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Abstract: Marine compounds constitute a diverse and invaluable resource for the discovery of bioac-
tive substances with promising applications in the pharmaceutical development of anti-inflammatory
and antibacterial agents. In this study, a comprehensive methodology was employed, encompassing
pharmacophore modeling, virtual screening, in silico ADMET assessment (encompassing aspects
of absorption, distribution, metabolism, excretion, and toxicity), and molecular dynamics simula-
tions. These methods were applied to identify new inhibitors targeting the Hsp90 protein (heat
shock protein 90), commencing with a diverse assembly of compounds sourced from marine origins.
During the virtual screening phase, an extensive exploration was conducted on a dataset comprising
31,488 compounds sourced from the CMNPD database, characterized by a wide array of molecular
structures. The principal objective was the development of structure-based pharmacophore models,
a valuable approach when the pool of known ligands is limited. The pharmacophore model DDRRR
was successfully constructed within the active sites of the Hsp90 crystal structure. Subsequent dock-
ing studies led to the identification of six compounds (CMNPD 22591, 9335, 10015, 360799, 15115, and
20988) demonstrating substantial binding affinities, each with values below −8.3 kcal/mol. In the
realm of in silico ADMET predictions, five of these compounds exhibited favorable pharmacokinetic
properties. Furthermore, molecular dynamics simulations and total binding energy calculations using
MM-PBSA indicated that these marine-derived compounds formed exceptionally stable complexes
with the Hsp90 receptor over a 100-nanosecond simulation period. These findings underscore the
considerable potential of these novel marine compounds as promising candidates for anticancer and
antimicrobial drug development.

Keywords: anticancer; anti-bacterial agents; marine bioactive molecules; drug discovery; docking
simulations; ADME; molecular dynamics simulations

1. Introduction

In the present era, modern medicine grapples with significant challenges. The looming
prospect of a precipitous decline in the efficacy of contemporary medical treatments is
rapidly materializing. It has been widely acknowledged that there is an imperative need
for the innovation of new antibiotics aimed at averting this impending crisis. Nevertheless,
the persistent emergence of highly resistant microbial strains, often referred to as “super-
bugs,” persists unabated, thereby exacerbating the likelihood of a widespread epidemic
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characterized by profound antibiotic resistance, which constitutes a formidable and im-
minent menace to global public health [1,2]. On the other side, the process of designing
anticancer drugs is widely recognized as a complex, costly, time-intensive, and formidable
endeavor. Despite advancements in tumor biotechnology, the innovation of efficacious
anticancer medications remains a strenuous and time-consuming undertaking and necessi-
tates robust multidisciplinary partnerships, encompassing expertise in medicinal chemistry,
computational chemistry, biology, pharmacology, and clinical research [3,4].

In recent years, marine bioactive compounds have attracted scientific attention due
to their therapeutic potential for numerous medical conditions. Marine natural prod-
ucts manifest a diverse array of pharmaceutically relevant bioactivities, encompassing
antibiotic, antiviral, neurodegenerative, anticancer, and anti-inflammatory properties [5–7].
Numerous investigators have extracted anticancer compounds from a range of marine
organisms, including cyanobacteria, fungi, sponges, tunicates, ascidians, mollusks, and
fish. Anticancer peptides elicit cell death via a distinctive mechanism characterized by
their selectivity toward cancer cells and their role in inducing membrane disintegration [8].
Marine natural products represent a valuable reservoir of chemically varied compounds.
Several of these marine products, characterized by their biological diversity and thera-
peutic potential, have demonstrated substantial antimicrobial activity against a variety of
pathogenic microorganisms [9].

