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Abstract: Dextran is by far one of the most interesting non-toxic, bio-compatible macromolecules,
an exopolysaccharide biosynthesized by lactic acid bacteria. It has been extensively used as a major
component in many types of drug-delivery systems (DDS), which can be submitted to the next in-vivo
testing stages, and may be proposed for clinical trials or pharmaceutical use approval. An important
aspect to consider in order to maintain high DDS’ biocompatibility is the use of dextran obtained
by fermentation processes and with a minimum chemical modification degree. By performing
chemical modifications, artefacts can appear in the dextran spatial structure that can lead to decreased
biocompatibility or even cytotoxicity. The present review aims to systematize DDS depending
on the dextran type used and the biologically active compounds transported, in order to obtain
desired therapeutic effects. So far, pure dextran and modified dextran such as acetalated, oxidised,
carboxymethyl, diethylaminoethyl-dextran and dextran sulphate sodium, were used to develop
several DDSs: microspheres, microparticles, nanoparticles, nanodroplets, liposomes, micelles and
nanomicelles, hydrogels, films, nanowires, bio-conjugates, medical adhesives and others. The DDS
are critically presented by structures, biocompatibility, drugs loaded and therapeutic points of view
in order to highlight future therapeutic perspectives.

Keywords: dextran; drug-delivery systems; bioactive compounds; therapeutic effects; biomed-
ical applications

1. Introduction

Over the last decades, a huge number of macromolecules, including natural polymers,
were considered as constituents for drug-delivery systems (DDS) in different formulations:
microspheres [1,2], microparticles [3,4], nanoparticles (NPs) [5], nanodroplets [6], lipo-
somes [7], micelles [8,9] and nanomicelles [9], hydrogels [10–12], films [13,14], nanowires [15],
bio-conjugates [16], medical adhesives [17] and others [18–20]. Among natural polymers,
polysaccharides are one of the most utilised bio-polymers in DDS’s manufacturing. These
compounds are used due to their safety and biocompatibility, the presence of a high variety
of chemical functional groups, as well as their high stability and hydrophilic structure. To
date, there are a very large number of polysaccharide types isolated and characterised, in-
cluding dextran (DEX) and its derivatives [3,16], starch and its derivatives [21,22], cellulose
and its derivatives [23,24], marine polysaccharides [23], which are used as components in
DDS development.

DEX is a noteworthy example of the abovementioned compounds, being a non-toxic,
biocompatible, biodegradable and very hydrophilic bio-polymer [25,26]. DEX is biosyn-
thesised intra- or extracellularly by lactic acid bacteria (LAB), which represent one of the
most important microbial groups due to their roles in food fermentations and synthesis of
techno-functional metabolites [27]. By virtue of its properties, DEX has been used for over
50 years as a circulatory volume expander, in order to improve blood flow [13] and prevent
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postoperative deep-vein thrombosis [16]. It has also been used in anaemia treatment or as
an antiviral agent, being selective for various viruses [13].

In the human body, DEX is degraded by dextranase (1,6-α-D-Glucan 6-glucanohydrolase,
E.C. 3.2.1.11) in the liver, spleen, kidney and colon [28,29]. Dextranase endohydrolyses the
α-D-(1→6)-glucosidic bonds in DEX resulting in oligosaccharides. The enzyme is synthesised
by bacteria present in the colon and after DEX degradation, the by-products are excreted by
the kidneys according to the fragments’ molecular weights [30].

In food industries, DEX has technological functions, such as improving the physic-
ochemical properties of food products, and also functional roles, such as prebiotic and
immune-modulatory agents [27]. DEX acts as a hydrocolloid in the manufacturing pro-
cesses of bread and other bakery products, serving as a natural component to replace
chemically synthesised commercial hydrocolloids, meeting consumers’ demands for fewer
or zero additives in food products. At the same time, it has supplementary properties such
as improving dough rheology, textural properties [31] and staling rate [32]. More recently, it
was used as a thickener [33], as a surfactant emulsion’s stabiliser [34] and in the production
of cereal-based fermented functional beverages and ice cream [35]. The principal potential
uses of DEX in foods are mostly related to its capacity to prevent crystallization and retain
moisture [36].

In the non-food industry, DEX is used as a bio-separation agent (Sephadex® gels), or
as a chromatographic media due to its non-ionic character and good stability under normal
operating conditions or for the construction of universal calibration curves used in the
evaluation of size exclusion chromatography results [37]. It is used as a steric dispersion
stabiliser in the production process of polypyrrole NPs [38].

In the pharmaceutical industry, DEX is already commercially used as a plasma sub-
stitute (by increasing volume), as an iron carrier (in the treatment of anaemia, complexed
with ferric hydroxide), as an anticoagulant and antithrombotic agent (reducing blood
viscosity), as a coating and protective agent for NPs used in nanodrug delivery [25], as
an antioxidant and free radical scavenging agent [39], or as inducing agent for interferon
biosynthesis [31,35,36,40].

