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Abstract: Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn’s disease, is a
complex gastrointestinal disorder with a multifactorial etiology, including environmental triggers,
autoimmune mechanisms, and genetic predisposition. Despite advancements in therapeutic strategies
for IBD, its associated mortality rate continues to rise, which is often attributed to unforeseen side
effects of conventional treatments. In this context, we explored the potential of Ecklonia cava extract
(ECE), derived from an edible marine alga known for its anti-inflammatory and antioxidant properties,
in mitigating IBD. This study investigated the effectiveness of ECE as a preventive agent in a murine
model of dextran sulfate sodium (DSS)-induced colitis. Our findings revealed that pretreatment
with ECE significantly ameliorated colitis severity, as evidenced by increased colon length, reduced
spleen weight, and histological improvements demonstrated by immunohistochemical analysis.
Furthermore, ECE significantly attenuated the upregulation of inflammatory cytokines and mediators
and the infiltration of immune cells known to be prominent features of colitis in mice. Notably,
ECE alleviated dysbiosis of intestinal microflora and aided in the recovery of damaged intestinal
mucosa. Mechanistically, ECE exhibited protective effects against pathogenic colitis by inhibiting
the NLRP3/NF-κB pathways known to be pivotal regulators in the inflammatory signaling cascade.
These compelling results suggest that ECE holds promise as a potential candidate for IBD prevention.
It might be developed into a functional food for promoting gastrointestinal health. This research
sheds light on the preventive potential of natural compounds like ECE in the management of IBD,
offering a safer and more effective approach to combating this challenging disease.

Keywords: Ecklonia cava extract; DSS-induced colitis; intestinal barrier; pathogenic inflammation

1. Introduction

Inflammatory bowel disease (IBD), a composite of ulcerative colitis (UC) and Crohn’s
disease (CD), comprises a cluster of protracted inflammatory conditions affecting the gas-
trointestinal tract. These disorders, characterized by chronic and unbridled inflammation
alongside epithelial deterioration of the intestinal mucosa, ensue from a complex interplay
of genetic predisposition and a milieu of environmental risk factors [1–3]. Although the
precise mechanisms of IBD’s pathogenesis remain to be discovered, an emerging consensus
implicates that a disordered immune modulation within the gastrointestinal microenvi-
ronment and a concomitant breakdown in the homeostasis of the epithelial barrier might
play important roles in IBD [4]. Untreated IBD carries a marked elevation in the risk of
colorectal cancer, underscoring the imperativeness of efficacious IBD management [5].
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During the development of IBD, many pathological phenomena are accompanied
by defective changes in intestinal environments. Due to excess inflammatory stimuli, im-
munological dysregulation is initiated with damage to the epithelial barrier, infiltration of
immune cells, and dysbiosis of intestinal flora [6,7]. Activated intestinal cells are known
to express high levels of inflammatory cytokines to accelerate pathological processes. The
intestinal epithelial barrier serves to protect the host by blocking the entry of pathogenic
microorganisms and foreign antigens into the body. It is composed of enterocytes that
are tightly connected through intercellular junctions [8]. Intestinal barrier dysfunction
in IBD refers to uncontrolled inflammation due to increased intestinal permeability, de-
creased tight junction (TJ) barrier function, and impaired immune regulation [9,10]. Mucin
2 (MUC2) secreted by goblet cells can also prevent colonization by pathogenic microor-
ganisms and the transfer of enterotoxins from bacteria to the internal environment [11].
With a defective mucosal barrier, compositions of the intestinal microbiome can change
into those of dysbiotic strains. These pathogenic bacteria can induce more destructive
immune responses by interacting with Toll-like receptor to activate inflammatory signaling
through nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) and
NF-κB-mediated signal transduction [12,13].

Traditional IBD therapeutics, from antibiotics to biologics and immunosuppressants,
are frequently accompanied by a series of significant side effects [14]. The recent direction
of IBD etiological research has ushered in the potential for innovative therapeutic modal-
ities, including naturally occurring compounds. These compounds proffer the prospect
of redressing perturbations in the gut microbiome while simultaneously expediting the
restorative process of the mucosal layer [15,16]. Among such natural compounds, complex
marine polysaccharides have been extensively studied as pharmaceuticals [17,18]. Based
on previous reports, algae extracts and polysaccharides are excellent substances for treating
and preventing intestinal inflammation such as IBD due to the anti-inflammatory func-
tions they provide as fermentation substrates for beneficial intestinal microbiomes [19,20].
Among this category, Ecklonia cava (E. cava), an edible brown alga distributed along the
coasts of Korea, China, and Japan, is composed of various physiologically active substances
such as fucoidan, sulfated polysaccharide, and phlorotannin [21,22]. Compared to other
brown algae, E. cava is rich in a unique polyphenol with polymerized phloroglucinol
units called phlorotannin, among various components. Phlorotannins, including dieckol
(DK), eckol, and phlorofucofuroeckol A (PFFA) in E. cava, are known to exhibit many
biological potentials against viral infection, diabetic complications, hypertension, and
obesity-associated phenomena [23–26]. These phlorotannins in E. cava suggest that they
can be used as a natural good source with potential applications in various diseases [27,28].

