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Abstract: The development of complex biological sample-compatible fluorescent molecularly im-
printed polymers (MIPs) with improved performances is highly important for their real-world
bioanalytical and biomedical applications. Herein, we report on the first hydrophilic “turn-on”-type
fluorescent hollow MIP microparticles capable of directly, highly selectively, and rapidly optosensing
hippuric acid (HA) in the undiluted human urine samples. These fluorescent hollow MIP microparti-
cles were readily obtained through first the synthesis of core-shell-corona-structured nitrobenzoxadiazole
(NBD)-labeled hydrophilic fluorescent MIP microspheres by performing one-pot surface-initiated atom
transfer radical polymerization on the preformed “living” silica particles and subsequent removal of
their silica core via hydrofluoric acid etching. They showed “turn-on” fluorescence and high optosens-
ing selectivity and sensitivity toward HA in the artificial urine (the limit of detection = 0.097 µM) as
well as outstanding photostability and reusability. Particularly, they exhibited much more stable
aqueous dispersion ability, significantly faster optosensing kinetics, and higher optosensing sensitiv-
ity than their solid counterparts. They were also directly used for quantifying HA in the undiluted
human urine with good recoveries (96.0%–102.0%) and high accuracy (RSD ≤ 4.0%), even in the
presence of several analogues of HA. Such fluorescent hollow MIP microparticles hold much promise
for rapid and accurate HA detection in the clinical diagnostic field.

Keywords: molecularly imprinted polymers; hollow; complex biological samples; fluorescence
“turn-on”; hippuric acid; human urine sample; surface-initiated ATRP; sacrificial template method

1. Introduction

Molecularly imprinted polymers (MIPs) are synthetic receptors with nanosized target
analyte-binding cavities [1–6]. They can be readily prepared via the simple template-directed
synthetic strategy. Their outstanding attributes (i.e., high molecular recognition ability,
excellent physiochemical stability, facile preparation, low cost, and easy functionalization)
make them highly promising substitutes for biological receptors (e.g., antibody and enzyme)
in the sensor area [7–12]. In particular, MIP-based fluorescent chemosensors combining
the advantages of MIPs and fluorescent analyses (i.e., high sensitivity, simple instruments,
and easy implementation [13]) have attracted enormous interest in the bioanalytical and
biomedical fields [7–12]. They are normally fabricated by simply incorporating various
fluorescent species into MIPs, where the fluorescent species function as the transducers to
quantitatively transform the recognition processes of the MIPs into detectable photosignals.
Despite the tremendous progress made in the development of MIP-based optosensors,
the fluorescent MIPs that can be directly used for selective optosensing of small organic
analytes in the complex biological samples are still rare, which greatly limits their broad,
real-world applications.
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To address the above-mentioned challenging issue, our group has developed some
versatile strategies for preparing complex biological sample-compatible fluorescent MIPs
through grafting hydrophilic polymer brushes onto the surfaces of the fluorescent MIP mi-
cro/nanoparticles (labeled with either an organic fluorescent unit or inorganic CdTe quantum
dots (QDs) [14–16] or both of them [17–19]) via various controlled/“living” radical polymer-
ization techniques. The resulting hydrophilic single fluorescent MIPs could directly and
selectively detect antibiotic tetracycline (Tc) [14,16] and food additive folic acid (FA) [15]
in the complex biological samples (including the undiluted pure serums [14,15] or both
the undiluted pure serums and milks [16]) through fluorescence quenching (or “turn-off”)
mechanism, while the obtained hydrophilic dual (or ratiometric) fluorescent MIPs were
capable of directly and selectively optosensing (even with the naked eyes) the herbicide
2,4-dichlorophenoxyacetic acid (2,4-D) in the undiluted pure milks through the fluorescence
“turn-on” mechanism [17–19]. Note that the “turn-on”-type fluorescence of the optosensors
can avoid false-positive responses owing to less interfering effects and achieve higher sensitiv-
ity due to their lower optical background and higher signal-to-noise ratio in comparison with
fluorescence quenching [20]. In all these cases, the hydrophilic polymer brushes function as
a protective layer for the fluorescent MIP particles, which can not only significantly reduce
the hydrophobicity-induced nonspecific bindings of the fluorescent MIPs in aqueous media
by enhancing their surface hydrophilicty, but they also improve their antifouling ability and
thus prevent the proteins in the complex biological samples to accumulate on their surfaces
and block the imprinted binding sites [21–23]. Nevertheless, the presence of hydrophilic
polymer brushes on the MIP particle surfaces has proven to retard their analyte binding
kinetics, mainly because of the barrier effect of the polymer brush layers on the diffusion of
the target analytes to the imprinted binding sites on the MIP particles [24]. Such retarded
analyte binding kinetics will largely reduce the optosensing speed of the fluorescent MIPs
and thus has negative influence on their practical uses. Therefore, the development of
complex biological sample-compatible fluorescent MIPs with more rapid optosensing ki-
netics is highly desirable. In addition, the dispersion stability of such complex biological
sample-compatible fluorescent MIP particles in the complex aqueous solutions still needs
to be improved to facilitate the handling of the samples and provide more repeatable
detection results.

Thus far, some useful approaches have been developed to enhance the binding kinetics
of the MIPs. One normally used approach is to prepare core-shell-structured MIP particles
by grafting a thin MIP layer onto various solid particle surfaces via different synthetic
strategies [25–27]. The resulting MIPs have easily accessible imprinted binding sites that
are in close proximity to the MIP particle surfaces, which can thus largely enhance the
template binding kinetics. Another efficient approach has also been developed to further
improve the binding kinetics of such core-shell-structured MIP particles by etching their
cores [28–31]. The resulting hollow MIP particles were found to require much less time to
reach the equilibrium binding in comparison with their solid counterparts. In particular,
these hollow MIP particles are also expected to have improved dispersion stability in the
solutions because of their low densities, which is highly beneficial to their optosensing
applications. Nevertheless, to the best of our knowledge, no hollow MIP particles capable of
directly and highly selectively recognizing small organic analytes in the complex biological
samples have been reported up to now.

