [124,125]. Depression has
been listed as a particularly impactful disability [126]. Production of ROS and activation of
calpain systemandNOD‑like receptor protein 3 (NLRP3) inflammasome are tightly related
to depression [88]. Modulation of antioxidant enzymes activity by Polygonati Rhizoma
polysaccharides might also effectively alleviate the exercise‑induced oxidative stress and
body fatigue.

In male C57BL/6 mice with fatigue, PSP could prevent depression‑like behaviors, and
synaptic and neuronal damage through reducingROS/HPAaxis hyperfunction and inflam‑
matory response [127]. Moreover, PSP administration has greatly promoted the hippocam‑
pal expression of p‑Akt, the mammalian target of rapamycin (mTOR), GluA1, and GluA2;
reduced the expression of GluN2A, caspase‑3, andGluN2B; and prevented the loss of gran‑
ular cells in the DG region [127]. Polygonati Rhizoma polysaccharides might also reduce
fatigue through decreasing blood lactate and serum urea nitrogen, as well as increasing
liver and muscle glycogen [128,129]. In mice, PCP exerted antidepressant effects via regu‑
lating the oxidative stress‑calpain‑1‑NLRP3 signaling axis, as the expression of calpain‑1,
NLRP3, apoptosis‑associated speck‑like protein, caspase‑1, cleaved‑caspase‑1, ionized cal‑
ciumbinding adaptermolecule 1, phosphorylation of extracellular signal‑regulated kinase,
NF‑κB, and glial fibrillary acidic protein were reduced, while expression of calpastatin,
phosphatase and tensin homolog, suprachiasmatic nucleus circadian oscillatory protein,
and Nrf2 were increased [88].

4.7. Other Health‑Promoting Activities
In Balb/c female mice bearing triple negative breast cancer (TNBC), polysaccharide‑rich

extract from P. sibiricum (PREPS) could protect hematopoiesis through inhibiting hematopoi‑
etic cell expansion in spleen, as well as markedly increase hematopoietic stem and progen‑
itor cells and common lymphoid progenitors in the bone marrow [130]. PREPS may show
long‑lasting anti‑tumor effects in assisting TNBC therapies through sustaining hematopoiesis
and lymphoid regeneration in bone marrow [130]. In a HepG2 cell, the water‑soluble PSP
(38.65 kDa) showed concentration‑dependent anticancer effects through arresting the cell cy‑
cle at the G1 phase, decreasing mitochondrial membrane potential, damaging the nucleus,
and inducing cell apoptosis via increasing the activity of caspase‑9 and caspase‑3 [131].

In male Sprague‑Dawley rats, PSP could prevent acute heart failure induced by adri‑
amycin through exerting anti‑oxidative activity, anti‑inflammatory activity, and inhibition of
cardiac myocyte apoptosis [132]. In rats with acute heart failure, PSP (400 mg/kg, 5 days)
could increase heart rate, ±dp/dtmax, myocardial Na+‑K+‑ATPase, Ca2+‑Mg2+‑ATPase, succi‑
nate dehydrogenase levels, serum superoxide dismutase level, left ventricular systolic pres‑
sure, as well as myocardial Bcl‑2 and Caspase‑3 protein expression levels [132]. Meanwhile,
PSP significantly decreased the expression levels of left ventricular end diastolic pressure,
serum biochemical indexe levels (cardiac Troponin‑I, creatine kinase‑MB isoform, TNF‑α, IL‑
6, MDA, and NO), as well as myocardial Bax and cleaved Caspase‑3 protein [132].

P. cyrtonema fructooligosaccharide could alleviate lung injury via ameliorating the
damage of pulmonary cellular architecture in lung tissue of peritonitis‑inducedmice [100].
In mice with lung injury, raw and honey‑processed PCP could increase levels of SOD, in‑
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hibit pulmonary inflammation through the NF‑κB pathway, and reduce the occurrence of
pulmonary oxidative stress via the AMPK‑Nrf2 pathway [133]. The protective effect in
lung injury may be tightly related to the antioxidant and anti‑inflammatory activities of
PCP [134,135].

