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Abstract: The provenance study of archaeological materials is an important step in understanding
the cultural and economic life of ancient human communities. One of the most popular approaches in
provenance studies is to obtain the chemical composition of material and process it with chemometric
methods. In this paper, we describe a combination of the total-reflection X-ray fluorescence (TXRF)
method and chemometric techniques (PCA, k-means cluster analysis, and SVM) to study Neolithic
ceramic samples from eastern Siberia (Baikal region). A database of ceramic samples was created
and included 10 elements/indicators for classification by geographical origin and ornamentation
type. This study shows that PCA cannot be used as the primary method for provenance purposes,
but can show some patterns in the data. SVM and k-means cluster analysis classified most of the
ceramic samples by archaeological site and type with high accuracy. The application of chemometric
techniques also showed the similarity of some samples found at sites located close to each other. A
database created and processed by SVM or k-means cluster analysis methods can be supplemented
with new samples and automatically classified.

Keywords: TXRF; archaeological ceramics; PCA; SVM; k-means cluster analysis; provenance;
eastern Siberia

1. Introduction

The study of samples of ancient ceramics is an important source of information about
the cultural and economic life of ancient human communities. This is because ceramics were
objects of everyday use and may provide a lot of information about trade relations, religious
customs, and communication between various communities [1]. The provenance analysis
of ceramics is possible through the determination of chemical composition [2]. Quantitative
data regarding elemental composition are usually obtained by analyzing powdered ceramic
fragments through X-ray fluorescence spectrometry (XRF) [3–5], instrumental neutron acti-
vation analysis [6,7], and inductively coupled plasma mass spectrometry (ICP-MS) [3,8].
Laser ablation inductively coupled plasma mass spectrometry [7,9] and micro X-ray fluores-
cence spectrometry (µXRF) [10] can be used for separate analysis of the clay component and
inclusions in the ceramic cross-section. Non-destructive characterization of bulk ceramic
composition is possible using portable XRF [11–15].

Despite the large number of methods used to analyze ceramics, one of the most popular
approaches to chemical analysis in archaeology is the use of XRF spectrometry combined
with machine learning techniques to attribute samples to specific places of origin. This
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popularity is due to the relative ease and accessibility of XRF analysis, its non-destructive
nature, its ability to be performed in the field, and the wide range of elements determined.
Machine learning methods (chemometric methods, in the context of chemical analysis)
allow the extraction of complex and non-obvious correlations between objects and their
characteristics in the large volume of data provided by XRF [16]. The arsenal of modern
chemometric methods is quite large and includes methods of clustering, classification, and
multivariate regression. The choice of specific methods of investigation depends on the
problem to be solved. In recent years, the combination of XRF and chemometric methods
has become increasingly common in archaeological research. Typical recent works are
worth mentioning here. In [17], artificial neural networks (ANNs) and linear discriminant
analysis (LDA) methods were successfully applied in combination with XRF and XRD
data to attribute the origin of pottery samples to different Greek colonies in Sicily. The
accuracy of the classification using ANN was 78% and that of LDA was only 50%. In [18],
the potential of two different instrumental methods for hierarchical cluster analysis (HCA)
of Medieval and post-Medieval ceramics from the Iberian Peninsula was compared. It was
shown that the simpler, non-destructive XRF method achieves almost the same clustering
efficiency as the more complex, expensive, and destructive ICP-MS method.

The most popular XRF instruments for archaeological tasks are energy dispersion
instruments [18–23], including portable XRF instruments [11–15]. These devices offer
reliable determination of major elements, but do not provide information about the contents
of impurities and trace elements, which, in the context of archaeological research, can be
more informative. This problem can be solved by using total-reflection X-ray fluorescence
spectrometry (TXRF), the detection limits of which are several orders of magnitude lower
than those of traditional XRF. TXRF has been successfully applied to determine the chemical
composition of ceramics [24–28]. In these works, it was shown that the limit of detection
and limit of quantification of TXRF are adequate for the determination of trace elements in
these samples.