Herein, we report on, for the first time, the development of complex biological sample-
compatible “turn-on”-type fluorescent hollow MIP microparticles with enhanced optosens-
ing performances by combining our recently developed one-pot surface-initiated atom
transfer radical polymerization (ATRP) (SI-ATRP) strategy [19] and sacrificial template
method. Hippuric acid (HA) was chosen here as the model target analyte because it is
a major human metabolite in toluene-exposed humans (thus as an important biological
indicator for occupational exposure monitoring) [32] and has also been recognized as a lung
cancer biomarker in human plasma and urine samples [33]. The successful synthesis of such
fluorescent hollow MIP microparticles was verified by the characterization results of their
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morphologies, chemical structures, surface hydrophilicity, and aqueous dispersion stability.
Both their presence of imprinted binding sites and complex aqueous sample-compatibility
were confirmed by the equilibrium/competitive binding and fluorescent optosensing re-
sults in the artificial urine. In particular, their direct, highly selective, rapid, and accurate
quantification of HA in the undiluted human urine samples (even in the presence of several
analogues of HA) was also demonstrated. To our knowledge, this is not only the first report
on the successful preparation of complex biological sample-compatible fluorescent hollow
MIP particles but also the first MIP capable of directly and highly selectively detecting HA
in the undiluted complex biological samples.

2. Results and Discussion
2.1. Synthesis and Characterization of the Hydrophilic Fluorescent Solid and Hollow
HA-MIP/CP Microparticles

The aim of this work is to develop complex biological sample-compatible fluorescent
MIP microparticles with enhanced optosensing performances. To realize this goal, hy-
drophilic fluorescent hollow MIP microparticles (i.e., H@NBD-MIP@PEG, entry 4 in Table 1)
were prepared through first one-pot synthesis of core-shell-corona-structured hydrophilic
fluorescent solid MIP microspheres (i.e., SiO2@NBD-MIP@PEG, entry 2 in Table 1) and
subsequent removal of their silica core via HF etching (Scheme 1). SiO2@NBD-MIP@PEG
microspheres were readily obtained via the controlled grafting of a NBD-labeled ultrathin
HA-MIP layer with hydrophilic polymer brushes onto the preformed uniform “living” sil-
ica particles with surface-bound alkyl halide groups (i.e., ATRP-initiating groups) (prepared
via one-pot sol-gel reaction of TEOS in the presence of BIBAPTES (Scheme 1b) [34]) via
one-pot SI-ATRP in the presence of PEG-Br (Scheme 1b), where HA, 4-VP, MA-Urea-NBD,
and EGDMA were utilized as the template, functional monomer, fluorescent comonomer,
and cross-linker, respectively (Scheme 1b), according to our previous reports [17–19]. The
carboxylic acid and amide groups of HA can form hydrogen bonding interactions with
both the pyridine unit of 4-VP and ureido unit of MA-Urea-NBD, which can result in
the formation of the self-assemblied HA/4-VP and HA/MA-Urea-NBD supramolecular
complexes during the molecular imprinting process. In particular, MA-Urea-NBD could
show “turn-on”-type fluorescence upon exposure to HA (Figure S1), which is important for
obtaining fluorescent MIP optosensors that can avoid false-positive responses and achieve
higher sensitivity [20]. The hydrophilic fluorescent solid control polymer particles (i.e.,
SiO2@NBD-CP@PEG, entry 3 in Table 1) were also similarly prepared, except for omitting
HA during the SI-ATRP process. The resulting hydrophilic fluorescent solid HA-MIP
and CP showed certain weight increases compared with the starting SiO2-Br (entries 1–3,
Table 1), revealing that the above one-pot SI-ATRP processes indeed took place.

Table 1. Synthetic and characterization data of the “living” silica particles and both the hydrophilic
fluorescent solid and hollow HA-MIP/CP particles.

Entry Sample ∆W (%) a Dn,AFM
(nm) b U b Dn,DLS

(nm) c PDI c Contact
Angle (◦) d

1 SiO2-Br - 496 1.004 529 0.112 78.2 ± 2.6
2 SiO2@NBD-MIP@PEG 18.4 525 1.005 573 0.134 64.6 ± 2.7
3 SiO2@NBD-CP@PEG 17.5 523 1.010 570 0.115 64.9 ± 2.1
4 H@NBD-MIP@PEG 83.4 - - 568 0.129 -
5 H@NBD-CP@PEG 83.8 - - 566 0.158 -

a The enhanced weight percentage of SiO2@NBD-MIP/CP@PEG compared with the starting SiO2-Br and reduced
weight percentage of H@NBD-MIP/CP@PEG compared with SiO2@NBD-MIP/CP@PEG. b Dn,AFM and U refer
to the number-average diameter and size distribution index of the samples determined by AFM, respectively.
c Dn,DLS and PDI denote the number-average hydrodynamic diameter and particle dispersion index of the samples
determined by DLS in water, respectively. d The static water contact angles of the sample films.
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Scheme 1. (a) Schematic illustration for preparing “turn-on”-type fluorescent hollow MIP microparti-
cles with PEG brushes via the combined use of one-pot SI-ATRP strategy and the sacrificial template
method. (b) Chemical structures of some reagents utilized in this work.

Hydrophilic fluorescent hollow HA-MIP/CP microparticles (i.e., H@NBD-MIP/CP@PEG,
entries 4 and 5 in Table 1) were then directly prepared by etching the silica core from
SiO2@NBD-MIP/CP@PEG particles (entries 2 and 3, Table 1) with a 10% HF solution
in ethanol at ambient temperature [34]. The resulting H@NBD-MIP/CP@PEG exhibited
large weight decrease in comparison with their starting solid counterparts, indicating the
successful removal of the silica core from SiO2@NBD-MIP/CP@PEG.

