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SECTION I

Chart S1. Compounds described in the supporting material
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SECTION II — General Experimental Details

NMR Spectroscopy. Room temperature 'H NMR spectra were recorded on a 400 MHz Bruker
Avance spectrometer. Chemical shifts for 'TH NMR spectra (in parts per million) referenced to a
corresponding solvent resonance (e.g. DMSO-de, & = 2.52 ppm). *C{'H} NMR spectra were
recorded on the same 400 MHz Bruker spectrometer referenced to corresponding solvent
resonance. All 2D spectra were taken on the 400 MHz Bruker Avance relative to corresponding
solvent resonances. Low temperature spectra were aquired on a 500 MHz Varian NMR
spectrometer at the University of North Texas in Denton. Identification of NMR signals are as
follows: s = singlet, d = doublet, t = triplet, dd = doublet of doublet, m = multiplet, etc. NMR
solvents were deuterated and purchased as a bottle or ampule. Structural assignments were made
with supported by two-dimensional NMR experiments (COSY, HSQC, and rOesy).

General Chemistry. Flash chromatography experiments were carried out on silica gel with a
porosity of 60A, particle size 50-63 m, surface area 500 — 600 m?/g, a bulk density of 0.4 g/mL
and a pH range of 6.5 -— 7.5. Dichloromethane/methanol was used as the eluent for
chromatographic purification. Thin-layer chromatography experiments were carried out in sealed
chambers and visualized with UV or submersion in ninhydrin (1.5g ninhydrin in 100mL of n-
butanol and 3.0mL acetic acid) followed by heating. Excess solvents were removed via rotary
evaporation on a Buchi Rotavapor RII with a Welch Self-Cleaning Dry Vacuum System. All
workup and purification procedures were carried out with reagent-grade solvents under ambient
atmosphere.
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SECTION III — Computational Figures

Figure S1. DFT-computed relative energies of protonated triazine models. Calculations use
M06-2X/6-311++G(2d,2p) geometry optimizations in SMD continuum water solvent. Each
conformer is labeled with relative energy in kcal/mol.
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Figure S2. Coding the computational data onto the rotamer diagrams. Dark blue is more

energetically less costly than light blue. The data derives from Figure S1.
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Figure S3. Computed structures and protonation energies (Eq. 1) of protonated triazine models.
Each conformer is labeled with the computed reaction energy of Eq. 1 in kcal/mol.
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Figure S4. Folding energy of the neutral (unprotonated) intermediate. The DFT-computed relative
energies in Figures S4-S8 were calculated using M06-2X/6-31+G(d) with the SMD continuum
model for water solvent. Several optimizations converged to partially folded states. For reference,
only the "most folded" and the "completely unfolded" conformations are shown. Hydrogen bonds
are drawn as a guide to the eye. In all cases, the completely unfolded dimer is higher in energy
(AU>0). The value of AS is not computed. For the neutral (unprotonated) intermediate, the values
for the folded and unfolded conformations are 0 kcal/mol and +6.4 kcal/mol, respectively.
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Figure S5. Folding energy of the monoprotonated (terminal) intermediate. The values for the

folded and unfolded conformations are 0 kcal/mol and +10.1 kcal/mol, respectively.
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Figure S6. Folding energy of the monoprotonated (interior) intermediate. The values for the
folded and unfolded conformations are 0 kcal/mol and +12.4 kcal/mol, respectively.

Folded Unfolded

Figure S7. Folding energy of the diprotonated intermediate. The values for the folded and
unfolded conformations are 0 kcal/mol and +14.2 kcal/mol, respectively.
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Figure S8. Folding energy vs. number of protons. The plot is reasonably linear with a slope of 3.9
kcal/mol folding energy per added proton. "Templating" is predicted to be increasingly important
at low pH. Presumably, the selectivity to dimer cyclization is also improved at low pH.
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SECTION IV - Experimental Details
Synthesis of R-Acid

Acid intermediates were prepared via a previously published route. The method for G-Acid is
shown below as an example.

1. BocNHNH, (1 eq), 1 M NaOH (1 eq)
THF, -10°C, 30 minutes | H

2. Gly (2 eq), 1 M NaOH (3 eq) /N\f N N

Cla_Ng__Cl N
N RT,3h
[ -

2
h 3. Dimethyl Amine (2 eq), 3 h H— k'(
OH

0
Cyanuric chloride (1.0 g, 5.4 mmol) was added rapidly as a solid to a stirring flask containing 15
mL of THF that was previously cooled to —10 °C using a dry ice and acetone bath. The temperature
was maintained at —10 °C for the duration of the reaction. Upon dissolution (which was
immediate), a 3 mL solution of BOC-hydrazine (0.71 g, 5.4 mmol) in THF (1.8 M) was added
dropwise over 5 minutes. Over the course of the addition, the solution turned a very pale
yellow. After the addition was complete 5.4 mL of 1 M NaOH (5.4 mmol) was added over 1
minute via pipette. After one hour, thin layer chromatography (10% Methanol in
Dichloromethane) showed the evolution of a single UV active spot with a retention factor of 0.7.