Recently, studies have explored the combination of TXRF with chemometric methods
as a possible tool for the analysis of complex samples. This combination was already
successfully applied in the discovery of obesity markers [29], identification of the geograph-
ical origin of bean seeds [30], classification of the origin and type of wine samples [31],
discrimination of gunshot residues [32], and seafood provenance assessment [33,34]. This
approach was also applied to the analysis of archaeological ceramics [35], but the data
in this work were investigated using principal component analysis (PCA), which is an
exploratory method and does not allow the classification of samples. PCA can only be
considered an unsupervised clustering technique, as it does not require the knowledge of
class attribution in the data under analysis [36].

The goal of the present study was to further elaborate the combination of TXRF
and chemometrics and to check whether this approach is suitable for fast and reliable
provenance analysis of archaeological ceramic samples.

2. Results and Discussions
2.1. TXRF Analysis

This research was performed using a TXRF method for the analysis of ceramic samples,
successful validation of which was performed in our previous study [35]. The analytical
features of the method were not under consideration in this study. Table 1 presents the
concentration ranges of the elements in the 81 ceramic samples obtained by TXRF analysis
and divided by archaeological sites. Most of the ceramic samples (45) are represented
by those from the Popovsky Lug site. Elements of interest were determined not only by
the sensitivity and accuracy of the TXRF method, but also by the previous investigations,
where element indicators were found [35]. The acid leaching sample preparation of the
ceramic allows transferring of the clay component into solution and separation of the insol-
uble silicate minerals included in the ceramic [24,35]. Using this approach for provenance
analysis allows for better identification of sample groups than using the bulk composi-
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tion of ceramic samples. This method, based on the analysis of the clay components of
ceramics, is a perspective to be applied for comparison with the chemical composition of
regional clays.

Table 1. Elemental characterization of ceramic samples by TXRF method.

Archaeological Site
(Number of Samples)

Concentration Range (mg/kg)

V Cr Ni Cu Zn Ga Rb Sr Y Pb

Popovsky Lug (45) 31–152 57–172 9–82 9–62 26–943 8–19 13–76 36–203 7–57 19–72
Ust-Yamniy (11) 40–162 50–193 15–50 12–50 37–129 4–18 13–60 64–188 14–30 26–66

Makarovo (9) 39–126 62–142 16–44 12–31 58–114 10–15 24–63 69–168 13–27 27–51
Ust-Karenga (8) 0–63 26–98 6–30 12–61 38–501 11–23 20–122 21–201 3–52 21–180

Ust-Yumurchen (4) 16–99 28–163 5–59 12–42 62–83 8–14 10–43 18–260 9–20 18–49
Shishkino (4) 54–97 90–138 30–48 21–31 46–67 10–15 23–48 42–76 8–21 25–42

Figure 1 shows the spectra of ceramic samples from different sites. To perform the
correct interpretation of spectra, all intensities were normalized to the Se-Kα line (internal
standard). As can be seen from the spectra, there is either a slight (Ni, Ga, Y, and Pb) or
great (Cr, Zn, and Sr) difference among peaks of same elements for samples from different
sites. This means that ceramic samples may have similar elemental compositions even if
they were found far away from each other.
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2.2. Factor Analysis and Principal Component Analysis (PCA)

Factor analysis and PCA chemometric techniques are among the most popular tech-
niques for exploratory data analysis. PCA is employed as a data dimensionality reduction
method to visualize the samples in a lower dimension space. The data obtained by TXRF for
the 81 ceramic samples were composed in a matrix that contained the concentrations of 10
elements as well as the characteristics of archaeological types and sites. First, factor analysis
was applied for fast pattern recognition. It allowed the extraction of four significant factors,
and showed that three elements, according to the first three factors, had the highest factor
loadings: Zn, Cr, and Sr. Ternary diagrams could be constructed using these three factors.
Figure 2 presents two ternary diagrams using Zn, Cr, and Sr concentrations divided by
archaeological site and type.
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Looking at Figure 2a, one may recognize a cluster of samples from the Ust-Karenga
site in the left-bottom corner. The Popovsky Lug site covers most of the space in Figure 2a
and overlaps with other sites. However, one may visually separate the Shishkino and
Makarovo sites from the others. If we look at the right ternary diagram (Figure 2b), which
was made by type of ceramics, we may recognize the same cluster of the Ust-Karenga type.
There was no more distinct clustering observed for the other types of samples.