From a medical point of view, the interest in the development and validation of new
DDS for different pathologies has grown exponentially. These systems must allow tem-
poral and spatial control of drug delivery, and a continuous plasmatic concentration for
a prolonged period and should also improve the drugs’ pharmacokinetic and biophar-
maceutical properties. Another very important feature of these systems is that they must
provide and increase the drug circulation time and stability in blood flow, improving the
drug’s performance, which can be achieved through different types of conjugations with
drugs [28].

Over the last decades, DEX has been considered the most promising candidate for the
transport of a wide range of therapeutic agents, due to its outstanding physico-chemical
properties and biocompatibility [28,41]. Due to the inherent mechanisms of cells which
reduce the drug’s effects and facilitate excretion, by using DEX in different DDS, the
stability, the local drug concentration and retention time of such nanocarriers (NC) are
increased [42].

After systemic administration, the pharmacokinetics of DEX-DDS is considerably
influenced by the kinetics of the DEX carrier [41]. Thus, the unmodified polymer can
be absorbed by the digestive tract after oral administration only in a small amount. The
in vivo studies have shown that both distribution and elimination of DEX depend on the
molecular mass and overall charge of the polymer. Pharmacodynamically, the DEX-DDS
have resulted in a prolonged effect, a low toxicity profile and a decreased immunogenicity
of bioactive molecules [16,43,44].

This review presents a critical and comprehensive overview of the recent developments
regarding dextran and its applications for the transport and delivery of drugs, proteins,
enzymes, imaging agents, nucleic acids, highlighting the substantial increase in therapeutic
potential as compared to the free active principles.
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2. DEX Obtained by Biosynthesis from LAB Fermentation

DEX is a polysaccharide which is biosynthesized intra- or extra-cellularly
(endopolysaccharide—ENS or exopolysaccharide—EPS) by several microorganisms such as
Leuconostoc mesenteroides [31], Leuconostoc dextranicum [45], Lactobacillus brevis,
Streptococcus mutants and Weissella confusa [33,35,46], Acetobacter capsulatus, renamed
Gluconobacter oxydans and Acetobacter viscous, yeasts and moulds (e.g., Rhizopus spp.) [36].
Commercially, DEX is usually obtained from L. mesenteroides or L. dextranicum fermentation
in a media with sucrose and a considerable nitrogen source.

In the biosynthesis of linear polysaccharides, there are two general mechanisms. In
the first mechanism, the monomers are sequentially added at the non-reducing end of a
growing chain using a high-energy donor. This pathway has been demonstrated for DEX
biosynthesized by L. mesenteroides NRRL-B512F [47]. The second mechanism consists of the
sequential addition of monomeric units to the reducing end by insertion between a carrier
and the growing chain. In both mechanisms, the DEX molecule grows by extrusion, with
the enzyme inserting glucose units from sucrose at one end of the polymer chain [36].

The DEX term describes a large class of bacterial extracellular hydrocolloid homo-
polysaccharides [37]. DEX is a complex glycan which can be categorised into three types.
The first category is represented by DEX with a main chain of consecutive α-D-(1→6)-
linked glucose residues with branching at α-D-(1→2), α-D-(1→3), α-D-(1→4). The second
DEX type contains non-consecutive α-D-(1→3) and α-D-(1→6) linear linkages and α-D-
(1→3) branch linkages, while the third type contains consecutive α-D-(1→6) linear linkages
with α-D-(1→6) branch linkages. The configuration of the DEX molecule influences the
biopolymer’s water solubility: polymers with predominantly α-D-(1→6) linkages are
the most soluble, while DEX with 43% α-D-(1→3) branch linkages are water insoluble.
Moreover, DEX is stable in water, dimethyl sulfoxide, formamide, glycerol, 4-methyl
morpholine oxide and hexamethyl phosphamide [36].

An important aspect of obtaining high amounts of bio-polymers is the fermentation
conditions. Depending on the composition of the culture medium and the strain type, DEX
can be obtained with a low or high molecular weight (over 150 kDa) [35,46]. Dextransucrase
(1,6-α-D-glucan 6-α-glucosyltransferase, E.C. 2.4.1.5) is a generic name for a family of
enzymes that synthesize DEX from sucrose [48]. The activity of dextransucrase is higher
in aerobic compared to anaerobic conditions, and the biosynthesis rate are considerably
improved by air-sparging [49]. Under proper aeration conditions, sucrose is converted
to DEX with maximum yield. Dextransucrase has maximum stability and activity at a
pH between 5.0 and 5.5, although most of the published research reports a fermentation
pH of around 6.7. At pH 5.5, sucrose is converted into DEX from the beginning of the
fermentation process, increasing the conversion yield by approximately 10% in a short
period of time [49], preferably in the presence of small amounts of calcium [32]. The optimal
biosynthesis temperature range is between 30–45 ◦C. The enzyme’s nature influences the
branching degree of DEX, resulting in different structures of the macromolecule [37]. The
molecular weight of biosynthesized DEX is inversely correlated with the dextransucrase
concentration and directly correlated with sucrose concentration and temperature [50].
Actually, the dextransucrase cleaves the glycoside bond in sucrose, releasing glucose which
is further used in the biosynthesis of DEX by natural polymerisation, and fructose which is
used as an energy source in different metabolic processes [51].