Studies on E. cava’s anti-inflammatory properties have been conducted in several
fields. In a periodontal disease-related study, E. cava prevented alveolar bone loss by
reducing inflammatory cell infiltration and IL-1β production in gingival tissue, and it also
attenuated endothelial cell dysfunction by regulating the inflammation of perivascular
adipose tissue in cardiovascular disease [29,30]. It has also been reported that it can be
used as a preventative and therapeutic compound for diabetes-related diseases by reducing
inflammation-associated receptors such as TLR4 and RAGE [31]. Despite extensive investi-
gations into these anti-inflammatory activities, the specific role of E. cava in IBD remains a
largely unexamined area.

Thus, we tried to assess the preventive efficacy of E. cava extract (ECE) using a colitis
animal model employing various colitis disease activity indices. Ultimately, we aim to
illuminate the potential of ECE as a safe and efficient agent for promoting intestinal
health, thus paving the way for its development as a functional food without adverse
long-term effects.
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2. Results
2.1. Ecklonia cava Extract Protects against DSS-Induced Colitis

To determine whether ECE could prevent colonic damage and inflammation, we
prepared a dextran sulfate sodium (DSS)-induced colitis model (Figure 1A). ECE was orally
administered daily from 14 days before DSS treatment until mice were sacrificed. Mice
were fed 2.5% DSS in drinking water for 5 days. After that, the mice were fed normal
drinking water. Weight loss was confirmed in the DSS group compared to the normal group.
There was a little restoration of body weight between the DSS group and the ECE-treated
groups in a dose-dependent manner (Figure 1B). Colon length, an indicator of severity of
colitis, was found to be longer in the ECE-treated group than in the DSS group (Figure 1C).
Moreover, the spleen index (spleen weight/body weight) was markedly increased in the
DSS group compared to in the normal group. However, it was significantly restored in
the ECE-treated groups (Figure 1D). Histopathological examination of the colon revealed
that colonic crypt damage and mucosal infiltration of immune cells in the DSS group were
improved in the ECE-treated groups (Figure 1E).
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Figure 1. Ecklonia cava extract protects against dextran sodium sulfate (DSS)-induced colitis:
(A) Experimental design for DSS-induced colitis and Ecklonia cava extract (ECE) pretreatment by oral
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administration. Different doses (50, 100, 200 mg/kg body weight) of ECE were orally administrated
to mice every day until the end of experiment. After 14 days, mice were fed with drinking water
containing 2.5% DSS for 5 days. Mice were sacrificed at 42 days after treatment to analyze disease
activity index. (B) Body weight changes in control or DSS-treated mice and ECE-pretreated colitis
mice. (C) Gross morphology of colon (left) and quantification of colon length (right). Colon length
was measured, except for the cecum. (D) Representative image of spleen (left) and quantitative
analysis of spleen weight-to-body weight ratio. (E) Representative image of H&E-stained colon tissue.
Scale bar = 300 µm (top, 4×), 60 µm (bottom, 20×). All p-values were calculated using unpaired
two-tailed Student’s t-tests. Results are presented as mean ± SD from at least triplicate samples.
*, p < 0.05; **, p < 0.01; ***, p < 0.001.

To determine a preventive effect of ECE against colitis with therapeutic potential, an
animal model was prepared by orally administering ECE after DSS treatment (Figure S1A).
In contrast with the preventive model, body weight change was not significant between the
DSS and ECE groups during therapeutic treatment (Figure S1B). Colon length and spleen
index were not dramatically changed by treatment with ECE (Figure S1C,D). Consistent
with phenotypical changes, hematoxylin–eosin (H&E) staining showed no difference in
submucosal damage or destruction of colonic structure between the DSS and ECE groups
(Figure S1E). These data suggest that ECE is more effective against DSS-induced colitis
through preventive use rather than as a therapeutic treatment.