A solution of glycine (0.81 g, 10.8 mmol) in 5 mL H>O and 16.2 mL of 1 M NaOH was added
dropwise over 2 min while at room temperature. The solution started a pale yellow and turned
bronze in color. After 4.25 h, thin layer chromatography (10% MeOH in DCM) showed the starting
material (Rf = 0.7) disappeared and a new spot at Ry = 0.0 appeared using both short wave UV
irradiation or ninhydrin (yellow spot).

A 40% aqueous solution of dimethylamine (1.83 g, 16.2 mmol) was added dropwise over three
minutes. Immediately following addition, the solution was measured to be pH 9. The reaction was
allowed to stir for 3 h before removing excess solvent via air stream as the product is sufficiently
hydrophilic. The resulting white residue was washed 5 times with MeOH (~150 mL) and filtered
before drying over MgSO4. Crude product was taken forward.

Characterization data can be found in:
Capelli, R.; Menke, A. J.; Pan, H.; Janesko, B. G.; Simanek, E. E.; Pavan, G. M. Well-Tempered

Metadynamics Simulations Predict the Structrual and Dynamic Properties of a Chiral 24-atom
Macrocycle in Solution. ACS Omega, 2022, 7, 34, 30291-30296.
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Synthesis of Ethyl Amide Intermediates

Synthesis of the amide intermediates use the general procedure seen here. Further details
for each species can be seen below. One equivalent of the respective acid intermediate was
dissolved in either DCM or DMF (0.15 M) at room temperature. Each reagent was added to the
reaction neat as either a solid or liquid. In the case of a liquid the reagent was dropped in by pipette
over 1 minute. The order of addition follows as DIPEA first, followed by the respective coupling
agent, and a 66% solution of ethyl amine. The reaction was allowed to react for a minimum of 4
hours as determined by TLC analysis. Once completed, the reaction mixture is diluted with water
and washed repeatedly with water three times. After extraction, column chromatography was
utilized to purify the crude reaction product.

/Boc /Boc
HN—NH HN—NH

N HoN N
/N_<\N _/<N Coip;ngig:-:nt /N_<\N _/<N

NH

NH
DIPEA, DCM or DMF
OH NH
A

o o
Synthesis of 1. Crude G-Acid (0.5 g, 1.5 mmol) was dissolved in 10 mL of DMF (0.1 M) and
DIPEA (3.75 mmol) was added dropwise. Following this addition, EDC.HCI (1.8 mmol) was
added as a solid to the reaction mixture, followed by a 66% solution of ethylamine (1.8 mmol)
dropwise. The reaction was allowed to stir overnight before drying down via an airstream. Column
chromatography in 5% MeOH in DCM was used to purify the crude reaction to yield 0.077 g
(15%) as a white solid.

TH NMR (DMSO-Dg, 400 MHz): § 8.48 — 8.05 (m, 2H), 7.72 (brd s, 1H), 6.74 (m, 1H), 3.85 —
3.74 (m, 2H), (3.08 (m, J = 6.3 Hz, 2H), 3.01 (brd s, 6H), 1.40 — 1.24 (m, 9H), 1.00 (t,J = 6.3
Hz, 3H)

BC{!H} NMR (DMSO-Ds, 100 MHz): 4 169.9, 167.9, 166.4, 165.8, 156.5, 79.0, 44.4 — 44.0,
35.8,31.2,28.6, 15.3.

Synthesis of 2. V-Acid (1.4 mmol) was dissolved in DCM (0.2 M) and DIPEA (3.5 mmol) was
added neat, dropwise over one minute. Following this, HOBT (1.7 mmol), HBTU (1.7 mmol), and
a 66% solution of ethylamine (1.4 mmol) were added to the reaction. The reaction was allowed to
react overnight before performing column chromatography on the crude product without
extraction. The column was run with 5% MeOH in DCM allowing 0.127 g of pure product (23%)
as a colorless oil.

IH NMR (DMSO-Ds, 400 MHz): & 8.50 (s, 1H), 8.31 — 8.20 (m, 1H), 7.81 — 7.55 (m, 1H), 6.33
—6.23 (m, 1H), 4.58 — 4.21 (m, 1H), 3.08 (q, J = 8 Hz, 2H), 3.02 (s, 6H), 1.80 (broad s, 1H), 1.41
(s, 9 H), 1.30 (broad s, 2H), 1.00 (t, J = 8 Hz, 3H), 0.83 (m, 6H).