To increase the EPS biosynthesized amount, research groups generally optimise the
culture media composition by supplementing it with additional carbon and nitrogen
sources [52]. Han et al. (2014) [31] obtained 32 g/L DEX from L. mesenteroides BD1710
fermentation in culture media containing tomato juice supplemented with 15% sucrose.
Another considerable amount of DEX, about 25.2 g/L, was obtained in our laboratory by W.
confusa PP29 fermentation in culture media containing UHT milk supplemented with 8%
sucrose [35]. This compound had a remarkable disrupting effect on the biofilm produced
by Candida albicans SC5314 strain, as well as no cytotoxic effect on normal human dermal
fibroblasts (NHDF) [35]. Wang et al. (2022) [53] simultaneously obtained DEX and vitamin
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B12 by using Propionibacterium freudenreichii DSM 20,271 and Weissella confusa A1 in a soya
flour- or rice bran-based media supplemented with sucrose. The aim of the study was to
obtain bread with high nutritional value and the results also showed that the obtained
DEX amount was very high, at approximately 58 g/L [53]. Experiments performed in our
laboratory showed that the addition of aqueous fruit extract from Hippophae rhamnoides to
the LAB culture media yielded 4.8 g/L dry EPS, with 2 g/L more compared with standard
MRS media [54], while the addition of anthocyanin-rich Hibiscus sabdariffa L. extracts to
culture media supplemented with peptone and sucrose yielded biosynthesized DEX with
high molecular weights [55] (see Table 1).

Table 1. Biosynthesized DEX amount and molecular mass depending on culture media composition.

Strain Culture Media Fermentation
Conditions

Dry DEX
Amount, g/L

Molecular Mass,
Da References

Leuconostoc mesenteroides
ZDRAVLJE

SR-P

Sucrose, yeast extract, barley malt
extract, Na2HPO4 • 12 H2O,

MgSO4 • 7 H2O, KCI, supplemented
with 12% sucrose

200 rpm 54.9 [49]

Leuconostoc mesenteroides
BD1710 Tomato juice with 15% sucrose 48 h at 28 ◦C 32.0 6.35 × 105 [31]

Weissella confusa PP29 MRS, sucrose (80) dissolved in
UHT milk 48 h at 33 ◦C 25.2 1.2 × 106 [35]

LAB-PP15 MRS, sucrose (80) dissolved in
UHT milk 48 h at 33 ◦C, 100 rpm 9.0 1.9 × 105 [56]

W. confusa H2 MRS 48 h at 30 ◦C 2.705 × 106 [46]
W. cibaria

SJ14 Modified MRS semi-defined medium 34 h at 37 ◦C 0.33 7.12 × 104 [57]

Leu. pseudomesenteroides
DRP-5 MRS agar 36 h at 30 ◦C 6.23 × 106 [58]

Leuconostoc mesenteroides
BI-20, FYP broth with 3% sucrose 48 h at 30 ◦C 1 × 108 [27]

Weissella confusa A16 Soya flour or rice bran with
10% sucrose 24 h at 25 ◦C, 150 rpm 58.0 [53]

Lactobacillus kunkeei AK1 FYP broth with 3% sucrose 48 h at 30 ◦C 45 × 103 [59]
Weissella cibaria NC516.11 Distiller grains of Fenjiu 24–48 h at 37 ◦C 2.82 × 106 [60]

3. Biomedical Applications of Modified DEX

After thorough investigations, different research groups postulated that pure DEX-
based systems cannot achieve good mechanical properties and high drug-loading capacity.
Native DEX exhibits low-cell-adhesive properties and in order to obtain hydrogels with
controlled cell-scaffold interactions, specific molecules must be incorporated [19]. Many
research groups have chemically modified DEX by introducing functional groups into the
molecule through cross-linking reactions, therefore improving mechanical strength and
drug-loading ability [9,41] and increasing the number of compound classes that can be
obtained. Furthermore, DEX has been shown to have metal chelating activity [46] and
antioxidant properties [59], as well as antitumour activity by regulating apoptosis and
autophagy [61].

Below we present the most commonly used types of modified DEX, as well as the
active substances that have been loaded into DEX-based systems.