Heat shock protein 90 (Hsp90) is a family of ATP-dependent molecular chaperones
that play a critical role in regulating the stability and function of client proteins involved
in cellular stress [10]. Heat shock protein 90 (Hsp90) serves as a molecular chaperone
essential for maintaining the stability and functionality of several signaling proteins that
are conditionally activated or expressed. The rational application of Hsp90 inhibitors, either
as monotherapies or in conjunction with other pharmaceutical agents, holds the potential to
enhance the therapeutic strategies for addressing various types of cancer [11]. Interestingly,
Hsp90 inhibitors could be used for antibiotic targeting. Bacteria employ two-component
signaling systems to adapt to alterations in their surroundings, and these systems are
marked by their high degree of conservation and reliance on histidine kinases. Targeting
histidine kinases for inhibition holds the potential for exerting a broad-spectrum antimicro-
bial effect. Notably, the ATP binding domain of histidine kinases shares conservation with
the ATPase domain found in eukaryotic Hsp90 molecular chaperones [12].

In eukaryotic cells, Hsp90 is involved in various cellular processes, including protein
folding, maturation, and degradation. Hsp90 family proteins consist of four paralogs,
each residing in different subcellular locations: Hsp90-α/β in the cytoplasm, glucose-
regulated protein 94 (Grp94) in the endoplasmic reticulum (ER), and tumor necrosis factor
receptor-associated protein-1 (TRAP1) in mitochondria [13]. Initially, considering Hsp90 as
a potential therapeutic target was challenging due to its essential role in the cytoplasm for
normal cell viability and growth [14]. However, the discovery of geldanamycin (GA) and its
powerful anticancer effects through Hsp90 inhibition [15,16] generated considerable interest
and research in this area. As a result, a wide range of Hsp90 inhibitors have been identified
and synthesized; it has been documented that benzoquinone ansamycins, a category of
naturally derived antibiotics, exhibit inhibitory effects on the functioning of Hsp90 [17].
Subsequent clinical trials have assessed the impact of Hsp90 inhibitors as adjunctive ther-
apy for various tumor types, and presently, ongoing investigations are underway to explore
innovative and potentially more efficacious strategies for cancer management [18]. Hsp90
plays a pivotal role in stabilizing and activating a wide array of client proteins, exceed-
ing 300 in number (refer to www.picard.ch/downloads/HSP90interactors.pdf accessed
6 November 2022). Notably, substantial portions of these Hsp90 client proteins are integral
to oncogenic signaling, orchestrating key aspects of malignancy, including proliferation,
evasion of apoptosis, immortalization, invasion, angiogenesis, and metastasis [19]. In-
hibiting Hsp90 results in the swift inhibition of client protein activity, followed by their
ubiquitin-mediated proteasomal degradation. This leads to the simultaneous depletion of
multiple oncoproteins, causing a comprehensive downregulation of signals across various
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oncogenic pathways and influencing every facet of the malignant phenotype. Cancer cells
exhibit heightened sensitivity to Hsp90 inhibition due to their dependence on the oncogenic
processes that propel malignancy. Consequently, they rely on Hsp90 for the chaperoning
and maintenance of these crucial oncogenic pathways [20]. Furthermore, cancer cells de-
pend on Hsp90 to stabilize mutated, fused, and overexpressed oncoproteins such as vSRC,
HER2, BCR-ABL, B-RAF, and ELM4-ALK. Hsp90 itself is often overexpressed in cancer cells
and is known to exist in a highly active, multi-chaperone complex [21]. Recent attention
has also been directed toward the role of secreted Hsp90 in fostering cancer cell invasion
and metastasis [22]. Invasive cancer cells have been observed to release Hsp90-α, which
subsequently activates the pro-invasive protein matrix metalloproteinases, contributing
to heightened cancer cell migration [23]. This emerging aspect underscores the diverse
functions of Hsp90 in the complex landscape of cancer biology. The search for novel Hsp90
inhibitor drugs is necessary to address the limitations and challenges associated with
current therapies. Developing drugs that overcome resistance, exhibit improved safety
profiles, and possess favorable pharmacokinetic properties is crucial for maximizing the
therapeutic potential of Hsp90 inhibition in cancer treatment. By tackling these obstacles,
we can pave the way for more effective and targeted therapies against cancer.