BC{IH} NMR (DMSO-Ds, 100 MHz): § 171.5, 167.3, 165.3, 156.0, 78.5, 59.7, 35.4,
33.3,30.4,28.2,19.4, 14.7.
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Synthesis of 3. I-Acid (0.8 mmol) was dissolved in DCM (0.1 M) and DIPEA (0.8 mmol) was
added neat, dropwise over one minute. Following this, HOBT (0.8 mmol), HBTU (0.8 mmol), and
a 66% solution of ethylamine (0.8 mmol) were added to the reaction. The reaction was allowed to
react for 36 hours before performing column chromatography on the crude product without
extraction. The column was ran with 5% MeOH in DCM allowing 0.160 g of pure product (49%)
as a colorless oil.

IH NMR (DMSO-Ds, 400 MHz): & 8.50 (s, 1H), 8.31 — 8.20 (m, 1H), 7.81 — 7.55 (m, 1H), 6.33
—6.23 (m, 1H), 4.58 — 4.21 (m, 1H), 3.08 (q, J = 8 Hz, 2H), 3.02 (s, 6H), 1.80 (broad s, 1H), 1.41
(s, 9 H), 1.30 (broad s, 2H), 1.00 (t, J = 8 Hz, 3H), 0.83 (m, 6H).

BC{IH} NMR (DMSO-Ds, 100 MHz): § 172.3, 167.9, 165.8, 156.5, 79.0, 58.9 — 57.4, 37.3,
35.8,33.9, 28.6,26.3, 21.5, 16.0, 15.2, 12.2, 12.1, 11.5.
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Synthesis of 4

P EENSY L

Acetic anhydride (0.257 g, 2.52 mmol) was added to a round bottom flask and cooled to -
10 °C. To the flask, (3,3-diethyoxypropyl) amine (0.370 g, 2.52 mmol) was added over 15 minutes.
The reaction was stirred for 1 hour before adding 10 mL of toluene and evaporating to dryness to
yield 0.465 g (97%) pure product as a brown oil. NMR shows a 7:3 mixture of acetal and aldehyde
which are recovered in 100% yield. The aldehyde is indicated by resonances occurring at 9.64 and
4.44. The following chemical shifts relate to the major product.

TH NMR (DMSO-Ds, 400 MHz): & 7.78 (s, 1H), 4.49 (t, J = 11.3, 1H), 3.56 (m, 2H), 3.42 (m,

2H), 3.02 (m, 2H), 1.78 (s, 3H), 1.64 (m, 2H), 1.11 (t, ] = 6.6, 6H).
BC{IH} NMR (DMSO-Ds, 100 MHz): 5 202.8, 100.9, 61.1, 43.8, 33.3, 22.9, 15.8.
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Synthesis of Hydrazone Models
GEA, VEA and I®A were all synthesized via similar synthetic procedures. For GEA, VEA and ¥4,
molar equivalents of 4 and the respective ethyl amide intermediate are added to a 3 mL vial with
0.5 mL of dichloromethane equipped with a mini-stir bar. Once both materials were added to the
vial (totaling roughly 1 mL DCM), 1 mL of trifluoroacetic acid was added dropwise with stirring.
Once TFA was added, the reaction was allowed to slowly evaporate for 1-3 days before taking
NMRs. The final product was a brown oil in all cases.

Boc
HN—NH HN—N//_\—NH
\ _<N=<N . \ _<N=<N )=0
/N4 - - /A
NH TFA, DCM NH
OH 37NH
4 g —
GEA

'H NMR (DMSO-Dg, 400 MHz): & 12.35 (s, 1H), 11.65 (broad s, 1H), 8.16 (q, J = 4.4 Hz, 1H),
8.03 (t, J = 6.4 Hz, 1H), 7.56 (t, ] = 5.2 Hz, 1H), 4.01 (d, J = 4.4 Hz, 2H), 3.30 (q, ] = 6.4 Hz,
2H), 3.17 (s, 3H), 3.13 (s, 3H), 3. 12 = 3.10 (m, J = 7.3 Hz, 2H), 2.45 (g, J = 5.2 Hz, 2H), 1.81 (s,
3H), 1.04 (t, ] = 7.3 Hz, 3H). BC{'H} NMR (DMSO-Ds, 100 MHz): & 169.9, 167.4, 154.4,
154.9, 151.6, 43.7, 36.9, 36.1, 34.0, 33.2, 23.1, 15.1.