3.1. Acetalated Dextran (Ac-DEX)

The main reason for performing DEX acetylation is to allow solubility of DEX molecules
in organic solvents, facilitating the encapsulation of various hydrophilic and hydrophobic
active substances, which has always been challenging, and allowing their simultaneous
delivery [62]. Ac-DEX is an essential derivative of DEX synthesized in mild conditions,
at room temperature, from DEX and 2-methoxypropene in a one-step reaction catalysed
by pyridinium p-toluene sulfonate [3]. Ac-DEX contains cyclic and methoxy acyclic acetal
moieties and has been shown to be biodegradable at neutral pH, biocompatible and pH-
sensitive [4,62]. Because it is an acid-sensitive polymer, Ac-DEX degrades more rapidly
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at lower pH, for example in the endosome of phagocytic cells, tumours, or in areas with
inflammation [63], making it an ideal carrier for a wide range of therapeutics. Ac-DEX has
several characteristics that make it a unique biodegradable polymer, such as facile synthe-
sis and degradation rates’ adjustment properties. It is suitable for vaccine applications,
targeted host-directed therapies to macrophages, controlled release of drugs, chemothera-
peutic delivery and engineered drug-delivery devices [64]. By the simultaneous release
of different active substances, synergistic effects, as well as the reduction in side effects
and solubility improvement could be achieved at lower concentrations and improved
pharmacokinetics [62].

As a therapeutic system, Ac-DEX was used to develop porous microparticles made by
single emulsion method in water/oil and loaded with rapamycin [4,65], camptothecin [66],
or curcumin [67] in order to be used for pulmonary drug delivery or phagocytes’ passive
targeting. The delivery and release tests recorded very good results. These systems
are more efficient in drugs’ transport to the alveolar region of the lung, or for immune
suppression therapies than other similar systems [4,65–67]. At the pulmonary level, after
the post-processing of these microparticles, the respirable fraction increased with the
improvement of aerosolization and no significant damage was caused by the system to
lung epithelial cells either in liquid- or air-exposed conditions [4,65–67]. The dry powder
aerosol formulations were capable of deep lung delivery of drugs by targeting and releasing
the therapeutics to a desired location [4,65–67]. By using these systems, a rapid onset of
pharmaceutical action was obtained, avoiding hepatic metabolism and decreasing the
side effects of the drugs. Resiquimod, a drug with antiviral and antitumour activity,
was encapsulated in an electrospun Ac-DEX microparticles’ scaffold and the results were
remarkable for tissue engineering, wound healing, immunotherapy and drug-delivery
applications [68,69]. Pyraclostrobin, an antifungal agent, was successfully loaded in pH-
sensitive Ac-DEX microparticles in order to treat Sclerotinia sclerotiorum plant infections [3].
Konhäuser et al. (2022) [62] developed a DDS system in order to simultaneously release L-
asparaginase and etoposide. The active substances have synergistic activity against chronic
myeloid leukaemia (CML) K562 cells, but L-asparaginase is hydrophilic and etoposide is
hydrophobic [62]. This system has great potential for CML therapy due to its ingenious
ability to release both compounds in a pH-dependent manner, leading to synergistic
cytotoxicity, increased drug efficacy and reduced side effects [62].

3.2. Oxidized Dextran (oDEX)

Some research groups have obtained oDEX in order to bind therapeutic active molecules
for secure delivery. DEX oxidation using sodium periodate is a catalysis-free aqueous reac-
tion which produces a polyaldehydic DEX that can serve as a macromolecular cross-linker
for amino groups-bearing substances.

By using oDEX, different DDS were synthesized, including microspheres, vesicles,
hydrogels, NPs. Cortesi et al. (1999) [1] synthesized oDEX gelatine microspheres loaded
with TAPP-Br antitumour drug and cromoglycate, obtaining very good results for drug
release. Curcio et al. (2020) [70] developed a self-assembling oDEX-based vesicular system
loaded with camptothecin, which was determined to be very efficient against MCF-7 and
MCF-10A cell lines. The antitumour drugs, such as 5-fluorouracil and methotrexate, were
encapsulated in oDEX hydrogels for breast, skin and gastrointestinal tract cancer treat-
ment [71]. The obtained DDS induced faster drug release and had excellent biocompatibility
and degradability, therefore being suitable for anticancer therapies [71]. Novel oDEX-based
NPs for insulin release [29] or loaded with 5-fluorouracil for colorectal cancer therapies [30]
were also obtained and were suitable for further in vivo testing.

Zhou et al. (2022) [12] reported an oDEX-based hydrogel loaded with black phospho-
rus nanosheets and zinc oxide nanoparticles. This DDS was suggested to be a hopeful
approach for chronic wound treatment with bacterial infection through the synergistic
effect of photothermal action and immunomodulation [12]. Multiple hydrogels as trans-
dermal DDS loaded with ceftazidime or with collagen and Epidermal Growth Factor were
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reported for the treatment and healing of diabetic wounds infected with multidrug-resistant
bacteria [39,72].

3.3. Carboxymethyl Dextran (CMD)

CMD, a polyanionic polysaccharide, was considered as a DDS constituent since it was
discovered that its functional groups facilitate chemical conjugation and ionic complexation
with various drugs. Its hydrophilic characteristics facilitate prolonged drug circulation
improving its tumour-targeting efficiency [73]. By itself, CMD has high antioxidant proper-
ties [74].

