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Abstract: The prevalence of Alzheimer’s disease (AD) is significantly increasing due to the aging world
population, and the currently available drug treatments cannot cure or even slow its progression. α-lipoic
acid (LA) is a biological factor widely found in spinach and meat and can dissolve in both lipid and
aqueous phases. In medicine, LA has been shown to reduce the symptoms of diabetic polyneuropathy,
acute kidney injury, cancers, and some metabolism-related diseases. This study to proves that α-lipoic
acid (LA) can stabilize the cognitive function of patients with Alzheimer’s disease (AD). BV2 cells
were divided into control, LA, Aβ25–35, and LA + Aβ25–35 groups. Cell growth; IL-6, IL-1β, TNF-α,
IFN-γ, SOD, GPx, CAT, ROS, NO, and iNOS secretion; Wnt-related proteins; cell apoptosis; and cell
activation were examined. Here, we found that LA could effectively repress apoptosis and changes
in the morphology of microglia BV2 cells activated by Aβ25–35, accompanied by the inhibition of the
inflammatory response induced by Aβ25–35. The Wnt/β-catenin pathway is also involved in preventing
Aβ25–35-induced cytotoxicity in microglia by LA. We found an inhibitory effect of LA on microglia
toxicity induced by Aβ25–35, suggesting that a combination of anti-inflammatory and antioxidant
substances may offer a promising approach to the treatment of AD.

Keywords: Alzheimer’s disease; α-lipoic acid; neurotoxicity; microglia; Wnt/β-catenin pathway

1. Introduction

Alzheimer’s disease (AD) is the most common neurodegenerative disease and seems
to be one of the major healthcare challenges of the present century [1]. Approximately
50 million people worldwide had AD in 2018, and this number is expected to increase to
152 million by 2050 [2]. AD is the most common type of dementia, resulting in memory
impairment and behavioral disorders [3]. It is a chronic lethal disease with a compli-
cated pathogenesis. The two major hallmarks of AD are the formation of amyloid-β (Aβ)
plaques and neurofibrillary tangles, primarily comprising the hyperphosphorylated Tau
protein [4,5]. Aβ is produced and secreted by neurons in response to synaptic activity under
physiological conditions. Once secreted in an extracellular environment, it is degraded by
glial cells. The mechanism that causes the transition from normal physiological function
to pathological Aβ accumulation is still unknown [6]. Since the currently available drug
treatments cannot cure or even slow its progression [7], patients are left to rely solely on
supportive care from family and other caregivers. Therefore, extensive research is nec-
essary to investigate the molecular mechanisms of AD pathogenesis and uncover new
treatment options.

α-lipoic acid (LA), an organosulfur medium-chain fatty acid (Figure 1) that was first
discovered in 1951 as a catalytic agent for the oxidative decarboxylation of pyruvate and
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α-ketoglutarate [8], is a biological factor widely found in spinach, meat, and yeast and
can dissolve in both lipid and aqueous phases. Healthy and young people synthesize LA
naturally to scavenge reactive oxygen species (ROS) and increase endogenous antioxidants,
but the level of LA significantly declines with age [9]. In medicine, LA has been shown to
reduce the symptoms of diabetic polyneuropathy, acute kidney injury, cancers, and some
metabolism-related diseases [10–12]. Previous studies have also suggested that LA has
neuroprotection properties [13,14], which piqued our interest.
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Figure 1. Chemical structure of α-lipoic acid (LA). The molecular formula of LA is C8H14O2S2,
molecular weight is 206.326, molar refractive index is 54.94, molar volume is 169.3 m3/mol, and
parachor (90.2 K) is 456.4.

Microglia are an indispensable component of the central nervous system and play
an important role in the nutrition, protection, and repair of neurons [15,16]. Studies have
shown that microglia and AD are closely associated [17,18]. In the pathogenesis of AD,
Aβ can activate microglial cells, causing them to overexpress interleukin-1, tissue growth
factor (TGF)-β, and tumor necrosis factor (TNF)-α through different signal transduction
pathways, as well as mediating inflammatory injury [18–20]. The Wnt pathways play
important roles in cell activities, and Wnt dysregulation is known to be involved in Tau
hyperphosphorylation and the loss of synapses [21] and neuroinflammation [22].

Most studies primarily focus on LA’s neuroprotective effects on neurons [18], while
little is known about microglial cells. This study aimed to investigate LA’s role in Aβ25–35-
induced microglial BV2 cell toxicity and Wnt/β-catenin signaling pathway activation.