2.2. Ecklonia cava Extract Reduces Inflammatory Response in DSS-Induced Colitis

DSS-induced colitis is known to be closely associated with the production of pro-
inflammatory cytokines [32]. To determine whether the DSS-induced expression of pro-
inflammatory cytokines was affected by ECE, we first measured levels of pro-inflammatory
cytokines in colon tissues and sera samples. As shown in Figure 2A, mRNA levels of
pro-inflammatory cytokines such as IL-6, IL-1β, and TNF-α in colon tissues were increased
in DSS-treated mice but significantly suppressed by ECE in a dose-dependent manner. It
was also confirmed that protein levels of IL-6 and IL-1β in sera samples were decreased in
the ECE-treated groups (Figure 2B). Notably, pretreatment with ECE enhanced levels of the
anti-inflammatory cytokine IL-10 in the sera of DSS-treated mice (Figure 2C).

C-reactive protein (CRP), another inflammatory cytokine, is synthesized in the liver in
response to tissue damage, microbial infection, and autoimmune diseases [33]. IL-6 and
IL-1β are known to strongly induce CRP expression. They were reported to be increased
in a DSS-induced colitis mouse model [34,35]. As expected, the serum CRP concentration
increased by DSS was significantly decreased in the ECE-treated groups to normal levels
(Figure 2D). Moreover, mRNA levels of iNOS and COX2, two inflammatory enzymes
increased by DSS, were decreased in colon tissues of the ECE-treated groups (Figure 2E).

It was found that there is a positive relationship between colon inflammation and
increased immune cell infiltration in a DSS-induced colitis mouse model [36,37]. Therefore,
we performed immunohistochemical (IHC) staining of colon tissue to determine whether
ECE could affect immune cell infiltration. Severe infiltration of T cells (CD3) and neutrophils
(MPO) appeared in DSS-treated mice. However, they were significantly reduced by ECE
in a dose-dependent manner (Figure 2F and Figure S2). These data suggest that ECE
has an anti-inflammatory effect on DSS-induced colitis by suppressing the production of
pro-inflammatory mediators and the infiltration of immune cells by changing the intestinal
environment.
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Figure 2. Ecklonia cava extract reduces inflammatory response in DSS-induced colitis: (A) IL-6, IL-1β,
and TNF-α mRNA expression levels in colon tissues were analyzed using real-time PCR. GAPDH
was used as a control for normalization. (B) Measurements of IL-6 and IL-1β protein levels in serum
using ELISA kit. (C) Measurement of IL-10 protein levels in serum using ELISA kit. (D) ELISA
quantification of CRP concentration in serum. (E) COX2 and iNOS mRNA expression levels in
colon tissues were analyzed using real-time PCR. GAPDH was used as a normalization control.
(F) Representative images of immunostaining of MPO and CD3 in colon tissues. IHC scores of MPO
and CD3 were quantified using Image J software (version 1.37). Scale bar = 60 µm. All p-values were
calculated using unpaired two-tailed Student’s t-tests. Results are presented as mean ± SD from at
least triplicate samples. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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2.3. Ecklonia cava Extract Ameliorates Gut Microbiome Imbalance with DSS-Induced Colitis

The gut microbiome is involved in immune homeostasis and gut maintenance. Thus, it
has been of great interest in IBD research and biologic therapy in recent years [38]. Several
studies have shown that compositions of the gut microbiome are different between people
with IBD and those without IBD, particularly regarding the abundance and diversity
of certain bacteria [39,40]. The destruction of gut microbiome homeostasis in patients
with colitis is characterized by dysbiosis, which can decrease beneficial microorganisms
such as Firmicutes bacteria and increase harmful microorganisms such as Bacteroidetes
bacteria [41,42].

To determine whether ECE could modulate the distribution of the gut microbiome
in DSS-induced colitis, the relative level of intestinal microbiota was determined using
cecum 16S rRNA-specific PCR. As shown in Figure 3, in mice with DSS-induced colitis, an
imbalance of the gut microbiome was observed with an increase in harmful microbiomes
and a decrease in beneficial ones. Compared with the DSS-treated group, the ECE-treated
groups showed a decreased abundance of the Escherichia coli subgroup and Bacteroidetes. In
addition, the abundance of Firmicutes and Lactobacillus, which had been reduced by DSS,
was significantly increased in the ECE-treated groups. These results reveal that ECE could
ameliorate intestinal dysbiosis in DSS-induced colitis by modulating the balance between
beneficial bacteria and harmful ones.
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Figure 3. Ecklonia cava extract ameliorates gut microbiome imbalance in mice with DSS-induced
colitis. DNA was extracted from the cecum of each group and used as a template. Real-time PCR
was then performed. The relative abundance of bacterial groups (A); beneficial bacterial group (B);
harmful bacterial group) is expressed as a percentage of eubacteria. All p-values were calculated using
unpaired two-tailed Student’s t-tests. Results are presented as mean ± SD from at least triplicate
samples. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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2.4. Ecklonia cava Extract Restores Stability of Intestinal Barrier