CMD was used as a nanocomposite hydrophilic shell in order to be loaded with
glutathione as an inhibitor of reactive oxygen species’ cytotoxic effects associated with
tumour apoptosis [75].

Magnetic NPs were coated with CMD in order to be used as contrast agents for
magnetic resonance molecular imaging (MRI) [76,77]. Several research groups used CMD-
coated magnetic NPs loaded with antibodies [78], peptides [79] and enzymes [80] for
different medical applications.

3.4. Dextran Sulphate Sodium (DSS)

Certain types of dextran functionalization can lead to very toxic compounds, which
can, however, be useful for particular applications. DSS is a polyanionic derivative of
dextran with high-water solubility properties containing approximately 17% sulphur with
up to three sulphate groups (-OSO3Na) per glucose molecule [81]. DSS has found wide
utilization in the food, biotechnology, cosmetic and pharmaceutical industries [82]. In
proper concentrations, it exhibits positive effects as an anticoagulant and antiviral agent or
has the properties of lowering blood lipid and glucose levels in clinical studies [83]. Despite
DSS promising application prospects and biological properties, its application is limited
due to its harmful effects on the gastrointestinal tract [83].

Different research groups use DSS to induce colitis, thus creating artificial conditions
for studying inflammatory bowel diseases, such as ulcerative colitis and Crohn’s disease.
The colitogenic potential of DSS depends on its molecular weight which must be between
36–50 kDa. DSS produces manifestations associated with inflammatory bowel disease, such
as submucosal erosions, ulceration, inflammatory cell infiltration, crypt abscesses, as well
as epithelioglandular hyperplasia [81]. It also determines the shrinkage of colon length
and increases the relative colon weight/length ratio accompanied by mucosal oedema
and bloody stools [81]. The DSS colitis paradigm is the most appropriate model for the
human phenotype, from many points of view. For this injury, many drugs were tested as
treatment, including curcumin [84], garlic oil (which has antioxidant, anti-inflammatory
and immunomodulatory effects) [85], carvacrol (a phenolic monoterpene extracted from
Oreganum vulgarea sp. essential oils with antioxidant, anti-inflammatory and anticancer
properties) [86], resveratrol [87], glucose-lysine Maillard reaction products [88], liquorice
(a Glycyrrhiza uralensis rhizome-derived product with anti-inflammatory activity) [89],
Lactobacillus sakei K040706 (with immuno-stimulatory effects) [90] and Polygonum tincto-
rium leaves extract (by enhancing the mRNA expression of interleukin-10 and decreasing
expression of tumour necrosis factor in colon tissues) [91].

DSS has also been used for film coatings with biological and biomedical applica-
tions [13]. Mixed DSS-based systems were developed, such as eco-friendly PVA/DSS
nanofibers loaded with ciprofloxacin [18] or chitosan-DSS microparticles loaded with
a hydrophilic peptide used as immunity-enhancing adjuvant or considered as vaccine
electuary [92].

An antibacterial biocapsule system obtained from multilayer self-assembled diethy-
laminoethyl (DEAE)-DEX hydrochloride and DSS was developed as a DDS for kanamycin-
resistant Escherichia coli treatment. The system manifested an inhibitory effect during
bacterial growth having high potential as an antimicrobial agent in future treatments
against infection [20].
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Wang et al. (2020) [93] developed a dual DDS for paclitaxel and 5-fluorouracil. The
pH-sensitive system exhibited a controlled release profile based on a mechanism following
a two-phase kinetic model [93]. The system’s efficiency was investigated on HepG2 cells,
resulting in synergistic effects between the two drugs and enhanced inhibition of cancer
cells, presenting a good potential for biomedical delivery applications [93].

3.5. Diethylaminoethyl-Dextran (DEAE-DEX)

DEAE-DEX was the very first chemical vector used for DNA delivery, reported by
Vaheri and Pagano in 1965 as DEAE-DEX used to enhance the cells’ viral infectivity. The
DEAE-DEX-mediated transfection method gained attention in the early 1980s because of
the simplicity, efficiency and reproducibility of the procedure. DEAE-DEX forms electro-
static interaction complexes with DNA, exhibiting higher transfection efficiency, but at
high concentrations, it is toxic to cells [94]. Recently, it was used to develop carrier poly-
plex nanoparticles with luciferase coding mRNA [95] or used for β-interferon production
enhancement [40].

4. Dextran Used in Drug-Delivery Systems

From a structural point of view, as a bio-polymer, DEX has molecular weights higher
than 1000 Dalton, and a linear backbone of α-linked D-glucopyranosyl repeating units [28].
DEX contains a large number of hydroxyl groups which are capable of conjugating
bioactive molecules by direct coupling or via a linker. DEX has been used to form
hydrogels [10–12], films [13,96], nanosystems (by itself or as a coating agent) [5,6,9,15,16]
and other systems [7,8,17–20], in order to release controllable amounts of drugs (Table 2).
Recently, it was demonstrated that DEX has a protective effect on cells against oxidative
stress induced by drug cytotoxicity [28,42].