2. Results
2.1. LA Improves Aβ25–35-Induced Morphology Changes and Activation in BV2 Cells

We examined the cell morphology in BV2 cells after treatment with Aβ25–35 to inves-
tigate whether Aβ25–35 treatment could induce cytotoxicity in these cells. We observed
changes in cell morphology in the treated cells compared with controls, including larger cell
bodies, cell aggregation, fusiform shape, multiple dendrites on the surface, and protrusions
connecting the cells. We added LA to the BV2 medium before Aβ25–35 treatment and
observed that LA could protect the cells from morphological changes induced by Aβ25–35.
In addition, we compared these cells with Aβ25–35-treated cells. Decreased cell surface
dendrites and changes in the shape of the cells were found in LA + Aβ25–35-treated cells
(Figure 2a).

We next analyzed the cell activation of the BV2 cells with flow cytometry and immuno-
histochemistry assays. Both assays demonstrated that, compared with controls, Aβ25–35
treatment promoted the activation of BV2 cells. In addition, LA treatment had no significant
effect on inactive cells, while it significantly repressed the activation induced by Aβ25–35
treatment (Figure 2b–d).

2.2. LA and Aβ25–35 Do Not Affect BV2 Cell Viability

The cells were treated with Aβ25–35, which is a toxic fragment of full-length Aβ1–42,
to investigate whether Aβ could affect the cell proliferation of BV2 cells. After 48 h, cell
viability was measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium
bromide (MTT) assay. The results show that the amyloid peptide had little effect on BV2
cell proliferation compared to the control. In addition, the viability of BV2 cells remained
the same, regardless of whether the cells were treated with LA alone or combined with
Aβ25–35 (Figure 3a).
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Figure 2. α-lipoic acid (LA) rescued Aβ25–35-induced BV2 cell morphology changes and inactivation.
(a) BV2 cells were treated with 25 µmol/L Aβ25–35, 100 µmol/L LA, or both, and the cells were
harvested for morphology observation. The changes induced by Aβ25–35 included larger cell bodies,
cell aggregation, fusiform shape, multiple dendrites on the surface, and protrusions connecting
the cells. LA attenuated the changes induced by Aβ25–35. Representative morphology changes are
indicated by arrows. (b) The activation of BV2 cells was measured after different treatments. (c) Flow
cytometry was performed to analyze the expression of OX-42. (d) The statistical results of the OX-42
protein expression in flow cytometry. Values are shown as mean ± SD (n = 3), * p < 0.05.
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Figure 3. α-lipoic acid (LA) repressed Aβ25–35-induced BV2 cell apoptosis. (a) BV2 cells were treated
with 25 µmol/L Aβ25–35, 100 µmol/L LA, or both. Cell viability was measured with the MTT assay.
(b) Statistical analysis of the percentage of apoptosis in the different treatments. (c) Flow cytometric
analysis of apoptosis in BV2 cells of each group. (d) The relative expressions of Bax, Bcl2, and
caspase-3 were measured using Western blot after BV2 cells were treated with LA and/or Aβ25–35.
(e) The statistical results of the protein expression in Western blot from d. (f) The ratio of Bax/Bcl-2 in
each group. The data are presented as the mean ± SD of three independently performed experiments.
* p < 0.05.

2.3. LA rescues Cell Apoptosis Promoted by Aβ25–35

Considering that Aβ25–35 treatment could induce BV2 cell morphology changes, us-
ing flow cytometry, we next investigated whether Aβ25–35 treatment promoted BV2 cell
apoptosis. As shown in Figure 3, in cells treated with Aβ25–35, the percentage of apoptotic
cells significantly increased compared to control cells. When BV2 cells were treated with
Aβ25–35 and LA, apoptosis was largely repressed compared with Aβ25–35 treatment alone
(Figure 3b,c).
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We also found increased protein levels of the apoptosis-related protein caspase-3, while
the anti-apoptosis protein Bcl-2 was downregulated after Aβ25–35 treatment (Figure 3d–f)
(p < 0.05). The expression of the Bcl-2 protein after Aβ25–35 treatment significantly decreased
compared to the control group (p < 0.05). In addition, the Bax/Bcl-2 ratio of the Aβ25–35-
treated group was significantly different from that of the control group (p < 0.05). After LA
treatment, the abnormal expression of protein caspase-3 and Bcl-2, which were induced
by Aβ25–35 treatment, changed. Compared with the Aβ25–35-treated group, the protein
expression level of caspase-3 significantly decreased (p < 0.05), and Bcl-2 significantly
increased (p < 0.05). In addition, the Bax/Bcl-2 ratio of the LA + Aβ25–35-treated group
significantly decreased compared to the Aβ25–35-treated group (p < 0.05). The LA treatment
alone has no significant effect on protein expression.