Next, we applied principal component analysis (PCA). The study of the score and
loading scatter plots allowed the identification of criteria for clustering objects. Figure 3a–d
present the score scatter plots that were constructed by projections on the first and second
principal components of PC1–PC2. Figure 3e–h present the corresponding loading plots.
Figure 3a,c are plotted by site; Figure 3b,d are plotted by type. The cumulative percent of
variance in correlation matrix for the first two principal components is about, or more than,
50% for all scatter plots. In Figure 3e,f, the most significant variables for the first PC are Cr,
Ni, V, and Pb. In Figure 3g,h, the most significant variables for the first PC are V, Rb, and
Pb. The second principal component divides the samples by the contents of Ni and Sr.

As can be seen from Figure 3a, ceramics from the Popovsky Lug, Shishkino, Ust-
Yamniy, and Makarovo sites are practically the same, while the ceramics from Ust-Karenga
and Ust-Yumurchen are separated from them. For Ust-Karenga ceramics, the high content
of Pb in the samples is noteworthy. The samples from Ust-Karenga differ from the others in
the content of the groups of elements correlating with each other: Rb, Pb, Ni, V, and Cr. The
samples from the Shishkino, Ust-Yamniy, and Makarovo sites form a common cluster with
those from the Popovsky Lug site. These sites, located in the uppermost (southern) section
of the upper Lena, are fairly close to each other, and this fact can explain the similarity in
the PCA graphs. If we exclude the samples from Popovsky Lug, we may discover a clear
segregation of the samples from Makarovo, Shishkino, and Ust-Karenga (Figure 3c).
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The division of ceramic samples by archaeological type is shown in Figure 3b (by all
types) and in Figure 3d (only samples from Popovsky Lug). The scatter plot in Figure 3b
shows a clear differentiation of the Ust-Karenga ceramic type. Figure 3d shows that the
Setchaty type is a little apart from the other samples. The Ust-Belsky and Posolskaya types
are distributed over the entire area of the graph, which makes it impossible to judge the
difference between these samples. The rest of the samples are mixed.

Despite some useful results being found, factor analysis and PCA did not show any
systematic pattern able to create reference groups according to common provenance features.

2.3. Generalized Cluster Analysis by k-Means (k-Means CA)

The application of k-means CA is a fast and easy way for analyzing provenance
without preliminary preparation of a dataset, for example, excluding outliers. In the case of
PCA, we found similarities in the ceramic samples from different sites geographically close
to each other without the possibility of diverse results. For example, ceramic samples from
Popovsky Lug, Shishkino, and Makarovo could not be separated. The k-means CA gave us
a better view on the differences in the ceramic samples.

Table 2 presents the results of the k-means CA of ceramic samples, characterized by
archaeological site. Testing error was equal to 0.448; training error—0.272. The total number
of clusters was six, which is the same number as the number of archaeological sites. The
Popovsky Lug site and Makarovo site are only related to cluster Nos. 3 and 4, respectively.
These two sites are clearly distinguished from the others, which was not possible using
PCA. Most of the Ust-Karenga site samples (7/8) are related to cluster No. 1. Samples from
the Ust-Yamniy site share cluster No. 6 with the samples from Shishkino, as was observed
by PCA. Two of the four Ust-Yumurchen samples are in a cluster No. 5, and one of the
four belongs to cluster No. 6. Cluster No. 2 only includes two samples from Ust-Karenga
and Ust-Yumurchen, the same pattern observed on the PCA graphs. In total, the results of
k-means CA are better and clearer for provenance analysis than those of PCA. The method
of k-means CA also enables the elimination of the subjective factor in the assessment of
classification and the following additional errors.

Table 2. Frequency table for cluster analysis of ceramic samples characterized by archaeological site.