Alzheimer’s disease (AD), a typical age‑related dementia and progressive neurode‑
generative disorder, is characterized by degeneration and loss of brain neurons, as well
as memory loss [136,137]. Particularly, beta‑amyloid (Aβ) peptide and its aggregates con‑
tribute much to the pathogenesis and progression of AD [136]. In the male mice model
of dementia, PSP could greatly improve learning and memory by reducing the damag‑
ing effects of cerebral ischemia and anti‑oxidation, as SOD and GSH‑Px activity were ele‑
vated [138]. The protective effects of PSP against Aβ25–35‑induced neurotoxicity in PC12
cells were mainly through attenuating cell death, elevating Bax/Bcl‑2 ratio, inhibiting mito‑
chondrial dysfunction and cytochrome C release into the cytosol, inhibiting caspase‑3 ac‑
tivation, and enhancing the pro‑survival PI3K/Akt signaling pathway as the level of phos‑
phorylated Akt was elevated [136]. In particular, the regulation of mitochondrial perme‑
ability and the release of cytochrome c from the mitochondria to the cytosol are pivotal in
the apoptotic repertoire, which are tightly controlled by the Bcl‑2 protein family [136]. InD‑
gal‑injured mice, PSP could significantly ameliorate synaptic injury, prevent cell death, in‑
crease anti‑oxidative stress‑related protein expression, and decrease inflammation‑related
protein expression [139].

In BALB/c mice, PSP potentially plays a protective role towards septic acute liver in‑
jury by inhibiting pyroptosis via NLRP3/GSDMD signals [140]. In particular, PSP treat‑
ment remarkably alleviated liver histopathologic damage, lowered the activity of neu‑
trophil infiltration marker MPO in liver, decreased levels of liver function indexes and
inflammatory cytokines (TNF‑α and IL‑6), decreased the expression of pyroptosis‑related
cytokines (IL‑18 and IL‑1β) in serum, restrained excessive pyroptosis, and reduced the 48 h
mortality rate [140]. Moreover, water extracts of P. kingianum rhizome served as useful mi‑
tochondrial regulators/nutrients in remedying mitochondrial dysfunction and alleviating
non‑alcoholic fatty liver disease in rats [141].

In human kidney cells, PKP and PKAE alleviated uranium‑induced cytotoxicity by
regulating mitochondria‑mediated apoptosis and the GSK‑3β/Fyn/Nrf2 pathway: mito‑
chondrial membrane potential and ATP level were increased, while ROS decreased [142].

Inmicewith blooddeficiency syndrome, PSP significantly increased theperipheral blood
cells, restored splenic trabecular structure, and reversed hematopoietic cytokines to normal
levels through regulating the expression of genes involved in hematopoiesis and immune reg‑
ulation signaling pathways [143]. Specifically, the blood‑enriching effects of PSPwere exerted
through regulating the JAK1‑STAT1 pathway and elevating hematopoietic cytokines (erythro‑
poietin, granulocyte colony stimulating factor, TNF‑α and IL‑6) [143].

5. Future Prospects
Polygonati Rhizoma possesses sweet fragrance and taste, and is well‑known as a tradi‑

tional medicinal herb and functional food with significant health‑improving effects. These
members of the Liliaceae, P. kingianum, P. sibiricum, and P. cytomema, are mainly distributed
throughout the temperate regions of northern hemisphere, especially China [144,145]. Their
anti‑fatigue, anti‑aging, immunomodulatory, metabolic regulatory, anti‑inflammatory, neu‑
roprotective, and anti‑cancer effects might be exerted through synergy mechanism [146,147].
Among the abundant biological substances, polysaccharides are believed to be one of themost
important active compounds of Polygonati Rhizoma. Furthermore, thewater‑soluble polysac‑
charides are suitable for long‑term administration for various health‑promoting effects.

In modern society, environment pollution and competition intensification lead to in‑
creasing pressure, which results in immune system decline, premature aging, cancer, and
other sub‑health phenomena. Maintaining health and slowing down aging have become
people’s great goals. Served as an antioxidant, Polygonati Rhizoma polysaccharides can
delay senescence, and be used as an immunostimulant agent for protection against im‑
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munosuppression. Polygonati Rhizoma polysaccharides are also used to alleviate dryness,
improve anti‑osteoporotic fractures, promote the secretion of fluids, enhance viability of
mesenchymal stem cells in bones, and quench thirst [34]. Moreover, Polygonati Rhizoma
water extracts rich in polysaccharides and herbal medicine formulations containing Polyg‑
onati Rhizoma polysaccharides also show great potential in health‑promoting activities in
the health care and pharmaceutical industries [148–150].

The recent development of therapeutic agents using PSP to enhance bone health and
prevention of osteoporosis is promising. NF‑kB and p38 MAPK pathways might contribute
much to the immunological activity of Polygonatum Rhizoma polysaccharides. Research on
the chemical composition and molecular structure of Polygonati Rhizoma polysaccharides is
still incomplete. The large‑scale isolation and purification of the bioactive components from
P. kingianum, P. sibiricum, and P. cyrtonema is not feasible due to the extremely low propaga‑
tion rate. Therefore, more studies are greatly needed to discover their mechanisms of health‑
promoting activities in vivo and in vitro for their safe application in human health care.
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