2.4. LA Is Involved in Mitigating the Inflammatory Response Induced by Aβ25–35

AD pathophysiological events are usually accompanied by neuroinflammation, which
is a defensive mechanism for pathogen clearance and maintenance of tissue homeosta-
sis [23]. It has been reported that LA could reduce NF-κB activity in vitro in cells stimulated
with TNF-α in a dose-dependent manner [24]. We wondered if Aβ25–35 treatment could
induce an inflammatory response in BV2 cells and if LA would have any effect on this
response. We assessed the secretion levels of IL-6, IL-1β, TNF-α, and IFN-γ via ELISA after
the cells were treated with Aβ25–35 (Figure 4a–d). The results reveal that the expressions of
IL-6, IL-1β, and TNF-α increased after Aβ25–35 treatment (p < 0.05). In addition, when we
treated BV2 cells with both Aβ25–35 and LA, the expressions of IL-6, IL-1β, and TNF-α were
repressed when compared to Aβ25–35 treatment alone (p < 0.05) (Figure 4a–d). Western blot
was performed to measure the expression of NF-κB p65 and IκB-α in BV2 cells. The results
show that the expression of NF-κB p65 was significantly upregulated (p < 0.05), while IκB-α
was significantly downregulated in BV2 cells by Aβ25–35 treatment (p < 0.05). LA alone had
no significant effect on NF-κB p65 and IκB-α expression. When BV2 cells were treated with
both LA and Aβ25–35, the expression of NF-κB p65 was significantly reduced compared
with Aβ25–35 treatment, while the expression of IκB-α significantly increased in the LA +
Aβ25–35-treated group compared with the Aβ25–35-treated group (Figure 4e,f).
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by 25 µmol/L Aβ25–35. (a–d) The levels of medium IL-6, IL-1β, TNF-α, and IFN-γ were measured
using ELISA. (e) The relative expressions of NF-κB p65 and IκB-α were measured using Western blot
after BV2 cells were treated with 100 µmol/L LA and/or 25 µmol/L Aβ25–35. (f) Statistical result
of the protein expression in Western blot from e. The data are presented as the mean ± SD of three
independently performed experiments. * p < 0.05.
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Inducible nitric oxide synthase (iNOS) is an important catalytic enzyme in organ-
isms, which plays a biological role by catalyzing the production of nitric oxide (NO) by
the substrate arginine. Innumerable studies have shown that iNOS is closely related to
inflammation, and bacteria, viruses, and a variety of inflammatory factors can induce its
expression to produce endogenous NO, which, in turn, plays an important biological role.
Therefore, we next measured nitric oxide (NO) and inducible nitric oxide synthase (iNOS)
levels in BV2 cells after Aβ25–35 treatment and found that NO and iNOS were increased.
When we added LA to BV2 cells before Aβ25–35 treatment, the levels of NO and iNOS
induced by Aβ25–35 treatment were repressed (Figure 5a,b).
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Figure 5. α-lipoic acid (LA) inhibited the increased level of NO and iNOS induced by Aβ25–35.
(a) Statistical analysis of the release of NO after LA and/or Aβ25–35 treatment. (b) ELISA was
performed to detect the activity of iNOS in BV2 cells. The data are presented as the mean ± SD of
three independently performed experiments. * p < 0.05.

2.5. LA Downregulates ROS Levels Induced by Aβ25–35

Neurodegenerative disorders such as AD are associated with oxidative damage [4].
In order to investigate whether LA could modify the Aβ25–35-induced ROS increase, we
treated BV2 cells with LA and Aβ25–35 to observe the activity of SOD, GPx, CAT, and ROS
in BV2 cells induced by Aβ25–35 and LA. We found that after LA treatment, the enzyme
activities of SOD, GPx, and CAT increased (Figure 6a–c), while ROS levels were significantly
repressed (Figure 6d) compared to treatment with Aβ25–35 alone. The results demonstrate
that LA could reduce the Aβ25–35-induced ROS levels in mouse microglia BV2 cells.