VEA

'H NMR (DMSO-Dg, 400 MHz): & 12.37 (s, 1H), 11.42 (broad s, 1H), 8.29 (t, J = 5.6 Hz, 1H),
8.20 (d, J = 8.0 Hz, 1H), 8.05 (t, J = 5.0 Hz, 1H), 7.56 (t, J = 5.3 Hz, 1H), 4.42 (dd, J = 8.0, 5.7
Hz, 1H), 3.30 (q, J = 5.6 Hz, 2H), 3.17 — 3.06 (m, 8H), 2.45 (q, J = 5.0 Hz, 2H), 2.07 (m, 1H),
1.8 (s, 3H), 1.04 (t, J = 7.2 Hz, 3H), 0.91 (dd, J = 11.5, 7.0 Hz, 6H). 3C{'H} NMR (DMSO-Ds,
100 MHz): 5 169.6, 169.3, 161.8, 153.9, 153.4, 151.2, 58.7, 38.3, 36.6, 35.7, 33.5, 32.9, 31.3,
26.6,19.2, 14.7.

IEA

TH NMR (DMSO-Ds, 400 MHz): & 12.38 (s, 1H), 11.42 (broad s, 1H), 8.27 (g, J = 8 Hz, 1H),
8.21 (dd, J = 24 Hz, 12 Hz, 1H), 8.05 (m, J = 4 Hz, 1H), 7.55 (td, J = 8 Hz, 4 Hz, 1H), 4.55 (dd, J
=8 Hz, 4 Hz, 1H), 4.41 (dd, J = 8 Hz, 4 Hz, 1H), 3.30 (q, J = 8 Hz, 2H), 3.18 (s, H), 3.17 (s, H),
3.13 (s, 3H), 3.11 — 3.05 (m, 2H), 2.46 (qd, J = 8 Hz, 4 Hz, 2H), 1.91 — 1.83 (m, 2H), 1.81 (s,
3H), 1.55 — 1.43 (m, 1H), 1.42 — 1.34 (m, 1H), 1.23 — 1.08 (m, 2H), 1.03 (td, J = 8 Hz, 0.8 Hz,
3H), 0.92 — 0.85 (m, 6H). *C{'H} NMR (DMSO-Ds, 100 MHz): § 170.0, 169.9, 162.3, 154.4,
154.1, 154.8, 151.6, 151.5, 58.4, 57.3, 43.7, 38.1, 36.9, 33.9, 33.3, 33.0, 26.3, 24.7, 23.0, 15.0,
14.7,12.1, 11.7.
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SECTION V — Spectra
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Figure S9. The 400 MHz 'H NMR spectrum of 1 in DMSO-dg.
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Figure S10. The 100 MHz "3C{'"H} NMR spectrum of 1 in DMSO-d.
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Figure S11. The 400 MHz 'H NMR spectrum of 2 in DMSO-ds. Spectra for precursors appears in a
separate manuscript currently under review.
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Figure S12. The 100 MHz 3C{'H} NMR spectrum of 2 in DMSO-dj.
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Figure S13. The 400 MHz 'H NMR spectrum of 3 in DMSO-d.
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Figure S14. The 100 MHz 3C{’"H} NMR spectrum of 3 in DMSO-d,. Spectra for precursors appears in a
separate manuscript currently under review.
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Figure S15. The 400 MHz 'H NMR spectrum of GEA in DMSO-ds. Peaks label (a) originate
from excess of 4.
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Figure S16. The 100 MHz '3C{'H} NMR spectrum of GEA in DMSO-d,. Peaks label (a) originate
from excess of 4.
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Figure S17. The 400 MHz COSY NMR spectrum of GEA in DMSO-d.
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Figure S18. The 400 MHz 'H NMR spectrum of VEA in DMSO-ds. Peaks label (a) originate from
excess of 4 while (b) originates from diisopropylethyl amine.
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Figure S19. The 100 MHz '3C{'"H} NMR spectrum of VEA in DMSO-ds. Peaks labeled (a)
originate from excess of 4 while (b) originates from diisopropylethyl amine.
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Figure S20. The 400 MHz COSY NMR spectrum of VEA in DMSO-dp.
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Figure S21. The 400 MHz 'H NMR spectrum of IEA in DMSO-ds. Peaks labeled (a) originate
from excess of 4 while (b) originates from diisopropylethyl amine.
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Figure S22. The 100 MHz '3C{'H} NMR spectrum of IEA in DMSO-ds. Peaks labeled (a) originate from

excess of 4
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Figure S23. The 400 MHz COSY NMR spectrum of IEA in DMSO-dj.
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Figure S24. The 400 MHz 'H NMR spectrum of 4 in DMSO-d,. Note the existence of the deprotected

aldehyde.
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Figure S25. The 100 MHz '3C{'H} NMR spectrum of 4 in DMSO-d,. Note the existence of the
deprotected aldehyde.
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Figure S26. The 400 MHz 1H NMR spectrum of G-G in DMSO-d.
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Figure S27. The 400 MHz "H NMR spectrum of V-V in DMSO-dg.
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Figure S28. The 400 MHz 'H NMR of I-l in DMSO-dp.
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