The intestinal barrier functions to maintain mucosal homeostasis by filling in the gap
between the intestinal immune system and intestinal microbes [43]. Zonulin, a marker
of barrier integrity, can reversibly increase intestinal permeability by modulating tight
junctions between cells [44,45]. To investigate the effect of ECE on the intestinal barrier
integrity of mice with DSS-induced colitis, the protein concentration of Zonulin was mea-
sured in serum with an ELISA kit. As shown in Figure 4A, serum levels of Zonulin,
which were increased in the DSS-treated group, were significantly reduced by ECE in
dose-dependent manner.
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Figure 4. Ecklonia cava extract restores stability of intestinal barrier: (A) Determination of Zonulin protein
level in mouse serum using ELISA kit. (B) mRNA quantification of tight junction proteins (ZO-1 and
occludin) in colon tissues was performed using real-time PCR. GAPDH was used as a normalization
control. (C,D) Comparison of E-cadherin expression in colon tissue was performed using real-time PCR
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and Western blot. GAPDH and actin were used as normalization controls, respectively. (E) mRNA
quantification of MUC2 and TFF3 in colon tissues was performed using real-time PCR. GAPDH was
used as a normalization control. (F) Representative immunohistochemical staining images (top) and
IHC quantification with Image J software (version 1.37) (bottom) of MUC2 in colon tissues. Black
arrow indicates the stained MUC2 protein. Scale bar = 30 µm. All p-values were calculated using
unpaired two-tailed Student’s t-tests. Results are presented as mean ± SD from at least triplicate
samples. *, p < 0.05; **, p < 0.01; ***, p < 0.001.

DSS can also elevate intestinal permeability by disrupting epithelial cell tight junctions
and adhesive junctions, thereby reducing mucus level [46,47]. Therefore, expression levels
of ZO-1 and occludin, which are TJ proteins, and E-cadherin, which is an adhesion molecule,
in colon tissues were examined. As expected, decreased mRNA expression levels of TJ
proteins and E-cadherin by DSS were restored in the ECE-treated groups (Figure 4B,C).
Consistent with restoration of mRNA level, the reduced protein expression of E-cadherin
in the DSS-treated group also recovered in the ECE-treated groups (Figure 4D).

Among the mucins constituting the mucus layer that acts as a barrier against harmful
substances in the intestine, the recovery of the expression level of MUC2, which forms
a gel only in the colon, is an indicator of improvement in colitis [48]. TFF3 expressed in
goblet cells of the colon is known to protect the mucous membrane from damage and
stabilize the mucosal layer [49]. Thus, the expression levels of MUC2 and TFF3 in colon
tissues were determined by real-time PCR and IHC staining, respectively. As shown in
Figure 4E, the expression levels of MUC2 and TFF3, which are related to MUC2 secretion,
were markedly restored by ECE treatment. Moreover, IHC staining showed that the protein
expression of MUC2 was decreased in the DSS-treated group, whereas its level in the
ECE-treated group recovered to a level similar to that in the control group (Figure 4F).
Taken together, these results suggest that the preventive effect of ECE on the intestinal
epithelium might be derived from improvements in barrier function through a restoration
of mucosal protection-related genes damaged by DSS-induced colitis.

2.5. Ecklonia cava Extract Suppresses the Pathological Inflammatory Signaling

The NLRP3 inflammasome is an intracellular complex that can induce inflammation
in IBD. Its expression is increased by DSS [50,51]. In addition, it has been reported that
the NLRP3 inflammasome is inhibited by ECE in non-alcoholic fatty liver disease and
muscle atrophy [52,53]. To determine whether ECE could affect the NLRP3 inflammasome
pathway in DSS-induced colitis, we measured NLRP3 activation in colon tissues using
qRT-PCR and Western blot, respectively. The results showed that the expression levels
of NLRP3 and ASC mRNAs and proteins were increased in the DSS-treated group, but
attenuated in the ECE-treated groups (Figure 5A,B).