2.6. LA-regulated Wnt Pathway-Specific Protein Expression in Aβ25–35-Treated BV2 Cells

It has been reported that Wnt signaling inactivation promotes the neurotoxicity of
Aβ [25,26]. In order to determine whether the Wnt pathway participated in the neuro-
protective role of LA, we analyzed the cellular localization and expression of GSK3β and
β-catenin after Aβ25–35 treatment or treatment with both Aβ25–35 and LA (Figure 7a). The
expression of GSK3β increased after Aβ25–35 treatment while β-catenin decreased. In
addition, LA treatment upregulated β-catenin expression and inhibited the expression of
GSK3β induced by Aβ25–35.

Western blot indicated that the expression of phosphorylated GSK3β (p-GSK3β), Friz-
zled2, and β-catenin was downregulated, while phosphorylated β-catenin (p-β-catenin)
was upregulated in BV2 cells after Aβ25–35 treatment (Figure 7b,c). When BV2 cells were
treated with both LA and Aβ25–35, the inactivated Wnt pathway was re-activated, and the
associated proteins were recovered. Specifically, after Aβ25–35 treatment, the expressions of
Frizzled2, GSK3β, p-GSK3β, β-catenin, and p-β-catenin were significantly different com-
pared to the control group, and the expressions of Frizzled2, p-GSK3β, and β-catenin were
significantly reduced compared with the control group. The expressions of GSK3β and p-β-
catenin significantly increased when compared to the control group. After LA intervention,
the expression of Frizzled2 and p-GSK3β in the LA + Aβ25–35-treated group significantly
increased compared with that of the Aβ25–35-treated group, and the expressions of GSK3β
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and β-catenin in the LA + Aβ25–35-treated group were significantly decreased compared to
the Aβ25–35-treated group. LA treatment has no significant effect on protein expression.
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by Aβ25–35. (a–c) BV2 cells were treated with 25 µmol/L Aβ25–35, 100 µmol/L LA, or both for 24 h,
and then the activities of SOD (a), GPx (b), and CAT (c) were detected. (d) The ROS levels were
detected with a fluorescent probe tagged DCFH-DA after BV2 cells were treated with LA and/or
Aβ25–35 for the indicated time. Values are shown as mean ± SD (n = 3), * p < 0.05.
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Figure 7. 100 µmol/L α-lipoic acid (LA) rescued the inactivated Wnt pathway induced by 25 µmol/L
Aβ25–35 in BV2 cells. (a) The expression and localization of GSK3β (red) and β-catenin (green) were
visualized by confocal analysis (100×). (b) Western blot was performed to analyze the expression of
Frizzled2, TCF4, GSK3β, p-GSK3β, β-catenin, and p-β-Catenin. (c) Statistical results of the protein
expression in Western blot from b. The data are presented as the mean ± SD of three independently
performed experiments. * p < 0.05.



Molecules 2023, 28, 1168 8 of 12

3. Discussion

The pathogenesis of AD is complicated, and the underlying mechanisms are not fully
understood. Accumulating evidence shows that inflammation plays an important role in
AD’s pathogenesis, and the deposition of Aβ can activate brain inflammation, resulting in
nervous system damage [27–29]. Microglia, the central nervous system’s immune cells, are
widely distributed in the central nervous system. Their activation promotes inflammatory
responses in the brain, increasing the progression of AD [30]. The results show that BV2
cells were activated and morphologically changed after treatment with Aβ. The number
of OX-42-positive cells also increased after Aβ25–35 treatment, indicating an increase in
activated microglia. After LA intervention, the cell morphology was improved compared
with the Aβ25–35 treatment alone. The results demonstrate that LA can effectively inhibit
the Aβ-induced apoptosis of glial cells, which might be one of the important mechanisms
of LA neuroprotection.

Previous studies reported that inflammatory cytokines produced by microglial cells,
including IL-6 and TNF-α, play an important role in AD’s pathogenesis [6]. During AD
pathogenesis, IL-6 overexpression is associated with the abnormal phosphorylation of Tau.
Our study indicates that Aβ25–35 induced inflammatory cytokines production, including
IL-6, TNF-α, and IL-1β, while the LA intervention significantly reduced their levels. In
addition, LA can reduce the activation of BV6 cells induced by Aβ25–35, which could have
important consequences on AD’s development since activated microglia are responsible for
Tau hyperphosphorylation [17,18]. We also found that the expressions of endothelial nitric
oxide synthase (eNOS) and iNOS were upregulated with Aβ25–35 treatment, and LA was
able to reduce their upregulation. Low levels of NO production protect against oxidative
stress, while high NO production is associated with increased damage, consistent with
AD’s pathogenesis [31,32].