AFM characterization revealed that SiO2-Br and SiO2@NBD-MIP/CP@PEG were all
narrowly dispersed spherical microparticles (Figure 1a–c). The diameters of SiO2@NBD-
MIP/CP@PEG determined by AFM (Dn,AFM) proved to be larger than that of SiO2-Br
(Table 1), suggesting the successful one-pot SI-ATRP processes. H@NBD-MIP/CP@PEG
were found to be uniform collapsed bowl-shaped microparticles with shrinked sizes (com-
pared with their solid counterparts) in their dry state (Figure 1d,e), which again confirmed
the successful removal of the silica core. DLS measurements also confirmed the successful
synthesis of SiO2@NBD-MIP/CP@PEG with their hydrodynamic diameters (Dn,DLS) larger
than that of SiO2-Br (note that Dn,DLS values are somewhat larger than Dn,AFM values
(Table 1), as reported previously [19,21]). In addition, H@NBD-MIP/CP@PEG proved to
have rather similar Dn,DLS values as their solid counterparts in water, demonstrating that
the hydrophilic hollow HA-MIP/CP microparticles have similar spherical morphologies as
their solid counterparts in water.

Figure 2a presents the FT-IR spectra of SiO2-Br and both the hydrophilic fluorescent
solid and hollow HA-MIPs/CPs. The presence of the characteristic amide bands around
1647 cm−1 (amide I band) and 1535 cm−1 (amide II band) in the spectrum of SiO2-Br
indicated that it had ATRP-initiating groups on the surface (Figure 2(a1)). Poly(EGDMA)
and poly(4-VP) (and thus the MIP/CP layers) proved to be present onto the SiO2@NBD-
MIP/CP@PEG surfaces because some new absorption bands (i.e., C=O stretching band
around 1730 cm−1 and C=N stretching band around 1602 cm−1) appeared in their spectra
in comparison with that of SiO2-Br (Figure 2(a2,a3)). In addition, the presence of PEG
brushes on SiO2@NBD-MIP/CP@PEG was also verified by the existence of the new CH2
bending vibration band around 1460 cm−1 in their spectra compared with that of SiO2-Br.
The successful syntheses of the hydrophilic fluorescent hollow HA-MIP/CP were verified
by the disappearance of the Si-O-Si stretching peak around 1065 cm−1 and Si-O stretching
peaks around 800 and 446 cm−1 in their spectra (Figure 2(a4,a5)). Note that the absorption
bands of the NBD unit were not discernible in the spectra of the fluorescent solid HA-
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MIP/CP, mainly because of their overlap with those of the SiO2 core. This was confirmed
by the appearance of the NBD absorption peaks around 1556 and 1252 cm−1 (stemming
from the ureido group of NBD) in the spectra of H@NBD-MIP/CP@PEG. Moreover, the
C-O (in PEG) stretching band around 1132 cm−1 (previously overlapped with the Si-O-Si
stretching band of SiO2@NBD-MIP/CP@PEG) could also be clearly observed in the spectra
of H@NBD-MIP/CP@PEG.
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Figure 2. (a) FT-IR spectra of SiO2-Br (a1), SiO2@NBD-MIP@PEG (a2), SiO2@NBD-CP@PEG (a3),
H@NBD-MIP@PEG (a4), and H@NBD-CP@PEG (a5). (b) Photographs of the ultrasonically dispersed
aqueous mixtures (2.0 mg/mL; the concentration of the hollow samples was calculated by using the
weights of their solid counterparts before etching) after being settled down at 20 ◦C for 0 h (b1,b2),
20 h (b3,b4), and 34 h (b5,b6), respectively. The samples located from left to right in each photograph
are pure water, SiO2-Br, SiO2@NBD-MIP@PEG, SiO2@NBD-CP@PEG, H@NBD-MIP@PEG, and
H@NBD-CP@PEG [the photographs of the aqueous mixtures were taken under the irradiation of the
natural light (b1,b3,b5) and 365 nm UV light (b2,b4,b6)].
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The static water contact angles of the films prepared with SiO2-Br and SiO2@NBD-
MIP/CP@PEG were then measured to evaluate their surface hydrophilicity. SiO2@NBD-
MIP/CP@PEG films showed reduced static water contact angles compared with the SiO2-Br
film (entries 1–3, Table 1), which indicated that they were successfully grafted with the
rather hydrophilic PEG brushes. Note that the static water contact angles of the H@NBD-
MIP/CP@PEG films were not determined because only rather small amounts of the hollow
HA-MIP/CP microparticles could be obtained after HF etching.

The aqueous dispersion stability of SiO2-Br and both the solid and hollow HA-MIP/CP
was studied by monitoring the sedimentation processes of their ultrasonically dispersed mix-
tures in pure water (Figures 2b and S2). It can be seen that SiO2-Br and the solid HA-MIP/CP
formed white suspensions in pure water under the natural light irradiation (Figures 2(b1) and
S2(a1)). However, they showed a hyacinthine color (probably stemming from the scattering
light of the 365 nm UV light) and cyan color (possibly stemming from a mixed color of
the green fluorescence and the scattered 365 nm UV light), respectively, under the 365 nm
UV light irradiation (Figures 2(b2) and S2(a2)). Interestingly, the suspensions of the hol-
low HA-MIP/CP in pure water were found to be totally transparent under the natural
light irradiation (they showed green fluorescence under the 365 nm UV light irradiation)
(Figures 2(b1,b2) and S2(a1,a2)), probably because of their ultrathin MIP/CP layers and
very hydrophilic PEG brushes. The solid HA-MIP and CP showed almost the same (and
rather slow) sedimentation speed as SiO2-Br although relatively larger static water contact
angle was observed for the SiO2-Br film in comparison with the solid HA-MIP/CP films
(entries 1–3, Table 1), which could be attributed to the relatively larger diameters of the
solid HA-MIP/CP compared with SiO2-Br. These results again clearly demonstrated that
the HA-MIP/CP layers with hydrophilic polymer brushes were successfully grafted onto
the silica particles via the one-pot SI-ATRP. Note that, while the solid HA-MIP/CP fully
settled to the bottom of the bottle in pure water after 34 h (Figures 2(b5) and S2(h1)), the
aqueous suspension of the hollow HA-MIP/CP remained transparent under the same
condition and negligible sedimentation took place, as revealed by the still homogeneous
green fluorescence of their aqueous suspensions (Figures 2(b5,b6) and S2(h1,h2)). The
above results strongly demonstrate that our hydrophilic fluorescent hollow HA-MIP/CP
have largely improved aqueous dispersion stability compared with their solid counterparts,
which is highly useful for their optosensing applications.