Next, we confirmed activation of NF-κB, which increased NLRP3 expression, through
IHC analysis. As shown in Figure 5C, phosphorylation of NF-κB, which was increased in
the DSS-treated group, was dramatically decreased by ECE in a dose-dependent manner.
These data suggest that ECE can prevent colitis-induced changes in intestinal permeability,
microbiota distribution, and inflammatory markers by modulating the activity of upstream
NLRP3 and NF-κB mediators.
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Figure 5. Ecklonia cava extract suppresses NLRP3 inflammasome and NF-κB pathway. (A) mRNA
quantification of NLRP3 and ASC in colon tissue was checked using real time PCR. GAPDH was used
as a normalization control. (B) Protein expression levels of NLRP3 and ASC in colon tissues were
evaluated by Western blot (top). Intensity of Western blot band was quantified using ImageJ (bottom).
Actin was used as normalization control. (C) Representative images of pNF-κB immunostaining
(top) in colon tissues are presented and relative staining levels (bottom) are quantified using ImageJ
software (version 1.37). Scale bar = 100 µm. All p-values were calculated using unpaired two-tailed
Student’s t-tests. Results are presented as mean ± SD from at least triplicate samples. *, p < 0.05;
**, p < 0.01; ***, p < 0.001.

3. Discussion

In our study, pretreatment with ECE alleviated the severity of colitis by improving
colon shortening, reducing spleen weight gain, and mitigating histological damage in
DSS-induced colitis (Figure 1). The balance between pro-inflammatory cytokines, including
IL-6, IL-1β, and TNF-α, usually plays a crucial pathological role in colitis by mediating
inflammatory responses [32]. We observed a significant reduction in the increase in pro-
inflammatory cytokines induced by DSS in ECE-treated mice. Conversely, serum levels
of IL-10, an anti-inflammatory cytokine acting as a negative regulator in colitis, were
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increased by ECE. Additionally, T cell and neutrophil infiltration were notably reduced
in ECE-treated mice (Figure 2). The gut microbiome significantly influences gut health,
and mucosal-associated bacteria directly impact the integrity of the intestinal epithelial
barrier layer by increasing the mucus layer’s thickness and promoting intestinal barrier
repair. Several studies report that an imbalance of commensal bacteria is closely associated
with the development of various diseases such as IBD [38–40]. Our results revealed an
increased abundance of colitis-associated Escherichia coli subgroup and Bacteroidetes species,
alongside a relative decrease in Firmicutes and Lactobacillus (Figure 3). Tight junctions are
pivotal in maintaining the integrity of the intestinal epithelial barrier, crucial for intestinal
homeostasis. A disruption of tight junctions and epithelial permeability are linked with
IBD progression [44]. Pretreatment with ECE reduced the concentration of Zonulin, a factor
increasing barrier permeability, and restored the expression of tight junction proteins (ZO-1,
occludin) (Figure 4A,B). The mucus layer covering the mucosal surface of the intestinal
lumen, a protective gel-like substance composed of mucin secreted by goblet cells, is associ-
ated with colitis development when disrupted [48]. Our experiment revealed a significant
reduction in MUC2 expression in the DSS-treated group, which was restored in the ECE-
treated groups (Figure 4F). The NLRP3 inflammasome significantly contributes to the onset
and progression of IBD. Overexpression of the NLRP3 inflammasome exacerbates colitis
and plays a pivotal role in intestinal inflammation in DSS-induced colitis [50,51]. Our data
exhibited NLRP3 activation after DSS-induced colitis; however, ECE pretreatment reduced
NLRP3 expression and further suppressed NF-κB activation, a prerequisite for NLRP3
activation (Figure 5). In summary, our study elucidated the preventive efficacy of ECE in
the context of IBD using a DSS-induced colitis mouse model. ECE pretreatment resulted
in a reduced inflammatory response attributed to the downregulation of NLRP3/NF-κB
signaling. Furthermore, ECE demonstrated the capacity to enhance both barrier function
and microbiome homeostasis (Figure 6).
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of inflammatory cytokines can lead to infiltration of immune cells and an increase in IL-1β secretion
by NLRP3 inflammasome activation. In contrast, preventive administration of ECE can promote
the recovery of beneficial bacteria and improve intestinal bacteria imbalance. ECE can prevent
loss of TJ and AJ proteins and increase expression of MUC2, consequently reducing epithelial
permeability. Furthermore, ECE can suppress the expression of inflammatory cytokines and inhibit
NLRP3 inflammasome activation. Taken together, these results demonstrate that ECE can maintain
intestinal homeostasis by changing the intestinal microenvironment into a highly immune-enhanced
one. Red arrows indicate the increase or activation of gene expression or pathway and blue arrows
indicate the decrease or suppression of gene expression or pathway.