Drug design methodologies offer a rapid and efficient means of searching for new
antibacterial or anticancer drugs. By leveraging computational tools and experimental vali-
dation, this approach enables the exploration of diverse compound libraries and facilitates
the discovery of promising new therapeutic agents [24]. Natural compounds derived from
marine sources, in particular, have garnered significant interest in drug discovery research.
The unique marine environment offers a rich source of diverse and structurally complex
compounds that possess bioactive properties, such as antibacterial, antifungal, antimalarial,
anti-trypanosomal, anti-viral, anti-obesity, antitumor, and anticancer activity [25,26]. The
aim of this study is to explore the potential of natural compounds derived from marine
sources for drug discovery. Our focus is on tapping into the previously untapped reservoir
of these compounds to uncover their pharmacological activities and therapeutic potential.
We conducted an extensive investigation and screening process to identify marine-derived
compounds that exhibit promising interactions with the Hsp90 protein. Utilizing com-
putational techniques such as molecular docking, virtual screening, and pharmacophore
modeling, we assessed the binding affinity and potential interactions of a diverse set of
marine-derived compounds with Hsp90. Additionally, we conducted a molecular dynamics
simulation using Gromacs to evaluate the stability of the formed complexes over a 100 ns
timeframe, and we applied MM-PBSA calculations to validate the results of the docking
study. The outcomes of our research have shown exceptionally promising results, marking
a significant advancement in the quest for optimal drug candidates in the field of oncology
or antimicrobial drugs.

2. Results
2.1. Generation and Validation of Target-Based Pharmacophore Model

Our research is focused on identifying inhibitors of the human Hsp90 protein with
the goal of addressing cancer. To achieve this, we utilized the known structure of the
human Hsp90 protein and employed the Schrödinger software suite to generate a target-
based pharmacophore model. The pharmacophore model was constructed based on the
MEY-Hsp90 complex, which was obtained through the XP docking method. By utilizing
the XP docking method, we determined the optimal binding conformation of the MEY
ligand within the binding site of the Hsp90 protein. Through an extensive analysis of the
interactions between the ligand and the protein, our pharmacophore model identified key
features that are essential for effective inhibition, as shown in Figure 1.
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Figure 1. The pharmacophore model generated included HBD (blue spheres) and the aromatic center
(orange sphere).

This pharmacophore model DDRRR consists of five features, including two hydrogen
bond donors and three hydrophobic groups. Subsequently, we applied this generated
pharmacophore model DDRRR to screen marine-sourced compounds.

The validation of the predicted pharmacophore model is a crucial step in assessing its
reliability in distinguishing active compounds from decoys. Established quality indi-cators
such as ROC, AUC-ROC, and EF have been widely acknowledged for pharmacophore
model validation [27]. The task phase in the Schrödinger software provides a screening
mode for model validation by loading a set of actives and decoys into the screening
window. In this study, 35 active compounds were used for model validation, and the
Schrödinger database, comprising 1000 decoy structures, was employed for screening
against the known actives.

The created pharmacophore template DDRRR successfully identified 29 out of 35 ac-
tives. Detailed information on total actives and decoys, as well as retrieved actives and
decoys during model validation, can be found in Table S2.

RIE was computed for the hypothesis model to evaluate the ranking of active set
contribution in the enrichment study. The obtained RIE value of 7.18 for the DDRRR model
directed indicated its superior ranking over random distribution. To estimate the DDRRR
performance, the area under the accumulation curve (AUC) of the receiver operating
characteristic (ROC) curve was plotted as a reliable metric. The generated DDRRR model
achieved good values of ROC (0.78) and AUC (0.86).