2.2. Equilibrium/Competitive Binding Properties of the Hydrophilic Fluorescent Solid and Hollow
HA-MIPs/CPs in Different Media

Figure S3 shows the equilibrium template bindings of the hydrophilic fluorescent solid
and hollow HA-MIPs/CPs in both the organic solvent (acetonitrile/methanol = 3:1 v/v) and
artificial urine. Both the solid and hollow HA-MIPs exhibited obvious specific binding (i.e.,
the binding difference between the MIP and its CP [35]) in the organic solvent and artificial
urine, indicating the existence of imprinted binding sites in these MIPs. In addition, the
hydrophilic fluorescent solid HA-MIP showed a specific template binding in the artificial
urine almost the same as it showed in the organic solvent (Figure S3a,b), mainly because
of their high surface hydrophilicity (Table 1, Figure 2b) [21,22]. Similarly, the hydrophilic
fluorescent hollow HA-MIP also exhibited good complex aqueous sample-compatiblity,
as revealed by its presence of apparent specific template binding in the artificial urine.
Nevertheless, it showed an obviously larger specific template binding in the artificial urine
than in the organic solvent, which might stem from the somewhat different inner surfaces
of the hollow HA-MIP and its CP, thus leading to the different template bindings on their
inner surfaces.

The binding selectivity of the hydrophilic fluorescent solid and hollow HA-MIPs/CPs
were then investigated by measuring their competitive bindings toward HA and its struc-
tural analogues (including 3-methylhippuric acid (3-MHA), 4-aminohippuric acid (4-AHA),
and L-tyrosine (Tyr) (Scheme 1b)) in different media (Figure S4). Apparent HA selectivity
was observed for both the solid and hollow HA-MIPs in both the organic solvent and
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artificial urine, as revealed by their much larger “imprinting-induced promotion of bind-
ing” (IPB) values toward HA than its analogues (Table S2) [36]. The above results clearly
demonstrate that the combined use of one-pot SI-ATRP and the sacrificial template method
is highly versatile for obtaining complex biological sample-compatible fluorescent hollow
MIP microparticles.

2.3. Optosensing Properties of the Hydrophilic “Turn-On”-Type Fluorescent Solid and Hollow
HA-MIP/CP Micropartilces in the Artificial Urine

In this section, the optosensing properties of the above-obtained hydrophilic fluo-
rescent solid and hollow HA-MIP/CP microparticles in the artificial urine were investi-
gated. We first studied their optosensing kinetics by recording the fluorescence spectra
of their mixed solutions with HA in the artificial urine after being incubated for different
times (Figures 3 and S5). Both the hydrophilic fluorescent solid and hollow HA-MIPs/CPs
showed “turn-on” fluorescence upon their exposure to HA solutions, and the fluores-
cence intensities of their NBD units (λmax = 514 nm) were found to increase with time and
then leveled off after 30 and 12 min, respectively. The above results indicated that the
hydrophilic fluorescent hollow HA-MIP/CP had much faster optosensing kinetics than
their solid counterparts in the artificial urine, just as observed by others for the (fluorescent)
hollow MIPs in the organic solvents or mixtures of an organic solvent and water [29–31].
In addition, much larger fluorescence enhancement effect was observed for the fluorescent
solid and hollow HA-MIPs than their corresponding HA-CPs, which could be ascribed
to the existence of HA-imprinted binding sites in these HA-MIPs. The fluorescence en-
hancement of the fluorescent solid and hollow HA-MIPs was induced by both the stronger
specific interaction between the imprinted binding sites and HA and the weaker nonspecific
interaction between the MIP surfaces and HA. In contrast, the fluorescent solid and hollow
HA-CPs only had weaker nonspecific interaction with HA, thus leading to their smaller
fluorescence enhancement.
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Figure 3. (a,b) Fluorescence spectra of the hydrophilic fluorescent hollow HA-MIP (a)/CP (b) after
their incubation with a HA solution (20 µM) in the artificial urine at 25 ◦C for different times (hollow
MIP/CP concentration: 0.25 mg/mL; their concentration was calculated by using the weight of their
corresponding solid ones before etching). (c) Optosensing kinetics of the hydrophilic fluorescent
hollow HA-MIP (filled symbol)/CP (open symbol) in a HA solution (20 µM) in the artificial urine at
25 ◦C (derived from Figure 3a,b; Ft and F0 in (Ft − F0)/F0 are the fluorescence intensity of the NBD
unit (at 514 nm) at a time of t and 0, respectively).
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Some important optosensing parameters of the hydrophilic fluorescent solid and
hollow HA-MIPs/CPs (including the linear detection range, limit of detection (LOD), and
imprinting factor (IF)) were then determined by carrying out their spectrofluorimetric
titration in the artificial urine (Figures 4 and S6). The fluorescence intensities of both the
hydrophilic fluorescent solid and hollow HA-MIPs/CPs proved to increase with an increase
in the HA concentrations. In addition, both the hydrophilic fluorescent solid and hollow
MIPs also exhibited much larger fluorescence enhancement effect than their corresponding
CPs, just as observed in the above optosensing kinetic studies. By fitting these fluorescent
titration results with the equation F/F0 = 1 + KC (where F0 and F are the fluorescence
intensities in the absence and presence of HA, respectively, K is the constant, and C is the
HA concentration) (Figures 4c and S6c), linear calibration curves were achieved for the
fluorescent solid and hollow HA-MIP chemosensors in the range of 0–20 µM. Moreover, the
LOD values of the fluorescent solid and hollow HA-MIPs were determined to be 0.145 µM
and 0.097 µM, respectively, by using the equation LOD = 3δ/KMIP (where δ is the standard
deviation of the blank measurements (for 20 times) and KMIP is the slope of the linear
optosensing calibration curves for the fluorescent solid and hollow HA-MIPs) [37]. It is
noteworthy that the fluorescent hollow HA-MIP showed higher optosensing sensitivity
than its corresponding solid HA-MIP, which could be attributed to the combined effect of its
larger template binding capacity in the artificial urine (resulting in somewhat larger KMIP)
and the higher aqueous dispersion stability (leading to smaller δ) than the solid HA-MIP.
Furthermore, the IF values of the fluorescent solid and hollow HA-MIPs were derived to be
3.34 and 3.11 in the artificial urine, respectively, by using the equation IF = KMIP/KCP, which
again confirmed that both the fluorescent solid and hollow HA-MIPs had HA-imprinted
binding sites and high template recognition ability in complex aqueous media. Moreover,
almost the same IF values of the fluorescent solid and hollow HA-MIPs indicated that the
silica core-etching process hardly had a negative effect on the imprinted binding sites of
the resulting fluorescent hollow HA-MIP. Based on the above optosensing results, we can
conclude that the introduction of hollow cavities inside the hydrophilic fluorescent HA-
MIP microparticles can result in much faster optosensing kinetics and higher optosensing
sensitivity, which are highly useful for their real-world sensing applications.