IBD is a chronic digestive disease accompanied by recurrent inflammation due to com-
plex causes such as genetic, microbial, and environmental factors. Its prevalence is rapidly
increasing worldwide [54]. Currently, conventional drugs used to treat IBD encompass
anti-inflammatory drugs, immunosuppressants, and glucocorticoids. Although anti-TNF-α
drugs have shown high efficiency in IBD management, they are associated with the risk
of infectious complications and allergic reactions. In addition, their efficacy may wane
over time [55]. Oral 5-aminosalicylic acid-based drugs such as olsalazine, sulfasalazine,
balsalazide, and mesalazine can also cause nausea and headaches, while corticosteroids are
linked to adverse effects such as hypertension, exacerbation of gastric ulcers, and osteo-
porosis [56]. In parallel, advanced therapeutic modalities, including small-molecule drugs
with economical profiles, convenient administration, and biotherapeutics with heightened
effectiveness driven by specific mechanisms, are under development. However, these
interventions are not devoid of undesirable side effects [57]. Considering these serious side
effects, finding new sources to improve clinical symptoms of IBD is still essential. Notably,
IBD patients experience compromised quality of life. They are burdened by inflammatory
phenotypes, prompting comprehensive exploration into adjunctive therapies such as pro-
biotics, dietary interventions, polyphenols, and microbial metabolites [58]. A promising
avenue involves the investigation of natural compounds capable of expediting restoration
of the intestinal mucosal layer and normalizing the gut microbiome. Achieving these
involves impeding leukocyte infiltration into inflamed intestinal mucosa and curtailing the
secretion of inflammatory cytokines, thus presenting innovative approaches to address IBD
pathogenesis [59].

The gut microbiome is a key factor in gut health. Mucosal-associated bacteria are
directly related to the integrity of the intestinal epithelial barrier layer by increasing the
thickness of the mucus layer and promoting intestinal barrier repair. Perturbations in
commensal microbial balance have been closely linked to the onset and progression of
diverse diseases including IBD [60]. Noteworthy among these is the genus Lactobacil-
lus, comprising beneficial probiotic microorganisms recognized for generating antibiotic
compounds that can hinder colonization by pathogenic bacteria while suppressing the
production of pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α. This action
orchestrates favorable shifts in the compositions of intestinal flora [61]. Recent discoveries
have unveiled the potential of select probiotics as potent anti-inflammatory mediators in
IBD, acting by restoring gut microbiota composition to alleviate and prevent intestinal
disorders [62].

Presently, the bulk of research concerning intestinal health has predominantly in-
vestigated extracts sourced from terrestrial origins. Examples include dietary fibers and
extracts derived from compounds such as curcumin and Rhodiola crenulata, which have
demonstrated potential in preventing colitis by mitigating inflammatory cytokine secre-
tion and sustaining intestinal barrier integrity [63,64]. In contrast, the oceanic realm, an
immense repository of natural components, offers an underexplored frontier. Seaweeds
characterized by their polyphenolic, proteinaceous, and polysaccharide constituents have
gained scientific attention. Seaweed polyphenols highlighted for their antioxidant and
antiviral attributes are subject to ongoing investigation for therapeutic applications. Fur-
thermore, seaweed polysaccharides exhibit diverse physiological functions, including
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anti-inflammatory, antioxidant, antiviral, and immunomodulatory effects, fueling active
research into their potential therapeutic utility [20,65].

Notably, various alga extracts have demonstrated significant efficacy in a colitis mouse
model. Extracts from Saccharina japonica, a brown macroalga, suppressed inflammatory
signaling caused by DSS, altering intestinal microbial diversity and regulating the intestinal
microenvironment, thereby alleviating inflammatory bowel disease symptoms [66]. Addi-
tionally, an extract from the green alga Ulva pertusa effectively reduced tissue damage and
suppressed an inflammatory response induced by DNBS [67]. These findings underscore
the potential of diverse marine alga extracts to manifest anti-inflammatory and anticolitis
effects. Moreover, the extensive research substantiating these effects necessitates continued
exploration of compounds derived from alga extracts [16].

Dieckol, a major phlorotannin derivative isolated from E. cava and rich in polysac-
charides and polyphenols, has undergone extensive study regarding its antiallergic and
antioxidant properties [68,69]. In in vitro anti-inflammatory studies, dieckol upregulates
hemeoxygenase-1 (HO-1), mediating anti-inflammatory effects in macrophages, and in-
hibits PI3 K and AKT phosphorylation in colon cancer cells, thereby impeding cancer cell
proliferation and migration [70,71]. Furthermore, in a DSS-induced ulcerative colitis model,
dieckol’s effectiveness in suppressing inflammation was verified by activating the Nrf2
and HO-1 signaling pathways [72]. Overall, dieckol exhibits anti-inflammatory properties
and demonstrates efficacy when administered alone, although its effects may be amplified
when combined with other anti-inflammatory drugs.