Archaeological Site
Cluster Number

1 2 3 4 5 6 Total

Popovsky Lug 0 0 45 0 0 0 45

Ust-Yamniy 0 0 0 0 0 11 11

Makarovo 0 0 0 9 0 0 9

Ust-Karenga 7 1 0 0 0 0 8

Ust-Yumurchen 0 1 0 0 2 1 4

Shishkino 0 0 1 0 0 3 4

Table 3 presents the results of the k-means CA of ceramic samples, characterized by
type. The conditions of analysis were the same as in the case of analysis by site. Testing
error was equal to 0.349; training error—0.206. The total number of clusters was five. The
results of the classification of ceramic by type were even better than those by site. Clear and
obvious clusters were obtained for the Ust-Belsky, Setchaty, Khaitinsky, and Posolskaya
sample types. Only the Ust-Karenga type is divided by two clusters, but the clusters are
independent. An independent cluster means no correlation with other variables.
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Table 3. Frequency table for cluster analysis of ceramic samples characterized by type.

Type
Cluster Number

1 2 3 4 5 6 Total

Ust-Belsky 14 0 0 0 0 0 14

Posolskaya 0 0 0 26 0 0 26

Setchaty 0 0 0 0 15 0 15

Khaitinsky 0 18 0 0 0 0 18

Ust-Karenga 0 0 6 0 0 2 8

The chemometric technique of k-means CA works very well with ceramic samples
based on elemental data. The classification of ceramics by type is better than by site,
meaning that archaeological interpretation based on visual assessment of found material
is reliable.

2.4. Support Vector Machines (SVMs)

Based on the results of SVM, Tables 4 and 5 present a differentiation of the ceramic
samples by archaeological site and type, respectively. Some samples were not correctly clas-
sified, and the tables also contain the percent of misclassification and incorrect attribution.

Table 4. Differentiation of ceramic samples by archaeological site based on the results of SVM.

Archaeological
Site

Correct Attribution,
Total Correct Attribution % Misclassification % Incorrect Attribution Site

Popovsky Lug 39/41 95% 5% Makarovo/Ust-Yamniy

Ust-Yamniy 7/11 64% 36% Makarovo/Popovsky Lug

Makarovo 7/9 78% 22% Popovsky Lug

Ust-Karenga 7/8 88% 12% Ust-Yumurchen

Ust-Yumurchen 1/4 25% 75% Ust-Karenga/Popovsky Lug

Shishkino 4/4 100% 0% -

Table 5. Differentiation of ceramic samples by archaeological type based on the results of SVM.

Archaeological Type Correct Attribution,
Total Correct Attribution % Misclassification % Incorrect Attribution

Type

Khaitinsky 15/15 100% 0% -

Setchaty 9/15 60% 40% Khaitinsky
/Posolskaya

Ust-Belsky 11/13 85% 15% Posolskaya

Posolskaya 24/24 100% 0% -

Ust-Karenga 8/8 100% 0% -

Only four outliers were detected by the PCA method for the SVM model of samples,
characterized by site. The classification accuracy of SVM performed for sites is 84.416%. In
the summary table of the SVM method, some samples from the sites of Ust-Yamniy and
Makarovo are defined as Popovsky Lug and vice versa, although they have some of their
own characteristics associated with the type of pottery. The pottery of the Ust-Karenga site
stands out in terms of chemical composition, although the pottery of the Ust-Yumurchen
site is not clearly distinguished. In conclusion, data were obtained for four samples from
Ust-Yumurchen, which was not enough for unambiguous conclusions.
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Table 5 presents the results of the SVM analysis of the ceramic samples by archae-
ological type. Six outliers were excluded before construction of the SVM model. The
classification accuracy of the SVM as performed as 89.333%. The Khaitinsky, Posolskaya,
and Ust-Karenga types were clearly distinguished by SVM. In total, 2 of the 13 samples of
the Ust-Belsky type were incorrectly classified as being of the Posolskaya type. Almost half
of the Setchaty-type samples were wrongly classified as the Khaitinsky or Posolskaya type.

The SVM model worked very well for the provenance analysis of ceramic samples,
with an accuracy of more than 80%. To find out why the incorrectly predicted samples
did not fit into the classification, we repeated the PCA after removing outliers. Those
ceramic samples were indeed located at the edges of the 3σ border. If we removed the
ceramic samples incorrectly predicted by the SVM method, then almost 100% accuracy of
the SVM method was obtained. Thus, the resulting database using the SVM method can be
supplemented with new samples for subsequent automatic classification.