The optosensing selectivity of the hydrophilic fluorescent solid and hollow HA-
MIPs/CPs was also studied by exposing them to HA and its structural analogues [in-
cluding 3-MHA, 4-AHA, and Tyr (Scheme 1b)] in the artificial urine. It can be seen from
Figures 5 and S7 that both the fluorescent solid and hollow HA-MIPs/CPs showed fluores-
cence enhancement toward 3-MHA and Tyr but fluorescence quenching toward 4-AHA.
The fluorescence quenching of the studied HA-MIPs/CPs toward 4-AHA might be at-
tributed to the electron transfer from the amino unit of 4-AHA to their embedded NBD
units, just as described in a previous report by Chen and coworkers [38]. Nevertheless, the
fluorescent solid and hollow HA-MIPs showed much larger fluorescence change toward
HA than its analogues. In addition, the solid and hollow HA-MIPs/CPs exhibited almost
the same and rather small fluorescence change toward all the analogues of HA. These
results, together with the hardly changed fluorescence enhancement of these solid and
hollow HA-MIPs even with the addition of two equivalent of its one analogue in the
studied HA solutions, strongly demonstrate that both the hydrophilic fluorescent solid and
hollow HA-MIPs have excellent optosensing selectivity toward HA in the artificial urine
and their fluorescence enhancement toward the analogues of HA should be ascribed to
nonspecific bindings.
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Figure 5. Fluorescence enhancement of the hydrophilic fluorescent hollow HA-MIP (filled column)/CP
(open column) upon exposure to a HA, 3-MHA, 4-AHA, or Tyr solution (CHA, 3-MHA, 4-AHA, or Tyr =
20 µM) (a) or to a HA solution (20 µM) in the presence of 40 µM of 3-MHA, 4-AHA, or Tyr (b) in the
artificial urine at 25 ◦C for 2 h (hollow MIP/CP concentration: 0.25 mg/mL; their concentration was
calculated by using the weights of their solid counterparts before etching).

Finally, the fluorescent stability and reusability of the hydrophilic fluorescent solid
and hollow HA-MIPs/CPs were evaluated owing to their high importance for the real-
world applications. Both the fluorescent solid and hollow HA-MIPs/CPs proved to have
high photostability, as revealed by their negligible fluorescence intensity change around
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514 nm after being put in pure water at room temperature under air atmosphere for 10 days
(Figure S8). In addition, their excellent reusability was also clearly demonstrated by their
nearly constant fluorescent intensities during 10 regeneration cycles (Figure S9).

2.4. Direct, Selective, Rapid, and Accurate Quantification of HA in the Undiluted Human Urine
with the Hydrophilic “Turn-On”-Type Fluorescent Hollow HA-MIP

The hydrophilic “turn-on”-type fluorescent hollow HA-MIP was then used for direct
and highly selective optosensing of HA in the undiluted human urine to demonstrate its
real complex biological sample-compatibility. The presence of a certain amount of HA in
the studied blank human urine sample was first confirmed by HPLC measurement, and
the HA content was determined to be 1.56 µM (the human urine sample was pretreated
prior to the HPLC analysis to remove proteins by adding methanol into it following the
previously reported method [39,40]). Importantly, our hydrophilic fluorescent hollow HA-
MIP optosensor also provided a rather close HA content for the blank human urine sample
(i.e., 1.53 µM), which was rapidly obtained by directly measuring the fluorescence intensity
of the incubated mixture of our fluorescent hollow HA-MIP and urine sample (after an
incubation time of 15 min) and fitting the datum into the calibration curve achieved from
the artificial urine sample optosensing.

With the above results in hand, we further detected the HA contents in the undiluted
human urine samples spiked with different amounts of HA or a mixture of HA and its
several analogues by using our hydrophilic fluorescent hollow HA-MIP. Good recoveries
(96.0–102.0%) and low relative standard deviations (RSDs) (≤4.0%) were achieved for HA
optosensing in all cases (entries 2–7, Table 2). In particular, these HA optosensing results
agreed well with the HPLC characterization data (Table 2). Based on the above results, we
can conclude that our hydrophilic “turn-on”-type fluorescent hollow HA-MIP is highly
promising for direct, highly selective, rapid, and accurate HA optosensing in the complex
biological samples without requiring any sample pretreatment and expensive instrument.