Previous studies have reported that the Wnt/β-catenin pathway is involved in AD’s
pathogenesis, although most studies were mainly focused on neurons and less on glial
cells [25,33]. Here, we found that the expression of some Wnt/β-catenin pathway proteins
such as Frizzled2, GSK3β, p-GSK3β, β-catenin, and p-β-catenin was altered in the glia
after Aβ25–35 treatment, suggesting that the Wnt pathway was also involved in Aβ25–35-
induced glial cytotoxicity. The Wnt pathways are known to play important roles in cell
activities, and Wnt dysregulation is known to be involved in Tau hyperphosphorylation,
the loss of synapses [21], and neuroinflammation [22]. The already known effect of Aβ

on Wnt pathways has two aspects. One is that Aβ and the amyloid precursor protein
(APP) promote β-catenin phosphorylation and degradation, thus inhibiting the canonical
Wnt pathway [21,34]. The tau protein is believed to stabilize b-catenin so that it can resist
degradation, and the abnormal modification of tau can also cause damage to the canonical
Wnt pathway [35]. The dysregulated expression of these proteins was rescued following
LA intervention. The results suggest that the Wnt pathway genes are involved in LA’s
neuroprotection potential in Aβ25–35-treated microglia cells. Further studies are needed to
elucidate how LA plays its protective role through this pathway.

Taken together, the effects of LA observed here are consistent with its effects in various
chronic diseases [10–12], as well as in nerve cells [13,14]. Of note, LA had no cytotoxicity
effects on BV6, suggesting that it is not toxic for these cells. These effects seen at the
microglia levels are supported by clinical observations that LA can improve patients’
outcomes with AD [36–38]. Nevertheless, the effects of LA in AD are controversial [39,40]
and might depend upon the model used. The present study shows that the effect of LA on
microglia was consistent with effects that should slow down AD’s progression, but in vivo
studies remain necessary.

In conclusion, this study shows that Aβ25–35 inhibited BV2 cell activity and promoted
cell apoptosis. After Aβ25–35 treatment, the Wnt pathway was inactivated, antioxidant
enzyme activity was reduced, and ROS were elevated. With an LA intervention, the
inflammatory reaction and apoptosis induced by Aβ25–35 were repressed. The results
indicate that LA has a potential protective effect on nerve cells and that the Wnt/β-catenin
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signaling pathway is involved in the effects of LA. This study provides a theoretical basis
for the application of LA in the treatment or management of AD.

4. Materials and Methods
4.1. Cell Culture

BV2 cells were purchased from Peking Union Medical College, Chinese Academy
of Medical Sciences, School of Basic Medicine Cell Center (Beijing, China). These cells
were then cultured in DMEM (Hyclone, Thermo Fisher Scientific, Waltham, MA, USA)
and supplemented with 10% fetal bovine serum, 100 U/mL penicillin, and 0.1 mg/mL
streptomycin at 37 ◦C in 5% CO2. The medium was replaced every 2–3 days.

4.2. Observation of Cell Morphology

Cells in the logarithmic growth phase were adjusted to 3 × 105/mL and seeded into
6-well plates. The cells were divided into control, LA treatment, Aβ25–35 treatment, and LA
+ Aβ25–35 treatment groups. For LA treatment, 100 µmol/L LA (Sigma, St Louis, MO, USA)
was added to the cells and incubated for 24 h. For Aβ25–35 treatment, 25 µmol/L Aβ25–35
(Sigma, St Louis, MO, USA) was added to the cells followed by 24 h culture before the cells
were harvested for observation. For the LA + Aβ25–35 treatment group, 100 µmol/L LA
was added to the cells, which were then incubated for 2 h. Then, 25 µmol/L of Aβ25–35 was
added, and the cells continued to culture for 24 h, after which they were harvested for the
observation of cell morphology.

4.3. Cell Growth Assays

Cell viability was measured using an MTT assay, as previously described [41]. The cells
were seeded into 96-well plates and maintained in culture. After treatments according to
grouping, the cells were further incubated for 48 h, washed twice with PBS, and incubated
with 100 µL MTT (5 g/L) for 4 h at 37 ◦C. The optical densities of the solutions were
measured at 570 nm. Duplicate measurements were performed in three independent wells
at each time point. For the LA + Aβ25–35 treatment group, 100 µmol/L LA was added to
the plates and incubated for 2 h before Aβ25–35 treatment.

