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Abstract: In this work, a rapid, precise, and cost-valuable method has been established to quantify
phenolic compounds in olive oil using new-based hydrophilic interaction solid-phase extraction
(SPE). Boehlert’s experimental design applied the determination of the optimal operating conditions.
An investigation into the effects of the methanol composition (50–100%), the volume of eluent
(1–12 mL), and pH (1–3) on the extraction of phenols acids and total phenols from Tunisian olive
oils was performed. The results showed that the extraction conditions had a significant effect on the
extraction efficiency. The experiment showed that the greatest conditions for the SPE of phenolic
acids were the methanol composition at 90.3%, pH at 2.9, and volume at 7.5 mL, respectively. The
optimal conditions were applied to different types of olive oils, and it could be concluded that larger
concentrations of polyphenols were found in extra virgin olive oil (89.15–218), whereas the lowest
levels of these compounds (66.8 and 5.1) were found in cold-pressed crude olive oil and olive pomace
oil, respectively.

Keywords: Doehlert experimental design; olive oil; phenolic compounds; solid-phase extraction

1. Introduction

In recent years, plant polyphenols have drawn increasing attention due to their potent
antioxidant properties. They represent a large and diverse group of substances abundantly
present in most fruits, herbs, and vegetables [1]. Phenolics are secondary metabolites that
are naturally present in several different plants and fruits [1,2], as well as in olives and
olive oils. Polyphenols provide an antioxidant capacity, which has many health effects and
are expressed in the form of inhibiting the oxidative process by scavenging free radicals
and reactive oxygen species, which can help prevent oxidative stress [2]. Many researchers
had developed new methods for the identification and extraction of these polyphenols
from natural and medicinal plants and agro-food products [3–5]. Vegetable oils belong
to this category of food products widely used in our daily diet. Their evaluation has
progressed a lot through physical–chemical methods of analysis. They have contributed to
the determination of their chemical composition and their organoleptic and therapeutic
qualities [6,7]. According to the International Olive Oil Council (IOC), the main producers
of olive oil in the European Union EU are Spain, Italy, Greece, and Portugal, with a total
production of 2247 tons. Outside the EU are Turkey (193 tons), Morocco (200 tons), Tunisia
(140 tons), and Syria (104 tons). Olive oil is therefore consumed in large quantities in the
Mediterranean Basin and is one of the main reasons for the benefits of the Mediterranean
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diet [8,9]. The composition of olive oil is complex, variable, and varied. It is made up of
major compounds (97 to 99%, triglycerides) that are a source of energy and minor com-
pounds that are a nutritional source (1 to 3%; examples, fatty acids, phospholipids, sterols,
tocopherols, and phenolic compounds) [10–13]. Several green nonconventional methods
have been developed for reducing the operational time and usage of organic solvents,
such as ultrasound-assisted extraction, microwave-assisted extraction, enzyme-assisted
extraction, pressurized liquid extraction, supercritical fluid extraction, high hydrostatic
pressure extraction, pulsed electric field extraction, and high voltage electrical discharge
extraction [14–17].

These compounds are thermolabile [18], so they require derivatization before anal-
ysis [19–23]. This additional treatment generally leads to stability problems for these
compounds. This does not prevent the coupling of GPC to mass spectrometry (MS) to iden-
tify the isomers of phenolic acids using the fragmentation patterns provided [21]. However,
most analyses of phenolic acids are based on liquid chromatography [24,25], generally
used with UV [26–28]. Still, the detectors associated with this technique do not allow direct
analyses of these samples. An extraction and preconcentration step before the analysis is
therefore necessary. This treatment must be adapted to the properties and complexity of the
matrix and must consider the physicochemical properties of the compounds to be analyzed:
polarity, solubility, acid–base character, chirality, and thermosensitivity. Several methods of
extraction of phenolic acids have been developed, namely, acid hydrolysis, saponification,
enzymatic reactions, liquid–liquid extraction, microwave-assisted extraction, pressurized
fluid extraction, supercritical fluid extraction, and solid-phase extraction [29–33]. Indeed,
researchers are increasingly using methods that are always reliable in terms of yield and
efficient in terms of time and cost and that limit the consumption of solvents [29,32–34].
These experiment matrices allow us to estimate the main effect of each influencing factor
and the interactions between the factors.