Table 2. Direct detection of HA in the undiluted urine samples at three spiking levels of both HA
and its mixtures with several analogues with the hydrophilic fluorescent hollow HA-MIP a.

Entry Analyte(s)
Spiked

Analyte(s)
(µM)

Detected by MIP
Optosensor

HA (µM)

Optosensing
Recovery
± RSD (%)

(n = 3) b

Detected by
HPLC

HA (µM)

HPLC
Recovery
± RSD (%)
(n = 3) b,c

1 HA 0 (Blank urine) 1.53 - 1.56 -
2 HA 0.5 2.01 ± 0.02 96.0 ± 4.0 2.08 ± 0.02 103.7 ± 4.4
3 HA 5 6.52 ± 0.06 99.8 ± 1.2 6.61 ± 0.09 101.0 ± 1.8
4 HA 10 11.64 ± 0.06 101.1 ± 0.6 11.50 ± 0.15 99.4 ± 1.5

5 HA + 3-MHA +
4-AHA + Tyr

0.5 HA + 0.5(3-MHA)
+ 0.5(4-AHA) + 0.5 Tyr 2.02 ± 0.01 98.0 ± 2.0 2.07 ± 0.02 102.3 ± 4.1

6 HA + 3-MHA +
4-AHA + Tyr

5 HA + 5(3-MHA) +
5(4-AHA) + 5 Tyr 6.63 ± 0.08 102.0 ± 1.6 6.74 ± 0.07 103.5 ± 1.5

7 HA + 3-MHA +
4-AHA + Tyr

10 HA + 10(3-MHA) +
10(4-AHA) + 10 Tyr 11.69 ± 0.09 101.6 ± 0.9 11.62 ± 0.23 100.6 ± 2.3

a HA optosensing was carried out by first incubating a mixture of the fluorescent hollow HA-MIP (0.25 mg/mL,
the concentration of the hollow MIP was calculated by using the weight of its solid counterpart before its etching)
and the undiluted human urine samples without or with spiked analytes for 15 min and then directly measuring
their fluorescent spectra. b These optosensing and HPLC recoveries were derived by excluding the initial HA
concentration in the urine samples determined by the hollow MIP optosensor (1.53 µM) and HPLC (1.56 µM),
respectively. c All human urine samples were pretreated to remove proteins by first adding methanol into
them (methanol/urine = 1:1 v/v) and then centrifugating the samples (10,000 rpm) for 10 min prior to HPLC
analyses [39,40].

It is noteworthy here that our fluorescent hollow MIP optosensor shows apparent
advantages over the previously reported MIP-based HA-detecting systems (Table 3) because
no complex and tedious sample pretreatment is required during its optosensing complex
biological samples. This, together with its high enough analytical sensitivity (its LOD
value is much lower than the normally found HA levels in the healthy human urines (from
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several to dozens of µM [41,42] to several mM [43])) and prominent optosensing selectivity
and accuracy, makes it highly promising in the practical bioanalytical and diagnostic
applications (note that the HA contents in the urine samples can be easily measured
through their dilution with water when their HA contents are beyond the linear range of
our MIP optosensor).

Table 3. Performance comparison of our hydrophilic fluorescent hollow HA-MIP optosensor with
other previously reported MIP-based detection systems for HA.

Analytical Method a Sample Linear Range LOD Recovery (%) RSD (%) Ref.

Solid-phase extraction
(SPE)/HPLC-UV

Human urine
(filtered through

Whatman paper No. 42)

0.3–7500 µg/L
(0.0017–41.86 µM)

0.15 µg/L
(0.84 nM) 88.0–104.0 <6.1 [44]

SPE/LC-MS/MS
Human urine (filtered

through a 0.22 µm
PTFE membrane)

0.5–10,000 µg/L
(0.0028–55.81 µM)

89 ng/L
(0.50 nM) 91.4–109.1

6.4–9.6
(intra-day)

9.2–11.5
(inter-day)

[41]

SPE/micellar
electrokinetic

chromatography
(MEKC)

Human urine
(without

pretreatment)

0.5–5.0 g/L
(2.79–27.91 mM)

0.15 g/L
(0.84 mM) - <16 [45]

Micro-extraction by
packed sorbent

(MEPS)/LC-MS/MS

Plasma and urine
(pretreated to remove

proteins with
acetonitrile)

1–1000 nM 0.3 nM 91–96 1.1–7.1 [46]

Hollow fiber based
liquid-phase

microextraction/
LC-MS/MS

Human plasma and
urine [pretreated to

remove proteins with
25 mM ammonium

acetate (pH 5.0)]

1–2000 nM 0.3 nM 97–104 1.2–4.1 [33]

Electrochemical
sensing

Human serum
(pretreated to remove

proteins with
methanol) and diluted

human urine

0.05–40 nM and
40–500 nM 0.012 nM 96.0–105.0 1.2–3.2 [47]

Direct fluorescent
optosensing

Human urine
(without any
pretreatment)

0–20 µM 0.097 µM 96.0–102.0 0.6–4.0 This
work

a SPE separation normally requires four steps (i.e., column condition, sample upload, wash, and elution), which is
rather time-consuming and tedious. In addition, many SPE parameters (e.g., the sample pH, the amount of the
sorbent, and the washing and elution solvent volumes) also need optimization prior to the sample extraction.

3. Materials and Methods
3.1. Materials and Reagents

The materials and reagents utilized in this work (including the purification of cop-
per(I) chloride (CuCl) [48] and preparation of 3-(N-propyl)triethoxysilane 2-bromo-2-
methylpropanamide (BIBAPTES) [49], tris(2-(dimethylamino)ethyl)amine (Me6TREN) [50],
2-(3-(4-nitrobenzo[c][1,2,5]oxadiazo-7-yl)ureido)ethyl methacrylate (MA-Urea-NBD) [51],
and artificial urine [52]) are described in the Supporting Information.