The receiver operating characteristic (ROC) curve for model validation illustrates
specificity vs. sensitivity. The model’s high accuracy is indicated by specificity plotted on
the X axis, representing false positives or retrieved decoys, and sensitivity on the Y axis,
representing true positives or retrieved actives. The ROC curve in Fig S1, which deviates
significantly from the dotted line representing random prediction, demonstrates the model’s
predictive ability well above chance. The area under the ROC curve (AUC-ROC) and early
enrichment factor (EF) values on the curve further support the model’s high predictive
accuracy, sensitivity, and specificity (AUC1% = 0.84, EF1% = 19.45). Consequently, the
pharmacophore model is deemed reliable for the virtual screening of CMNPD. During the
screening process, we successfully identified 5156 compounds that aligned well with the
model and met the criteria for the model’s 4–5 feature super-positions. The model map of
the top leads is presented in Figure S2.

2.2. Target-Based Virtual Screening (TBVS)

In our research approach, we employed target-based virtual screening (TBVS), a
widely used method in virtual screening that incorporates molecular docking techniques.
Compounds that successfully passed the Lipinski drug-likeness screening, which relies
on physicochemical properties to predict the drug-likeness of an oral therapeutic agent,



Molecules 2023, 28, 8074 5 of 24

were considered. Lipinski’s rule-of-five establishes criteria for drug-likeness, including
no more than five hydrogen bond donors, no more than 10 hydrogen bond acceptors, a
molecular weight not exceeding 500 Da, and an octanol–water partition coefficient (log P)
not exceeding 5 [27]. Following the Lipinski analysis, compounds that demonstrated
good alignment with the pharmacophore model were selected for further investigation.
Our selection process involved assessing both fitness values and the number of matches,
ensuring the prioritization of the most promising compounds based on the pharmacophore
model. This comprehensive approach aimed to identify compounds with favorable drug-
like properties and a strong alignment with the desired pharmacophoric features. The next
step in the research involved conducting molecular docking studies to assess the binding
interactions and affinity between the selected compounds and the target protein Hsp90.
Through molecular docking, valuable insights were gained regarding the binding modes,
energy scores, and potential interactions between the compounds and the Hsp90 protein.