Table 2. Dextran applications in drug-delivery systems.

DDS Type Drug Loaded Targeted
Disease/Applications Observations Reference

Hydrogel Polydopamine Multidrug-resistant
bacterial infections

Good physical and chemical properties; low
cytotoxicity against mouse fibroblast cells;

precise in vivo antibacterial and
wound-healing performance

[41]

Nanohydrogel matrix Maghemite Magnetic properties; high drug loading and
stability in the circulatory system [97]

Hydrogel Aniline trimer elastomer Smart DDS for localised
drug release

Controllable swelling ratio; stable rheological
properties; good conductivity; electric

stimuli-dependent activity
[10]

Nanogel Methotrexate HeLa cells
Sensitive to the variation of the pH and redox

environment; high release rate at pH 5.0;
suitable carriers for cancer chemotherapeutics

[98]

Magnetic microgels Doxorubicin Promising results for further studies [99]

Nanogels Doxorubicin H1299 cancer cell line The indisputable results promote this system for
further in vivo testing [100]

Hydrogels Praziquantel Anthelmintic disease Good in vitro results [28]

Hydrogels OndansetronTM Antiemetic following
chemotherapy Good release kinetics’ curve [101]

Cryogels Vitamin B12 Vitamin B12 deficiencies Suitable carriers for water-soluble
biomolecules’ delivery [102]

Micro-hydrogel

Indole;
3-nitrophenol;

hydroxybenzoic acid;
diclofenac;

Very satisfactory release kinetics’ curve [2]

Nanohydrogels Ornidazole Clostridium sp. infections Very good in vitro antibiotic effect [103]

Nanogel Curcumin New foods development In vitro simulations showed sustained
drug release [104]

Nanogel Food ingredient preparation High potential for hydrophobic bioactive
compounds’ encapsulation [105]

Hydrogels
Arginine-glycine-

aspartic acid
(RGD) sequences

Artificial cardiac tissues Promising system for building cardiac grafts [19]

Hydrogels RGD and activin A Ovarian tissue culture
Significantly improves follicular oocytes’ in vitro
maturation and development; synergistic effects

in 3D tissue culture development
[106]
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It has been postulated that in vivo drug concentrations need to be as constant as
possible and optimally targeted to specific cells or organs in order to avoid prolonged
treatments. Microencapsulation of antineoplastic drugs has been done using natural or
synthetic polymeric materials with the aim of maintaining constant and high drug levels
in the blood or at the tumour site, thus reducing multiple administrations and possibly
targeting the active agents to the desired location [1].

Below, the most used systems containing DEX as a component have been reviewed.

4.1. DEX as a Hydrogel Component

The use of natural polymers in hydrogel systems’ development can confer highly ben-
eficial properties to drugs. By using DEX, optimal release profiles and desirable therapeutic
characteristics can be achieved for a wide range of DDS [28]. Hydrogels as polymeric net-
works with swelling capacity can be biodegradable or not, and drugs can be encapsulated
in these structures, obtaining delivery systems with controlled drug release [97].

DEX-containing hydrogels are considered valuable and sustainable biomaterials for
biomedical applications [10]. They are being used extensively in the pharmaceutical
and biomedical fields for drug delivery, tissue engineering [10], neovascularization [106],
regenerative medicine, wound repair and dressings [12,41,107], due to DEX’s lubrification
and unique soft-wet properties similar to natural extracellular matrices [108], as well as
their advantages for commercial production, such as high yields and low costs [35] (Table 2).

Traditional antibacterial hydrogels deliver large dosages of antibiotics or other drugs,
increasing the risk for cytotoxicity. However, some research groups have used antimicrobial
agents with synergistic activity in models of normal and diabetic wounds infected with
multidrug-resistant bacteria, achieving higher therapeutic effects at lower doses compared
to classical antibiotics [72].

4.2. Dextran as NP Component or Coating Agent

Over the years, intensive efforts have been made to design intelligent systems that are
able to deliver drugs more efficiently to the target site and at the same time to minimise
the side effects. NPs as DDS for enhancing the drugs’ therapeutic efficiency are the hot
spot of research in the field of nano-biotechnology. Although there are many advantages
associated with these NPs, such as increased solubility of hydrophobic drugs favouring
long circulation times in the blood or higher bioavailability [109,110], there are still a
number of drawbacks, such as burst release, limited stability of formulations leading to
drug leakage and nonspecific cellular uptake resulting in undesired adverse effects [9,44].
Most NPs can be tailored for specific site targeting, controlled release of drugs and high
stability under different administration routes. NPs have the ability to penetrate easily
through fine blood capillaries due to their subcellular and nano sizes [29,111]. Furthermore,
drugs have often been covalently bonded to natural or synthetic polymers in order to
reduce renal excretion [109].