As previously mentioned, multiple studies have highlighted ECE’s anti-inflammatory
properties [29–31]. Our findings suggest its potential as an additive in functional foods
designed to fortify the intestinal immune environment against inflammatory bowel disease.
Additionally, considering the effectiveness of ECE in combination treatments [73], it could
be paired with other drugs to enhance its efficacy in inflammatory bowel disease. Moreover,
a precise understanding of the active ingredient through synthesizing analogs resembling
ECE’s active components could lead to the development of more potent drugs for IBD
prevention [22].

4. Materials and Methods
4.1. Reagents

ECE was supplied from Aqua Green Technology Co., Ltd. (Jeju, Republic of Korea)
and dissolved in phosphate-buffered saline for experiments. To make ECE, E. cava was
washed and dried at room temperature for 48 h. After 50% (v/w) ethanol was added, it
was incubated at 85 ◦C for 12 h. The extract was then filtered, concentrated, sterilized by
heating to over 85 ◦C for 1 h, and then dried for use as described previously [23,74,75]. DSS
(36–50 kDa) was purchased from MP Biomedicals (Santa Ana, CA, USA).

4.2. Characterization of Ecklonia cava Extract Using High-Performance Liquid Chromatography
Analysis and Toxicity of Ecklonia cava Extract

High-performance liquid chromatography (HPLC) analysis was performed using
a Waters HPLC system (Waters, Framingham, MA, USA) equipped with a 2998 photo-
diode array (PDA) detector, 2707 autosampler, and 515 HPLC pump. The C18 column
(4.6 × 100 mm, 4 µm, Agilent, Santa Clara, CA, USA) was used for separation. For the
analysis of ECE, solvent A (methanol) was used as the mobile phase and solvent B (water)
was used as the stationary phase. The ECE was eluted using a gradient of solvent A and sol-
vent B at a flow rate of 0.3 mL/min. The gradient method was as follows: 0 min 63:37 v/v;
0–5 min 63:37–63:37 v/v; 5–10 min 50:50 v/v; 10–20 min 35:65 v/v; 20–25 min 63:37 v/v;
and 25–35 min 63:37 v/v. The absorption spectra were analyzed using a PDA detector at
230 nm range. Pure DK was used as standard marker for quantification (Figure S3).

A 14-day acute oral toxicity test was conducted using the prepared ECE, during
which no mortalities were observed among the animals administered the extract. General
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observations, including body weight, revealed no abnormal symptoms. Furthermore, post-
mortem examination did not indicate any abnormalities in any of the administered groups.

4.3. DSS-Induced Colitis Mouse Model

To induce colitis, 6-week-old C57BL/6 male mice (Orient Bio, Seongnam, Republic
of Korea) were fed drinking water containing 2.5% DSS for 5 days. They were then fed
normal drinking tap water. To prepare a preventive model, mice in the ECE-treated colitis
group (50, 100, 200 mg/kg body weight) were preadministered with ECE through an oral
gastric gavage 2 weeks before the start of DSS administration, and this was administered
daily until sacrifice. ECE doses were determined based on concentrations used in previous
studies. The selected dose fell within a range containing the minimum level of dieckol, the
active ingredient of ECE [23,35,75,76]. In therapeutic experiments, ECE was administered
for 3 weeks after DSS treatment. Body weight was measured every 2–3 days. On days 42
or 28, mice were euthanized using CO2 gas inhalation for 90 s followed by placement in a
box containing CO2 gas for 4 min. The colon and spleen were separated, photographed,
and weighed. Colon tissue was fixed in formalin for paraffin sectioning and immediately
stored in liquid nitrogen for RNA and protein extraction. All mouse experiments adhered
to guidelines approved by the Institutional Animal Care and Use Committees of Gachon
University (AAALAC-accredited facility, approval number LCDI-2022-0046).

4.4. Western Blot

Total proteins from colon tissues were lysed with NP buffer (50 mM Tris-HCl (pH 7.5),
150 mM NaCl, 5 mM EDTA, 1% NP-40, and a protease/phosphatase inhibitor cocktail) for
30 min on ice and centrifugated at 13,000 rpm for 10 min at 4 ◦C. Protein concentration was
measured using a BCA kit (Thermo Fisher Scientific, Rockford, IL, USA). BSA was used
as a standard. Protein samples were boiled for 5 min at 100 ◦C in sample buffer (60 mM
Tris-HCl (pH 6.8), 14.4 mM 2-mercaptoethanol, 2% SDS, 0.05% bromophenol blue, 25%
glycerol) and separated by SDS-PAGE. Proteins were transferred to methanol-activated
PVDF membranes. Membranes were blocked with 5% skim milk in TBST for 1 h at room
temperature. After washing the membrane with TBST, primary antibodies were added and
incubated overnight at 4 ◦C. The following day, blots were incubated with HRP-conjugated
goat anti-secondary antibodies for 1 h at room temperature followed by chemiluminescence
detection (Atto, Amherst, NY, USA) [77]. Primary antibodies are shown in Table S1.