Docking protocol validation was conducted by re-docking the co-crystallized ligand
MEY (PDB: 3wod) into the catalytic domain of the Hsp90 receptor (Figure 2). The observed
conformational orientation similarity between the docked pose and the co-crystallized
ligand, with a root-mean-square deviation (RMSD) of 1.9857 Å, serves as confirmation of
the accuracy of the docking protocol. The obtained results, as shown in Figure 2, confirm
our successful identification of the correct active site of the enzyme. The binding pocket of
Hsp90 was divided into two moieties: a hydrophobic moiety consisting of residues Ala55,
Ile96, Met98, Leu107, Phe138, and Val150 and a hydrophilic moiety composed of residues
Asn51, Asp93, and Thr184. These findings are consistent with the literature [28].
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To enhance the accuracy and reliability of our results, we implemented a systematic
approach employing two distinct docking methods: standard precision (SP) and extra
precision (XP). Docking methods, such as standard precision (SP) and extra precision (XP),
vary in their computational approaches and precision levels. SP docking is known for
its faster computational speed and is often used for initial screenings due to its ability to
process a large number of compounds efficiently. However, it sacrifices some accuracy
by utilizing simplified representations and fewer computational resources. On the other
hand, XP docking is characterized by its higher accuracy and more exhaustive calculations.
It employs finer grid settings and conducts more thorough evaluations, making it more
suitable for detailed analyses that require precise estimations of ligand–protein interac-
tions. The choice between SP and XP docking methods is often based on research goals,
with SP favored for quicker screenings and XP utilized for in-depth, accurate evaluations
despite the higher computational demand [29,30]. The obtained docking scores serve as
indicators of the binding affinities between each compound and the target protein. Lower
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scores signify stronger binding interactions between the compound and the protein. These
scores can be further analyzed and interpreted to gain insights into the docking results.
The docking results of our study demonstrated that six compounds, 22591, 9335, 10015,
360799, 15115, and 20988, achieved favorable docking scores lower than the reference lig-
and (SMEY = −8.32 kcal) (see Table 1). This observation suggests that these compounds
exhibit greater stability and stronger binding affinity to the N-terminal ATP binding pocket
of Hsp90. Our comprehensive analysis of the docking results involved visualizing the
interactions within the complexes, as depicted in Figures 3 and 4. To provide a detailed
overview, we have compiled a summary of the interactions and their respective types in
Table 2. Interestingly, the analysis of the complexes revealed a significant abundance of
hydrogen bonding interactions (>5) in comparison with the reference compound. This
higher number of hydrogen bonding interactions contributes to the increased stability
of our compounds. Hydrogen bonds, known for their strong electrostatic nature, play a
critical role in ligand—receptor binding by providing stability and reinforcing the overall
strength of complex formation [31]. Specific amino acids, such as Gly97, Thr184, Asn51,
and Asp93, were found to be involved in hydrogen bonding interactions with our com-
pounds within the active site of the enzyme. Remarkably, these same amino acids were also
present in the reference compound complex. This similarity further supports the notion
of a conserved binding mode and shared interaction pattern between our compounds
and the reference compound, thus reinforcing the reliability and validity of our docking
results. In addition to hydrogen bonding, our study also identified significant hydrophobic
interactions between our compounds and the enzyme. Specifically, these hydrophobic
interactions involved amino acids Met98, Ala55, Asp54, and Phe138. These results are
similar to those found in other studies [32]. Among the amino acids involved in the
binding between our compounds and the enzyme, Met98 has been found to interact with
our compounds through a specific interaction type known as pi–sulfur interaction. The
pi–sulfur interaction is a noncovalent interaction. In our complexes, the ligands demon-
strated this interaction, where the ligands exhibit this interaction by aligning the pi–electron
system of their aromatic rings with the sulfur atom in the methionine residue. This inter-
action is considered favorable and contributes to the overall binding between the ligand
and the protein. The pharmacophore hypothesis generated for DDRRR comprises three
aromatic rings and two hydrogen bond donors (Figure 1). This hypothesis elucidates crucial
protein–ligand interactions. We underscore the significance of the pyrrole and pyrazole
rings in enhancing binding affinity, particularly emphasizing the pi–pi interaction with
Asp54 and pi-sulfur stacking interactions with Met98. The hydrogen bond donor element
signifies the importance of hydrogen bond donor interactions with Gly57 and Asp93. The
presence of diverse interactions between our compounds and the protein enhances stability.
Our utilization of the pharmacophore model facilitated the identification of shared fea-
tures among the compounds, resulting in similar bonds at the enzyme’s active site despite
their diverse structures. Following the docking study, we identified six marine-derived
compounds with distinct scaffolds that are anticipated to serve as potent inhibitors of the
Hsp90 protein. Detailed properties and definitions for these compounds are compiled
in Table S1. While these structural differences are likely to be evident, they are expected
to manifest more prominently in their unique physical and chemical properties. In the
following section, we delve deeper into the study and analysis of the pharmacokinetic
properties and drug-likeness of these compounds.
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Table 1. Docking binding energy (kcal/mol) of the top compounds according to the SP and XP
methods.

Compound CMNPD SP (kcal/mol) XP (kcal/mol)

22591 −8.97 −9.03

9335 −9.04 −8.98

15115 −8.71 −8.73

20988 −8.86 −8.43

10015 −7.91 −8.35

360799 −7.62 −8.74

MEY −8.84 −8.32

Table 2. Type of interaction and amino acid residues involved in that interaction inside the binding
pocket of the Hsp90 enzyme (3owd).