DEX in its native form does not self-assemble into NPs, but nonetheless has high
water retention capacity and heavy metal chelating activity for Zn2+, Fe2+, Cu2+, Cd2+ and
Pb2+ [46]. Different strategies have been developed in order to fabricate DEX-based NPs
for drug delivery (Table 3), among which we can mention the covalent functionalization of
DEX hydroxyl groups or crosslinking of DEX through the lateral hydroxyl groups (using
a variety of crosslinking reactions and linkers), both necessary for physical self-assembly
into NPs [112] or reducing in vivo accumulation and clinical risk [30,96,113,114].
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Table 3. DEX-based NPs developed for drug delivery in different pathologies.

DDS Type Drug Loaded Targeted
Disease/Application Observations Reference

NP Lidocaine Very good drug-release results [115]

NP Model protein
and antibodies

Cardiovascular
pathologies

A promising tool for further
in vivo tests [116]

Magnetic NP-DEX coated Protocatechuic acid Vascular inflammation Very good in silico results [117]
Magnetic NP-DEX coated Protocatechuic acid Vascular inflammation Very good in vitro results [118]

NP 5-fluorouracil Skin damage Less immunogenic compared with
other systems [110]

NP 5-fluorouracil Colorectal cancer The HCT116 colon cancer cell line
treatment was efficient. [112]

NP Doxorubicin

pH/redox-responsive,
self-assembly in aqueous solutions;

excellent plasmatic stability and
anti-protein adsorption ability for

tumour cellular uptake.

[113]

NP Dodecilamine
and doxorubicin pH-sensitive drug release [119]

NP Doxorubicin pH-sensitive intracellular drug
release in HeLa cells [120]

NP Doxorubicin
Acid-responsive NP in water;

loaded system toxicity on HeLa
cells is comparable to the drug’s;

[63]

NP Doxorubicin Human cervix carcinoma
cells (HeLa)

No DDS cytotoxicity and structural
stability under the simulated

physiological conditions;
drug release in acidic conditions;

very good in vivo results

[121]

NP Amphotericin B Candida albicans infection
No loaded DDS toxicity compared

with free drug.
Very good results

[111]

NP

Bovine serum albumin,
granulocyte-macrophage
colony-stimulating factor
(GM-CSF), granulocyte

colony-stimulating factor
(G-CSF), β-galactosidase

and myoglobin

Protein stabilization for
pharmaceuticals

applications

DEX NPs can preserve the
protein’s bioactivity during the

preparation process;
DEX NPs attenuate the acidic

microenvironment by means of the
dilution effect;

[122]

NP Insulin Diabetes Very good results [123]

Magnetic NP-DEX coated Propiconazole Candida albicans infection

Direct interaction with the cell wall
in both planktonic and biofilm

phases;
77% biofilm breakdown

[117]

Magnetic NP-DEX coated Folic acid Magnetic
resonance imaging

Negative contrast agent for
antigen allowed arthritis

visualisation in a rat model and
measuring the treatment response

[114]

NP-DEX coated
Human epithelial

colorectal
adenocarcinoma cells

Good anticancer effect [124]

Gold NP-DEX coated
Solid carcinoma and

Ehrlich ascites carcinoma
transplanted on mice

Significant antitumour effects;
Improvement of body functions;

increased liver antioxidant
properties;

increased the B-cell lymphoma 2
gene expression level;

suppressed the apoptotic pathway

[125]

NP-DEX coated Zidovudine Viral infection Increased drug half-life;
well internalized in the neural cells [16]

NP Myristoyl-
ECGKRK peptide Cancer therapies Satisfactory results obtained [126]

NP Chloroquine diphosphate Plasmodium falciparum
malaria infection

Very good antimicrobial
effects obtained

DDS suitable for in vivo tests
[127]

NP Curcumin Breast cancer
DDS has good drug-loading and

delivery performance; very
effective against MCF-7 cell line

[128]
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In order to safely deliver a drug and to release the correct dose, first of all, it is manda-
tory to study the physico-chemical properties of the administered drug in the location
of interest. Furthermore, in order to selectively target a specific site, it is imperative to
investigate the physiological properties of the microenvironment. The toxicity and the bio-
distribution of a delivery system are influenced by the chemical nature of the components,
system’s size and the coating agents [125]. By using DEX as a coating agent for any NPs,
the interactions with cells and proteins are limited, thus conferring increased circulating
half-life and colloidal stability in biological environments, which in turn determines good
overall safety in vivo and no visible tissular damage [96,129]. At the same time, by the
encapsulation of the drug in these systems, the side-effects of the drug are minimized, the
efficiency is enhanced and the drug can be released in a controlled rate depending on the
drug’s diffusion coefficient [44,71,120,124].