4.4. ELISA Detection for IL-6, IL-1β, TNF-α, and IFN-γ

Cells in the logarithmic growth phase were adjusted to 5 × 105/mL and seeded into
24-well plates. The cells were treated according to grouping. The supernatant was collected
for IL-6, IL-1β, TNF-α, and IFN-γ ELISA assays (R&D Systems, Minneapolis, MN, USA),
according to the manufacturer’s instructions.

4.5. Detection of SOD, GPx, CAT, ROS, NO, and iNOS

Cells in the logarithmic growth phase were adjusted to 5 × 105/mL and seeded into
24-well plates. The cells were treated according to their grouping. The supernatant was col-
lected for SOD, GPx, CAT, ROS, NO, and iNOS detection, according to the manufacturer’s
instructions (Jiancheng Institute of Biotechnology, Nanjing, China).

4.6. Western Blot

The cells were washed with PBS and lysed on ice for 30 min with RIPA (Applygen Tech-
nologies Inc., Beijing, China) containing a protease inhibitor mixture (Fermentas, Burlington,
ON, Canada). The total protein was subjected to 10% sodium dodecyl sulfate-polyacrylamide
gel electrophoresis and was transferred to nitrocellulose membranes (Millipore Corp., Billerica,
MA, USA). After blocking in 5% non-fat dry milk in TBST, the membranes were incubated
with primary antibodies overnight at 4 ◦C. The membranes were washed three times with
TBST and incubated with HRP-conjugated secondary antibodies for 1 h at room temperature.
Proteins were visualized using a chemiluminescent substrate (Millipore Corp., Billerica, MA,
USA) according to the manufacturer’s instructions.
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4.7. Cell Apoptosis and Activation by Flow Cytometry

For the detection of cell activation, the cells were harvested and washed with PBS. The
OX-42 antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA) was added, and the cells
were incubated overnight at 4 ◦C. The next day, a secondary FITC-conjugated antibody
(Zhongshan Biotechnologies Inc., Zhongshan, China) was added and incubated for 30 min.
The cells were washed with PBS and analyzed. For the apoptosis analysis, the Annexin
V/propidium iodide (PI) staining kit was used according to the manufacturer’s instructions
(BioLegend, San Diego, CA, USA), and the cells were stained with FITC-conjugated with
Annexin V and PI. Stained cells were examined using a FACSCanto II (FACSAria, BD
Biosciences, Franklin Lake, NJ, USA). The data were analyzed using the FlowJo software
10 (BD Biosciences, Franklin Lake, NJ, USA).

4.8. Immunofluorescence

Immunofluorescence was performed as previously described [42]. The cells were
grown on coverslips and fixed for 20 min in 4% paraformaldehyde. The cells were blocked
in 5% goat serum albumin, incubated at 4 ◦C overnight with primary antibodies against
β-catenin and GSK3 (Table 1), and then incubated with a secondary antibody: anti-Mouse
IgG (H + L), F(ab’)2 Fragment (Alexa Fluor® 555 Conjugate), or Anti-Rabbit IgG (H + L),
F(ab’)2 Fragment (Alexa Fluor® 488 Conjugate) (Abcam, Cambridge, United Kingdom).
DAPI was used as a nuclear counterstain. Microscopic analyses were performed using an
FV1500 confocal microscope (Olympus, Tokyo, Japan).

Table 1. Antibodies for Western blotting.

Primary Antibodies. Dilution Manufacturer Secondary Antibody
Dilution

Frizzled 2 1:200 Santa Cruz 1:4000
TCF4 1:1000 Abcam 1:4000

GSK3β 1:5000 Abcam 1:4000
p-GSK3β 1:10,000 Abcam 1:4000
β-catenin 1:5000 Abcam 1:4000

p-β-catenin 1:1000 CST 1:4000
IκBα 1:1000 CST 1:4000

NF-kB p65 1:200 CST 1:4000
Bcl-2 1:500 Santa Cruz 1:4000
Bax 1:300 Santa Cruz 1:4000

p-NFκB p65 1:500 CST 1:4000
Caspase-3 1:5000 Abcam 1:4000
β-actin 1:200 Santa Cruz 1:8000

Santa Cruz: Santa Cruz Biotechnology, Santa Cruz, CA, USA. Abcam: Abcam, Cambridge, United Kingdom. CST:
Cell Signaling Technology, Inc., Danvers, MA, USA.

4.9. Statistical Analysis

All the data are expressed as means ± standard deviations (SD) and were analyzed
using one-way analysis of variance (ANOVA) with the Student–Newman–Keuls multiple-
range test using SPSS 20.0 (IBM, Armonk, NY, USA). Two-sided p-values < 0.05 were
considered statistically significant.
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