3. Materials and Methods
3.1. Sample Description

A total of 81 samples of archaeological ceramics were taken from sites located in the
valleys of the Upper Lena River and Upper Vitim River. The geographical locations of the
sites are presented on a map (Figure 4). The multilayer archaeological sites of Popovsky
Lug, Makarovo, Shishkino, and Ust-Yamniy represent the main types of ceramics (Setchaty,
Khaitinsky, Ust-Belsky, and Posolskaya) located in the part of the Upper Lena in the
Kachugsky district of the Irkutsk region. Ceramic samples at these sites are represented by
the main types of Neolithic ceramics of the Baikal region. The Setchaty type is characterized
by oval and parabolic vessels of closed or open form, with an imprint of wicker mesh on
the outer surface of the vessel. The Khaitinsky type is characterized by a complex shape
with a cambering of the upper part and a pointed bottom, with the outer surface covered
by imprints of a thin twisted cord, formed as a result of knocking out with a wrapped
mallet and decorated by drawing and pricking. The ceramics of the Posolskaya type are
characterized by a cambering of the upper part of the vessels and have a pointed or rounded
bottom; on the outer surface, there are traces of a ribbed blade or a blade wrapped with a
cord. A distinctive feature of Posolskaya-type ceramics is a subtriangular thickening on the
outer or inner side of the rim, under the cut of which a belt of through-punctures is applied
along a drawn or pressed groove. Ceramics of the Ust-Belsky type are characterized by
both closed- and open-shape vessels with pointed or rounded bottoms. The vessels are
smooth-walled, decorated from the rim to the bottom, and distinguished by horizontal and
zigzag rows of imprints made with a stack.

Ceramics from the Ust-Karenga and Ust-Yumurchen sites are represented by corded
pottery. These two sites are located near the Upper Vitim River within the Vitim Plateau
(north-eastern Transbaikalia). Ust-Karenga ceramics have a paraboloid shape with imprints
of a thin twisted cord on the outer surface and traces of rubbing on the inner side. The
ornament is made with a comb stamp; a zigzag shape is dominant. Ust-Yumurchen
ceramics are characterized by imprints of a ribbed blade or a twisted cord on the outer
surface. The ornament was applied with a jagged stamp as well as a rectangular or oval
stack in cross-section. The rim has a subtriangular molding on the outer or inner side,
which makes it similar to Posolskaya-type ceramics.

The selection of samples was carried out mainly with reference to the vessels for
a full description and archaeological interpretation. The ceramic fragments were taken
from different parts of the vessels and were rinsed in de-ionized (18.2 MΩ) water in an
ultrasonic bath for 60 min, dried, and photo-documented. Typical ceramic samples from the
aforementioned archaeological sites are presented in Figure 5. Then, the ceramic samples
were crushed and milled using a mortar grinder.
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3.2. Sample Preparation

The following reagents were used for TXRF analysis: single-element standard solution
of Se (C = 1000 mg/L, Merck, Darmstadt, Germany) for the preparation of the internal
standard; nitric acid and hydrochloric acid (ultra-pure grade, Merck) for the preparation of
the aqua regia used in the leaching procedure; and ultrapure deionized water (18.2 MΩ,
Elga Labwater, High Wycombe, UK) for dilution.

We placed 20 mg of the sample in a polytetrafluoroethylene (PTFE) vessel, and 1 mL
of aqua regia was added. The closed vessel was heated on a plate for 8 h at a temperature
of 170 ◦C, cooled, and then 3.95 mL of ultrapure water and 0.05 mL of the internal standard
of Se were added. Homogenization of the obtained solution was performed using a Vortex
(IKA, Staufen im Breisgau Germany) for 5 min. The sediment in the form of insoluble solids
was separated. An amount of 10 µL of the solution was put onto a quartz carrier and dried
on a heating plate.