Solid-phase extraction meets all these requirements, and thanks also to the multitude
of stationary phases used, it is more and more coveted. The reverse-phase column mecha-
nism is the most widely used. As for the hydrophilic interaction mode, only a minority
of researchers have used it for the separation of these acids [29,35–38]. Therefore, an ex-
traction method is reliable if it keeps the analyte intact and allows the recovery of all of it
during the process. This requires the optimization of the factors influencing the extraction
process [35,37]. In most cases, the mono-factorial approach is adopted, varying only one
factor at a time while keeping the others constant [29]. However, the major drawback of
this method is that it does not effectively describe the effects of the parameters and the
interactions between them on the extraction process and the response [29,39]. Another
disadvantage of classical optimization is sometimes the high number of experiments re-
quired for the optimization. In recent years, the design of the experiment’s method has
been applied since it provides a rigorous approach to problem-solving. The principle of the
method is not to study all the points of the mesh, but only certain points were chosen for
their particularity of orthogonality. This experimental design allows us not only to study
many factors and to know their influences but also to acquire information on the possible
interactions between them. It will allow a quick and unequivocal interpretation of the
test results by providing the best possible accuracy of the results and the modeling of the
studied system [29,39,40]. In this context, this study aims to simultaneously optimize the
extraction of phenolic acids and develop a new and simple solid-phase extraction method
based on the hydrophilic interaction of phenolic acids from olive oils. A two-level full
factorial design was used to estimate the experimental variables, including which are X1:
the percentage of the methanol, X2: the volume of the eluent solvent, and X3: the pH of the
elution solvent.
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2. Results and Discussions
2.1. Screening Approach

The main goal of this study was to optimize a simple and reliable method to be used
for phenolic profiling a large set of olive samples. The parameters considered for the
optimization are X1: the percentage of the methanol, X2: the volume of the eluent solvent,
and X3: the pH of the elution solvent. The resulting design of all the combinations of
the different levels assigned to the factors in the chosen experimental area, as well as the
extraction yields obtained with the 13 extractions, are presented in Table 1. An analysis of
the Pareto chart (Figure 1) showed that the pH of the eluent phase has the highest effect on
the extraction yield of phenolic acids, followed by the composition in methanol. However,
the volume of the elution solvent (methanol/water) did not influence the studied response
in the considered experimental range. As shown in Figure 1, to increase the extraction yield
of phenolic acids in the chosen experimental field, the pH of the eluent phase should be
maintained at a high level, while to decrease the background signal, this factor had to be
kept at a low level. The pH of the sample to be extracted played a very necessary role in
the SPE procedure [29,41].

Table 1. Boehlert experimental design and the obtained responses.

N◦ Exp X1 (%) X2 (mL) X3 Extraction Yield (%)

1 100 9 2 61.5

2 50 9 2 45.5

3 87.5 9 3 43.5

4 62.5 9 1 44

5 87.5 9 0.5 35

6 62.5 9 3 35

7 87.5 12 2.5 53

8 62.5 6 1.5 57.5

9 87.5 6 1.5 73.5

10 75 6 3 62.5

11 62.5 12 2.5 36.5

12 75 12 1 39.5

13 75 9 2 72

2.2. Application of Doehlert Design to Optimize Experimental Variables
2.2.1. Experimental Design

The experimental responses allow the evaluation of the efficiency of extraction yield.
They are closely related to the factors influencing this response (Table 1). We have chosen a
Factorial matrix of the experiments. These experiment matrices allow us to estimate the
main effect of each influencing factor and the interactions between the factors [42–46]. The
design resulting from all the combinations of the different levels attributed to the factors
in the chosen experimental domain, as well as the extraction yields obtained with the
13 extractions presented in Table 1. The parameters considered for the optimization of the
extraction are the percentage of methanol (X1), the volume (X2), and pH (X3). The response
is the retention efficiency expressed in terms of the extraction yield (%).
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Figure 1. Pareto chart for the elution phase.

The obtained extraction yield for the experiments fluctuated between 35 and 73.5%,
corresponding to the minimum and maximum values for runs 6 and 9, respectively
(Table 1). The highest value of extraction yield (73.5%) agreed with the results reported
in many studies [46,47]. The design results from all possible combinations of the dif-
ferent levels assigned to the factors in the chosen experimental domain of the Doehlert
approach [29,42,45], as well as the extraction yields obtained during the 13 extractions
expressed in %, are shown in Table 1 [47].

2.2.2. Analysis of Significant Factors

The statistical significance of each term (linear, Interaction, and quadratic) is reported
in Table 2, obtained from the analysis of variance. The results obtained show that the
percentage of methanol, volume, and pH have a significant influence (p = 0.009; p = 0.001,
and p = 0.009) on the retention yield. The pH (X3) played a primary role in improving the
extraction yield. Our results followed those previously obtained by Živković et al. [45],
Sharmila et al. [47], and Arruda et al. [48].