3.2. Preparation of the Core-Shell-Corona-Structured “Turn-On”-Type Fluorescent HA-Imprinted
Polymer (HA-MIP)/Control Polymer (CP) (or Non-Imprinted Polymer) Microspheres with Labeled
Fluorescent Nitrobenzoxadiazole (NBD) Unit and Polyethylene Glycol (PEG) Brushes [Briefly
Hydrophilic Fluorescent Solid HA-MIP/CP (i.e., SiO2@NBD-MIP@PEG and
SiO2@NBD-CP@PEG, Entries 2 and 3 in Table 1)]

The hydrophilic fluorescent solid HA-MIP microspheres (i.e., SiO2@NBD-MIP@PEG)
were prepared via one-pot SI-ATRP in the presence of a hydrophilic macro-ATRP initiator
[i.e., PEG with one alkyl bromide end-group (or ATRP-initiating group) (PEG-Br)] with the
“living” silica particles (SiO2-Br, entry 1 in Table 1) (see their preparation in the Supporting
Information) as the immobilized ATRP initiator following our previously reported proce-
dure but with some modification (including the template and ratios of some reagents) [19]:
4-vinylpyridine (4-VP) (1.61 mmol), HA (0.81 mmol), MA-Urea-NBD (0.11 mmol), dried
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acetonitrile (70 mL), and methanol (24 mL) were added into a one-neck round-bottom flask
(250 mL) with a magnetic stir bar inside successively. The self-assembly of the functional
monomers and template was then carried out by first stirring the above solution in an
ice-water bath for 2 h and then putting it in a refrigerator (4 ◦C) overnight. Afterwards,
ethylene glycol dimethacrylate (EGDMA) (4.68 mmol) and Me6TREN (0.17 mmol) were
added successively into the reaction system under stirring. After the above reaction mixture
was bubbled with argon for 15 min in an ice-water bath, CuCl (0.057 mmol) was added.
After another 15 min of argon bubbling through the reaction mixture, the “living” SiO2-Br
particles (140.0 mg) and PEG-Br (116.2 mg) were added. The reaction system was then
bubbled with argon for 5 min, sealed, and magnetically stirred (300 rpm) at 70 ◦C for 48 h.
The product was collected by centrifugation, washed with a mixture of methanol and acetic
acid (9:1 v/v) thoroughly (to remove the template) and then methanol, and finally dried at
40 ◦C under vacuum to a constant weight, leading to the desired SiO2@NBD-MIP@PEG
with a weight increase of 18.4% compared with the starting “living” SiO2-Br particles
(entry 2, Table 1).

The corresponding hydrophilic fluorescent solid CP microspheres (i.e., SiO2@NBD-
CP@PEG) were also prepared and purified under the identical conditions, except for
omitting HA. They showed a weight increase of 17.5% compared with the starting “living”
SiO2-Br particles (entry 3, Table 1).

3.3. Preparation of the “Turn-On”-Type Fluorescent Hollow HA-MIP/CP Microparticles with PEG
Brushes [Briefly Hydrophilic Fluorescent Hollow HA-MIP/CP (i.e., H@NBD-MIP@PEG and
H@NBD-CP@PEG, Entries 4 and 5 in Table 1)]

The hydrophilic fluorescent hollow HA-MIP/CP microparticles (i.e., H@NBD-MIP/
CP@PEG) were prepared by removing the silica core from their corresponding solid HA-
MIP/CP microspheres (i.e., SiO2@NBD-MIP/CP@PEG) via hydrofluoric acid (HF) etching
as follows: a dispersed suspension of SiO2@NBD-MIP/CP@PEG (0.25 mg/mL) in a mixture
of HF aqueous solution (40%) and anhydrous ethanol (1:3 v/v) was incubated at 25 ◦C for
15 min, the resulting hollow polymer particles were collected by centrifugation, washed
with methanol thrice, and then dried at 40 ◦C under vacuum to a constant weight, leading
to H@NBD-MIP@PEG and H@NBD-CP@PEG with a weight decrease of 83.4% and 83.8%
compared with SiO2@NBD-MIP@PEG and SiO2@NBD-CP@PEG, respectively (Table 1).

It is worth mentioning here that the hollow HA-MIP/CP became a hard sheet (or
plate) after being dried under vacuum, which makes it rather difficult to be dispersed
homogeneously in different solvents. Therefore, for analyzing the hollow HA-MIP/CP with
different techniques and methods, the resulting H@NBD-MIP/CP@PEG (after etching their
solid counterparts with HF in the solutions) were collected by centrifugation, washed with
methanol and the corresponding solvent used for different analyses successively, and finally
added into the respective solvent for different analyses such as atomic force microscope
(AFM) and FT-IR characterization (methanol was used as the dispersing solvent, which was
evaporated to dryness prior to analyses), dynamic light scattering (DLS) measurements
(in the distilled water), dispersion stability test (in pure water), equilibrium/competitive
binding studies (in the organic solvent (acetonitrile/methanol = 3:1 v/v) and artificial
urine), and optosensing assays (in the artificial urine and undiluted human urine).

3.4. Characterization

The samples were characterized with 1H NMR spectrometer, FT-IR spectrometer,
AFM [53], and DLS. The details of the above instruments and characterization are included
in the Supporting Information.

The detailed information for studying the static water contact angles and aqueous
dispersion stability of the samples and the equilibrium/competitive binding properties of
the hydrophilic fluorescent solid and hollow HA-MIPs/CPs in different media (including
the organic solvent and the artificial urine) is also presented in the Supporting Information.

The optosensing properties (including the optosensing kinetics and spectrofluorimetric
titration in the artificial urine, photostability and reusability, and HA optosensing in the
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undiluted human urine) of the hydrophilic fluorescent solid and hollow HA-MIP/CP
microparticles were characterized with an F-4600 spectrofluorometer (Hitachi, Japan). The
excitation wavelength used was 420 nm, the voltage was 600 V, and the slit width of both
the excitation and emission was 10 nm. The fluorescence intensities of NBD fluorophores
around 514 nm were selected for the optosensing analyses.