3.3. Spectra Acquisition

TXRF elemental analysis was performed using a benchtop spectrometer S2 PICOFOX
(Bruker Nano Analytics, Berlin, Germany) equipped with an X-ray tube with a Mo-anode,
multilayer monochromator, and 30 mm2 silicon drift detector (energy resolution was
<150 eV at Mn-Kα line). Measurement of one sample was carried out in triplicate during
500 s at a 50 kV voltage and a 0.50 mA current. Quartz carriers were used as sample
holders and reflectors. The Spectra 7.8.2 software package (Bruker Nano Analytics, Berlin,
Germany) was applied for spectra processing.

3.4. Data Analysis

The concentration of the element (Ci, mg/kg) was calculated using the following
formula [37]:

Ci =
Cis·Ni·Sis

Nis·Si
(1)

where Cis is the concentration of the internal standard; Ni and Nis are the net peak areas of
an element of interest and the internal standard, respectively; Si and Sis are the sensitivities
of an element of interest and internal standard, respectively.

The following elements were excluded from the data due to the study [38] of het-
erogeneity of ceramic samples: Ca, P, and Mn. In [38], it was shown that concentrations
of these elements may strongly vary within the same sample and, therefore, cannot be
considered in a provenance analysis.

The database of ceramic samples, with a matrix of 81 × 11, was divided into separate
files, each representing a specific type/site of pottery, and then given statistical treatment.
Different classification approaches were used for provenance analysis: unsupervised learn-
ing and pattern recognition (factor analysis, PCA) and supervised learning (k-means cluster
analysis and support vector machines). Unsupervised learning algorithms are not guided
by previously known classifications; only after certain clusters have been defined is it
possible to assign labels. Supervised methods fit the model to a given classification. Chemo-
metric methods were performed using the STATISTICA 10 program (TIBCO Software Inc.,
Palo Alto, USA).

Factor analysis (FA) was applied under the following conditions: 10 variables (ele-
ments), extraction of 3 factors, method of principal components, and varimax raw
factor rotation.

Principal component analysis (PCA) was applied as follows: 10 elements were chosen
as variables, scores were automatically standardized, and loading and score plots were
based on the first two components.

The k-means cluster analysis (k-means CA) was applied under the following conditions:
k-means algorithm, squared Euclidian distance method, and training/test samples 2:1.
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Support vector machines (SVMs): outliers were determined using the PCA method.
Figure 6 shows an example of outlier detection by the construction of score and load-
ings plots in the space of principal components. Samples outside of the 3σ border were
considered outliers. After exclusion of all the outliers, the SVM model could be applied.
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The SVM method is based on data mining and machine learning. By default, the
program divides the entire set into 2 groups: training and testing. We placed 75% of the
samples into the training group, and the remaining 25% into the test group. The SVM
model characteristics were classification type 2, the kernel type was a radial basis function
(gamma = 0.450), and cross-validation.

4. Conclusions

A reference database was created to characterize the ancient ceramics of the studied
territories. The database was integrated into the STATISTICA program for the rapid study
of the differences and similarities of the samples using chemometric approaches (PCA,
k-means CA, and SVM), as well as for classification by geographical origin and ornamenta-
tion. The study showed that unsupervised clustering methods such as PCA can be used for
an initial assessment of a matrix, while k-means CA or SVM should be applied as primary
methods for provenance analysis. According to the results of these chemometric techniques,
some samples from the Popovsky Lug, Ust-Yamniy, and Makarovo sites formed a common
cluster, because the sites are very close to each other and have the same clay sources. These
sites are in the uppermost (southern) section of the upper Lena, which can be conditionally
called Kachugsky after the regional center of the village of Kachuga. The fairly close
location of the objects to each other explains the similarity in geomorphological position,
the correlation of stratigraphic sections, and the similar composition of clay taken from
different objects of this region. The chemical composition of pottery from the Ust-Karenga
and Ust-Yumurchen sites (some of the samples) differs from that of pottery from other
sites due to the differences in ownership and sources of raw materials. For a more detailed
study of ceramics, it will be necessary to analyze a larger number of samples from this
site, as well as clay sources. Based on the results obtained in this study, we may assume
that the raw materials used for the manufacture of the ceramic samples were local. The
database created and processed by the SVM or k-means CA methods can be supplemented
with new samples and then automatically classified. This study showed that a combination
of the TXRF method and chemometric techniques is a fast and effective way to conduct
provenance analysis of archaeological ceramics.
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