2.2.3. Model Fitting and Statistical Analysis

The analysis of variances was performed to determine if the equation and the quadratic
model are significant [43,49]. The results of the second-order model are shown in Table 2.
The model F-value of 9.20 implies the model is significant. There is only a 4.71% chance
that an F-value this large could occur due to noise. The results demonstrated that the model
was significant, as evidenced by the high value of the F-test and a low p-value [50,51].

2.2.4. Equation with Coded Factors

An equation with coded factors was used to predict the response variable for the given
levels of each factor. The low and high levels are coded (−1) and (+1), respectively. The
final quadratic equation obtained in terms of the actual factors is given below:

Y = 72 + 10X1 + −9.3125X2 + 0.0625X3 − 3.375X1X2 − 0.375X1X3 + 0.25X2X3 − 9.25X1X2 − 11.125X2X2 − 9.625X3X2
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The polynomial mathematical model developed for optimization is a second-degree
model. Figure 2 shows the curves of the predicted vs. observed values to confirm the
goodness of fit. For each coefficient in the regression model, the significance was assessed
by the corresponding p-values [52]. The coefficient of determination (R2) of the regression
models was 0.96, and the value of the predicted coefficients of determination was 0.92,
signifying a better correlation between the response values and factors [53]. This suggests
a high degree of connection between the observed and the predicted values (Figure 2).
Consequently, the applied model is suitable for the prediction of the extraction yield in the
range of the experimental variables [54–56].

Table 2. Analysis of variance for the extraction yield of the phenols.

Source Sum of Squares df Mean Square F-Value p-Value

Model 1917.29 9 213.03 9.20 0.0047

X1-Methanol 800.00 1 800.00 34.56 0.0092

X2-Volume 693.78 1 693.78 29.97 0.0120

X3-pH 0.0313 1 0.0313 0.0014 0.0043

X1X2 45.56 1 45.56 1.97 0.0025

X1X3 0.5625 1 0.5625 0.0243 0.0088

X2X3 0.2500 1 0.2500 0.0108 0.0092

X1
2 195.57 1 195.57 8.45 0.0062

X2
2 282.89 1 282.89 12.22 0.0039

X3
2 211.75 1 211.75 9.15 0.0056

Residual 69.44 3 23.15

2.2.5. Effects of Interactions of the Different Factors on Extraction Yield

The response surface graphs obtained (Figure 3) facilitate the visualization of the main
and interactive effects of the factors of variation on the response variable. The graphical
analysis of this figure shows that the polarity of the mobile phase is a very important
factor in the extraction of phenolic acids from the oil. Its effect is positive for the studied
response. The pH is the most influential factor in the extraction yield. An increase in pH
results in an increase in the extraction yield of phenolic acids. We find that the pH and
methanol composition were the two factors that had more influence on the extraction of
phenolic compounds. The interactions (X1X2, X1X3, and X2X3) and quadratic coefficients
(X1X2, X2X2, and X3X2) of the model had significant values (p < 0.01). Similar results were
described by Yahia et al. [42], Fratoddi et al. [52], and Maran et al. [55].

2.3. Determination of Optimal Conditions

Different factors can affect the SPE efficiency; therefore, their optimization through a
multivariate approach is recommended, especially when these factors are correlated [46–48].
According to the results of the optimization studies, optimal conditions were chosen as
optimal values for the extraction of phenolic acids from olive oils. The experiment showed
that the best conditions for SPE were the methanol composition at 90.3%, pH at 2.9, and
volume at 7.5 mL, respectively, with a Desirability of 0.703. Comparable results have been
found in many studies [29,45,51].
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2.4. Application on Tunisian Olive Oils Samples

The chosen operating conditions (percentage of methanol equal to 90.3%, the volume of
methanol 7.5 mL, and pH of the eluting solution equal to 2.9) allow obtaining an extraction
yield of phenolic acids of about 94.5%. The determined optimal conditions were applied for
the identification and quantification of some phenolic acids in Tunisian olive oil samples.
Five samples of olive oils were studied, and three types were chosen: extra virgin olive
oil, olive pomace oil, and raw oil freshly cold extracted in the laboratory of INRAP Sidi
Thabet, Tunisia. The concentrations of some acids identified in these different samples are
calculated in Table 3.