4.5. Total RNA Isolation and Quantitative Real-Time PCR

Total RNA was isolated using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and
1 µg mRNA was transcribed to cDNA with random hexamers using PrimeScript 1st
strand cDNA synthesis kit (Takara, Japan). SYBR-green Premix Ex-Tag II (Takara, Kyoto,
Japan) was used for quantification of cytokine transcripts with real-time quantitative PCR
on a Prism 7900HT sequence detection system (Thermo Fisher Scientific). PCR results
were analyzed using the comparative 2−∆∆CT method using GAPDH as a control [78].
Experiments were performed in triplicate and expressed as mean ± standard deviation
(SD). Primer sequences used for qRT-PCR are shown in Table S2.

4.6. Bacterial DNA Extraction from Mice Ceca and Microbiota Analysis

After mice were sacrificed, contents of their ceca were immediately placed in liquid
nitrogen and frozen at −80 ◦C until use in experiments. Bacterial DNA was extracted using
a DNA stool extraction kit (Qiagen, Valencia, CA, USA) according to the manufacturer’s
instructions. Then, 10 ng bacterial DNA was used as a template for PCR [79]. The 16S rRNA
of each group was analyzed with bacterial-strain-specific RT-PCR primers. The relative
abundance of a bacterial group in the cecal samples was expressed as a ratio of eubacteria.
Primer sequences used for RT-PCR are listed in Table S3.
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4.7. ELISA for Serum Markers

Concentrations of IL-6, IL-1β, IL-10, CRP (R&D systems, Minneapolis, MN, USA), and
Zonulin (MyBioSource, San Diego, CA, USA) in mouse serum samples were evaluated
using ELISA kits according to the manufacturer’s protocol [77]. Briefly, blood samples
were allowed to clot for 2 h at room temperature to collect serum. After centrifugation at
2000× g for 20 min, serum aliquots were stored at −0 ◦C before use. ELISA kits used in
this study are listed in Table S4.

4.8. Hematoxylin–Eosin Staining and Immunohistochemistry

Paraffin-embedded tissues were sectioned at a thickness of 3 µm and stained with
hematoxylin–eosin according to published procedures [80]. Briefly, tissue sections were
deparaffinized with xylene, put in antigen retrieval buffer (Tris-EDTA buffer, pH 9.0), and
boiled for 5 min. Endogenous peroxidase was blocked using 0.3% hydrogen peroxide.
Slides were incubated overnight at 4 ◦C with primary antibodies diluted in 1% BSA fol-
lowed by incubation with a secondary antibody for 1 h. For visualization, DAB substrate
(Dako, Glostrup, Denmark) was used and counterstained with hematoxylin (Vector Lab-
oratories, Burlingame, CA, USA). The image was captured using a confocal microscope
at the Core-facility for Cell to In-vivo imaging of Gachon University and quantified using
Image J software (version 1.37, NIH, Bethesda, MD, USA) [81]. Primary antibodies used for
staining are shown in Table S1.

4.9. Statistics

Comparisons between groups were determined using Student’s t-test (two-tailed).
The error bar represents the SD of the mean. Data are presented as mean ± SD. For all
statistical tests, statistical significance was considered when the p-value was less than 0.05.

5. Conclusions

Our study revealed that ECE pretreatment likely suppressed the expression of inflam-
matory factors and increased intestinal barrier integrity by inhibiting the NLRP3/NF-κB
pathway, resulting in a restoration of barrier dysfunction and reduced pathological inflam-
mation. Our findings suggest that ECE can be developed as an intestinal health functional
ingredient for preventive purposes or health products in combination with probiotics and
other supplements.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/molecules28248099/s1: Figure S1: Therapeutic treatment of ECE shows
less effective activity in DSS-induced colitis model; Figure S2: ECE efficiently suppresses infiltration
of immune cells; Figure S3: Characterization of Ecklonia cava extract using high-performance liquid
chromatography analysis. Table S1: List of primary antibody used in this study; Table S2: List of
primer sequences used for real-time PCR; Table S3: List of primer sequences used for microbiota
analysis; Table S4: List of ELISA kits used in this study.
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