4. Conclusions

We have demonstrated for the first time the development of hydrophilic “turn-on”-
type fluorescent hollow MIP microparticles with highly efficient optosensing capability
toward HA in the undiluted human urine. They were readily obtained through first
the controlled grafting of a green NBD-labeled fluorescent ultrathin HA-MIP layer with
hydrophilic polymer brushes onto the preformed “living” silica particles via one-pot SI-
ATRP and their subsequent removal of the silica core via HF etching. They proved to
show outstanding optosensing selectivity and sensitivity toward HA as well as prominent
photostability and reusability. More importantly, their hollow cavities endowed them
with significant advantages over their solid counterparts including much more stable
aqueous dispersion ability, dramatically faster optosensing speed, and higher optosensing
sensitivity, which are highly useful for practical optosensing applications. Their direct,
highly selective, rapid, and accurate quantification of HA in the undiluted human urine
samples was also confirmed. We believe that such advanced complex biological sample-
compatible fluorescent hollow MIP microparticles are of great potential in many real-world
bioanalyses and clinical diagnoses.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28031077/s1, Figure S1: Fluorescence spectra of MA-
Urea-NBD (2.5 mM) after its incubation with different concentrations of HA in acetonitrile/methanol
(3:1 v/v) at 25 ◦C for 2 h; Figure S2: Detailed photographs of the ultrasonically dispersed aqueous
mixtures (2.0 mg/mL, the concentration of the hollow samples was calculated by using the weights
of their solid counterparts before etching) after being settled down at 20 ◦C for 0 h (a1,a2), 6 h (b1,b2),
10 h (c1,c2), 16 h (d1,d2), 20 h (e1,e2), 24 h (f1,f2), 30 h (g1,g2), and 34 h (h1,h2), respectively. The
samples located from left to right in each photograph are pure water, SiO2-Br, SiO2@NBD-MIP@PEG,
SiO2@NBD-CP@PEG, H@NBD-MIP@PEG, and H@NBD-CP@PEG [the photographs of the aqueous
mixtures were taken under the irradiation of the natural light (a1-h1) and 365 nm UV light (a2-h2)];
Figure S3: Equilibrium bindings of HA on the hydrophilic fluorescent solid and hollow HA-MIPs/CPs
in their solutions in acetonitrile/methanol (3:1 v/v) (a) and artificial urine (b) at 25 ◦C, respectively
(C0 HA = 0.01 mM; polymer concentration: 2 mg/mL; the concentration of the hollow samples was
calculated by using the weights of their solid counterparts before etching); Figure S4: Competitive
bindings of the hydrophilic fluorescent solid and hollow HA-MIPs/CPs toward HA, 3-MHA, 4-
AHA, and Tyr in their mixed solutions in acetonitrile/methanol (3:1 v/v) (a) and artificial urine
(b), respectively (C0 HA or 3-MHA or 4-AHA or Tyr) = 0.01 mM; polymer concentration: 2 mg/mL; the
concentration of the hollow samples was calculated by using the weights of their solid counterparts
before etching); Figure S5: (a,b) Fluorescence spectra of the hydrophilic fluorescent solid HA-MIP
(a)/CP (b) (0.25 mg/mL) after their incubation with a HA solution (20 µM) in the artificial urine at
25 ◦C for different times. (c) Optosensing kinetics of the hydrophilic fluorescent solid HA-MIP (filled
symbol)/CP (open symbol) in a HA solution (20 µM) in the artificial urine at 25 ◦C [derived from
Figure S5a,b; Ft and F0 in (Ft -F0)/F0 are the fluorescence intensity of the NBD unit (at 514 nm) at
a time of t and 0, respectively]; Figure S6: (a,b) Fluorescence spectra of the hydrophilic fluorescent
solid HA-MIP (a)/CP (b) upon their exposure to different concentrations of HA in the artificial
urine at 25 ◦C for 2 h (MIP/CP concentration: 0.25 mg/mL). (c) Dependence of the fluorescence
enhancement [(F-F0)/F0] of the hydrophilic fluorescent solid HA-MIP (filled symbol)/CP (open
symbol) on the HA concentration (derived from Figure S6a,b); Figure S7: Fluorescence enhancement
of the hydrophilic fluorescent solid HA-MIP (filled column)/CP (open column) upon exposure to
a HA, 3-MHA, 4-AHA, or Tyr solution (CHA, 3-MHA, 4-AHA, or Tyr = 20 µM) (a) or to a HA solution
(20 µM) in the presence of 40 µM of 3-MHA, 4-AHA, or Tyr (b) in the artificial urine at 25 ◦C for 2 h
(MIP/CP concentration: 0.25 mg/mL); Figure S8: The fluorescence intensity changes (around 514 nm)
of dispersed mixtures of SiO2@NBD-MIP/CP@PEG (a) or H@NBD-MIP/CP@PEG (b) in pure water
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over time at 25 ◦C under air atmosphere (HA-MIP/CP concentration: 0.25 mg/mL, the concentration
of the hollow HA-MIP/CP was calculated by using the weights of their solid counterparts before
etching); Figure S9: Fluorescence intensity changes (around 514 nm) of SiO2@NBD-MIP/CP@PEG
(a) or H@NBD-MIP/CP@PEG (b) upon desorption (empty) and adsorption (filled) of HA (20 µM)
in the artificial urine during their 10 regeneration cycles (HA-MIP/CP concentration: 0.25 mg/mL,
the concentration of the hollow HA-MIP/CP was calculated by using the weights of their solid
counterparts before etching); Table S1: Synthetic and characterization data of two batches of “living”
silica particles and hydrophilic fluorescent solid HA-MIP/CP particles; Table S2: Competitive
binding properties of the hydrophilic fluorescent solid and hollow HA-MIPs/CPs toward HA and its
analogues in different media.
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