4.3. Dextran as Nanocarrier Component

Nanocarriers (NC) are similar to NPs, but the methods of synthesis are different. Thus,
reaction components represented by natural polymers with low molecular weights and
various molecules with smaller or larger molecular weights are embedded by chemical or
physical processes [44,130]. Next, the final synthesised compound self-assembles through
hydrogen interactions or electrostatic attractions in a NC system. Natural or synthetic
hydrophobic substances with therapeutic activity are encapsulated either in the core or
grafted on the NC surface by chemical reactions or by electrostatic interactions [131].

Similar to NPs, NCs also help improve drug efficacy, having the ability to increase
drug absorption in tissue and increase cellular uptake, to protect the drug from degradation
and interaction with the biological environment and to control the drug’s pharmacokinetic
distribution profile [132]. NCs such as liposomes, micelles or polymeric NPs have shown
fabulous opportunities in the field of targeted drug delivery for cancer therapy [133].
Table 4 presents DEX-based NCs developed for drug delivery.

Table 4. DEX-based NCs developed for drug delivery.

DDS Type Drug Loaded Targeted
Disease/Applications Observations Reference

NC Camptothecin Cancer therapies

High drug-loading rate; superior stability
in aqueous solutions;

notable in vitro antitumour activity against
HeLa and MCF-7 cells

[130]

NC Choline kinase siRNA siRNA cancer therapy Successful delivery of siRNA [131]
DEX-coated graphene

oxide NP Curcumin MCF-7 breast cancer
cell lines

Very good results obtained; potential DDS
for chemotherapy application [44]

NC Paclitaxel and silybin A549 lung cancer cells

Excellent encapsulation efficiency of both
active substances;

employs synergistic effects through
chemotherapy sensitization and

microenvironment modulation, improving
the efficacy of cancer therapy; in vivo tests

confirmed tumour growth inhibition

[25]

Conjugate Calcium ions Calcium
supplements’ carrier

Could be used as an effective carrier for
new calcium supplements [134]

Nanowires Pharmaceutical
applications Useful biomaterial for medical applications [15]

NC Cabazitaxel Prostatic cancer Promising DDS as a substitution for the
current market formulation [135]

Conjugate Metronidazole Protozoa infection Very good in vivo results [136]

4.4. Dextran as Micelles’ Component

Micelles are a type of highly regarded DDS, especially for the delivery of hydropho-
bic/lipophilic drugs due to their unique physicochemical properties, containing a hy-
drophobic core and a hydrophilic shell. Natural polymeric micelles are more widely used
in novel DDS due to their biocompatibility and tunable properties [8]. These DDS have a
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great capacity to encapsulate high amounts of bioactive compounds and to deliver them at
targeted locations in the body.

Several groups have developed DEX-based micelles for drug delivery in a variety of
pathologies. Zhang et al. (2020) [137] developed a self-assembled pH-responsible micelle
formed by conjugated DEX loaded with doxorubicin and found that the drug accumulation
in tumours was increased due to permeation enhancement. Jin et al. (2017) [138] tested the
cytotoxicity and antitumour activity of their system on MCF-7 and SKOV-3 tumour cells
in vitro and the results were promising. Later, a self-assembled DEX-based micelle was
loaded with rapamycin, decreasing the drug’s toxicity and increasing the system’s uptake
by tumoral cells, without affecting normal cells’ viability [9]. Malekhosseini et al. (2020)
synthesized DEX-based micelles which had a hydrocortisone encapsulation efficiency of
79% and 90% drug release in the first 12 h with cell viability higher than 90% [8]. The
study of nateglinide and insulin, vitamin E succinate and insulin combinations loaded into
DEX-based micelles reduced oxidative stress and improved the mitochondrial function and
glucose metabolism, while also improving the cognitive capacity of mice, demonstrating a
paradigm for specific and high-efficacy combination therapy for Alzheimer’s disease [139].

5. Conclusions

Dextran is a biosynthesized non-toxic, biocompatible and biodegradable macro-
molecule which has been extensively used as a major component in many types of DDS
due to its versatile properties. Numerous DDS obtained so far using dextran have great
potential in different pharmaceutical applications but, in order to maintain the high DDS
biocompatibility, the use of dextran obtained by fermentation with minimum chemical
modifications is recommended. By performing dextran chemical modifications, artefacts
can appear in the DEX spatial structure which can further lead to biocompatibility de-
creasing or even cytotoxicity increasing. As a result, many DDS containing acetalated,
carboxymethyl, diethylaminoethyl-dextran, or dextran sulphate sodium salt have been
removed from in vivo or clinical studies.

On the other hand, the multitude of developed DDS (microspheres, microparti-
cles, nanoparticles, nanodroplets, liposomes, micelles, hydrogels, films, nanowires, bio-
conjugates, medical adhesives and others) have considerably increased the type and number
of applications compatible with DEX-DDS. However, there is still a need for continuous
DDS development in order to optimize and study as many systems as possible for biomedi-
cal and pharmaceutical applications.
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