2.5. Determination of Optimal Conditions

Different factors can affect the SPE efficiency; therefore, their optimization through a
multivariate approach is recommended, especially when these factors are correlated [46–48].
According to the results of the optimization studies, optimal conditions were chosen as
optimal values for the extraction of phenolic acids from olive oils. The experiment showed
that the best conditions for SPE were the methanol composition at 90.3%, pH at 2.9, and
volume at 7.5 mL, respectively, with a Desirability of 0.703. Comparable results have been
found in many studies [29,45,51].
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Table 3. Phenolic compounds detected (mg/L) in different olive oil samples.

Phenolic Acids Extra Virgin Oil
Type 1

Extra Virgin Oil
Type 2

Extra Virgin Oil
Type 3 Olive Pomace Oil Oil Extracted by

Cold Pressing

Gallic acid 0.51 - 7.5 0.5 -
Gentisic acid 12.5 21 33 4 15

p-coumaric acid - - 0.5 - -
Salicylic acid 0.37 56 92 - 33
Benzoic acid 17 9 83 - 8

o-coumaric acid - 3 - 0.6 6.32
T-cinnamic acid 0.02 0.15 2 - 4.5

Total acid 30.4 89.15 218 5.1 66.82

The total phenolic acids are very high in the sample of extra virgin olive oil (89.15–218).
This value is lower for cold-pressed crude olive oil (66.8). The total phenolic acids are very
low for olive pomace oil (5.1). This variation in the total phenolic acids can be due to several
factors, among which are the climate, the degree of maturity of the olives, the technological
processes of elaboration of the oil, and the genetic or varietal factor that remains the
most dominant.
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3. Materials and Methods
3.1. Samples

Different virgin olive oil samples were taken from various locations in Tunisia. Three
of them were commercial olive oils: Châal, Hikma, and Olivetta. The other samples were
extracted from Cv. Chetoui olive fruits assembled from two different locations in the north
of Tunisia (Bizerte and Kef), and Cv. Chemlali olive fruits were collected from the center
(Monastir) and southern arid regions (Mednine). The olives were picked by hand, and
only the undamaged, fresh, and healthy ones were selected. The olive oils were extracted
with a laboratory mill (Abencor). The oil obtained was slowly mixed for 30 min at room
temperature, centrifuged without the addition of chemicals at 3500 rpm for 4 min, then
transferred to amber glass bottles and kept in the freezer at −20 ◦C until analysis.

3.2. Reagents

All chemicals and solvents used were of analytical grade. Ultrapure water was
obtained using a Milli-Q SYSTEM 5 (Millipore, Elix). For HPLC analyses, methanol was
from Normapur, and formic acid was from Fischer. HPLC-grade hexane and acetonitrile
were purchased from Prolabo, Chromanorm, and Normapur, respectively. The phenolic
acids standards (97–99% purity) were obtained from Fluka (ortho and para coumaric acids
and p-hydroxybenzoic acid); Sigma-Aldrich (gallic acid, caffeic acid, vanillic acid, syringic
acid, ferulic acid, gentisic acid, benzoic acid, and cinnamic acid); and Merck (salicylic
acid). Individual stock solutions containing 1 g L−1 of phenolic acids were prepared in a
methanol/water mixture (50/50, v/v). Various dilutions were performed with the same
solvent mixture for calibration purposes and SPE optimization. Solutions were kept in
amber glass bottles at 4 ◦C.

3.3. Instrumental Analysis

Phenolic acids were analyzed using a Hewlett Packard (HP) series 1100 chromatograph
and detector. The HPLC apparatus was equipped with a degasser (G1322A), a quaternary
pump (G1311A), a column thermostat (G1316A), and an autosampler (G1313A). Detection
was achieved at 280 nm with diode array detector (DAD) type G1315A. The stationary
phase was a C18 Hypersyl ODS column (250 × 4 mm, i.d.) with a particle size of 5 µm
and thermostated at 20 ◦C. The mobile phase consisted of two solvents, A: water/formic
acid (99/1, v/v) and B: methanol/formic acid (99/1, v/v). Gradient elution was applied at a
flow rate of 1 mL min−1. Solvent B was gradually eluted from 10 to 100% in 25 min. The
sample volume injection was 20 µL, and the UV absorbance was determined at 250, 280, 300,
and 320 nm.

3.4. Solid-Phase Extraction Procedure (SPE)

The SPE method based on hydrophilic interaction was done using MgO-SiOH (15:85;
high purity; particle size ranged between 150 and 250 µm)-bonded silica-phase cartridge
(6 mL, 1000 mg, Chromabond®, Florisil®, Meschery-Nagel, Düren, Germany). A MgO-
SiOH-bonded silica-phase cartridge was placed in a vacuum elution apparatus and then
conditioned by the successive passing of 6 mL of methanol/water, 6 mL of hexane, and 3 mL
of acetonitrile. An aliquot of olive oil (2 g) mixed with 6 mL of hexane and spiked with 1 mL
of syringic acid (17 µg mL−1) was applied to the column. The cartridge was washed twice
with 3 mL of hexane. The elution conditions were optimized using a Doehlert experimental
design to find the best experimental conditions of the three factors affecting the extraction
process, which are: the percentage of the methanol in eluent solvent (water/methanol)
(%), the volume of the eluent solvent, and the pH of the elution solvent adjusted using
an acetate buffer solution: CH3COO-/CH3COOH. Finally, the extract was dried under
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a stream of nitrogen to 1 mL and then filtered through a 0.45 µm filter membrane for a
subsequent analysis by HPLC-DAD. Recovery was calculated as follows:

R(%) = Y (%) = 100 × (A − A0)

AS

where A (µg mL−1), A0 (µg mL−1), and AS (µg mL−1) are the peak areas of syringic
acid determined with the spiked OO sample, non-spiked OO sample, and standard
(17 µg mL−1), respectively.

3.5. Experimental Design and Statistical Analysis

The parameters of extraction were optimized using response surface methodology
(RSM). Two steps are needed for multivariate optimization; the first step consists of the
screening of the significant variables and response optimization using a factorial design.
The second step involves the optimization of the variable response. To compare the effects
of the different factors in the experimental field, concerned coded variables were used. The
factors U1, U2, and U3 were transformed into coded variables X1, X2, and X3 through the
following relation:

Xi =
Ui − Ui

∆Ui

where Xi is the value of the coded variable I, Ui is the value of factor I, Ui is the value of
factor I in the center of the experimental field, and ∆Ui is the range of variation of factor i.

Ui =
Upper limit (Ui) + Lower limit (Ui)

2

∆Ui =
Upper limit (Ui)− Lower limit (Ui)

2
The experimental response Y was represented as follows:

Y = b0 + b1×1 + b2×2 + b3×3 + b11×1 X1 +b22×2 X2 + b33×3 X3 + b12×1 X2 +b13×1 X3 + b23×2 X3

where bi is the estimation of the main effects of factor I, bii is the estimation of the second-
order effects, bij is the estimation of the interactions between factor I and factor j, and Y is
the experimental responses (SPE Recovery %).

Therefore, many factors are likely to interact, affecting the desired response, and
the only practical and fast way to optimize it is to use multivariate methods [29,40]. To
optimize the SPE conditions, we used an experience design using a Doehlert matrix with N
experiences (N = K2 + K + 1; K is equal to the parameter numbers) [29,40,56]. The appro-
priate conditions required for the SPE elution of phenolic compounds were determined
using three important K factors: U1, the percentage of the methanol in the eluent solvent
(water/methanol), varied between 50 and 100%; U2, the volume of the eluent solvent,
ranged between 6 and 12 mL; and U3, pH of the elution solvent, comprised between
1 and 3. The maximum and minimum conditions for each variable were selected based on
other studies using the same extraction procedure to analyze phenolic compounds in olive
oil [57–59]. A constant factor is the volume of acetonitrile because it has been shown in the
literature that, in the presence of this solvent, the extraction yield increases by 36%. Table 4
contains the coded values and factor levels of the Factorial and Doehlert designs applied to
the elution. Design Expert Software version 13 was used for the data analysis.
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Table 4. Investigated variables and their levels studied in the Factorial and Doehlert designs for the
optimization of elution of the phenolic compounds.

Factor
Coded Level

−1 0 +1

X1 Percentage of Methanol (%) 50 75 100

X2 Volume (mL) 6 9 12

X3 pH 1 2 3

4. Conclusions

A new method for the extraction of phenolic compounds from olive oil has been
proposed. After the preliminary screening of the studied factors (methanol composition,
volume of eluent, and pH), it was found that three investigated parameters showed the
highest influence on the total phenolic content throughout the new-based hydrophilic
interaction solid-phase extraction in olive oils. The optimum conditions were the methanol
composition (90.3%), pH (2.9), and volume of eluent (7.5 mL). The yield of the total
phenolics was enhanced under these conditions. The optimal conditions were applied
to olive oils and showed higher concentrations of polyphenols. The advantages of this
method are that it has simple extraction procedures and various phenolic compounds. This
method has been considered due to its simplicity, easy handling, low cost, high efficiency,
lower organic solvent consumption, and reduced extraction time. It can be used as a
simple and reliable procedure in an extensive range of organic solvents for various phenolic
compounds at the large-scale level and industry. Additionally, an important point for
selecting this extraction method is that it should be environmentally friendly.
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