Compound
Name H-Bonds Hydrophobic

Others
Amino Acid

Residues
Number of
H-Bonds

H-Bond
Distance(Å)

Amino Acid
Residues

Number of
Hydrophobic

Bonds

10015 Gly97, Thr184, Asn51,
Asp93 6 1.83–2.77 Ala55, met98 3

3 /

15115
Gly137, Phe138,

Gly97, Leu48, Ser52,
Asn106, Val136

10 2.10–2.92 Ala55 2 Met98

360799 Gly97, Thr184, Asp93 6 1.83–2.75 Ala55, Val86 2 Met98

20988 Gly97, Asn102, Leu48 3 1.83–2.51 Ala55, Val186 2 Met98, Lys58

22591 Gly97, Thr184, Leu48,
Asn51 6 2.05–2.76 Ala55, Met98 2 Met98

9335 Glu97, Thr98, Asp39,
Asn51 7 1.90–2.91 Ala55 2 Met98

MEY Thr184, Gly97, Asp54 4 1.70–3.05
Phe138, Lys58,
Met98, Leu108,

Ala55
7 /

2.3. Pharmacokinetic Properties and Drug Likeness

In the next phase of our study, we focused on a comprehensive exploration of
the molecular and medicinal properties of the six selected compounds (Table S1). Af-
ter filtering the compounds based on Lipinski’s rule and the pharmacophore model
and conducting docking studies, we analyzed their pharmacokinetic properties using
ADME-Tox evaluations.

2.3.1. Molecular Properties

The molecular properties of all the best leads 22591, 9335, 10015, 360799, 15115, 20988,
and MEY, as predicted by ADMETLAB Explorer, are presented in Table 3. The selected lead
compounds exhibit low molecular weights (<370) and volumes, indicating their relatively
small size compared with the reference compound MEY (MW = 490). The small size of
our compounds can have significant implications for their physicochemical and biological
properties. The lead compounds in this study exhibit a range of numbers of rings (three
to five), contributing to structural complexity and potentially enhancing their interactions
with biologically significant target molecules. Moreover, the compounds display varying
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maximum ring sizes (9 to 14), influencing their conformation and potentially affecting
binding affinity and selectivity toward specific targets. The inclusion of larger rings high-
lights the role of the ring structure in modulating the properties and potential therapeutic
applications of these compounds. Additionally, the compounds contain different numbers
of heteroatoms (five to seven), which are atoms other than carbon and hydrogen. The
presence of heteroatoms enhances the compounds’ interactions with the Hsp90 protein and
offers the possibility of targeting specific regions or functional groups within the protein
structure. The selected compounds exhibit different levels of rigidity and flexibility. Com-
pounds 22591, 9335, and 15115 show high flexibility, enabling them to effectively adapt and
conform to the binding site of the Hsp90 protein. We believe this inherent flexibility plays
an important role in forming stable complexes and obtaining favorable docking scores. The
values that represent the logarithm of the compound’s solubility (logS), partition coefficient
(logP), and distribution coefficient (logD) are shown in Table 3.

Table 3. The molecular properties of top marine compounds.

10015 360799 15115 20988 9335 22591 MEY

Molecular Weight (MW) 354.1 328.1 363.12 338.0 278.08 369.12 490.07

Volume 358.9 338.1 362.03 331.96 271.60 368.87 459.9

nRot 3 2 5 2 2 6 5

nRing 5 5 4 4 4 3 5

nHet 6 5 7 6 6 7 10

Flexibility 0.017 0.074 0. 107 0.095 0.091 0.316 0.167

TPSA 90.11 73.04 106.26 103.2 90.64 105.09 124.42

logS −4.645 −4.511 −5.348 −4.29 −3.630 −3.337 −4.776

logP 2.611 3.404 2.503 3.869 1.182 2.938 4.562

logD 2.616 3.172 2.100 3.060 1.413 2.931 3.492

The logP value represents the compound’s partition coefficient, which measures its
lipophilicity or hydrophobicity. The logP values provided in Table 3 for the selected
compounds range from 1.182 to 3.869, all of which are below 5. These values indicate a
moderate degree of lipophilicity for the compounds. Compounds with logP values below
5 generally have good potential for membrane permeability and absorption. This property
is crucial for drugs to effectively cross biological barriers and reach their target sites. The
logD values provided for the compounds indicate their distribution coefficients, which
describe the balance between their hydrophilic and lipophilic properties. In the provided
range (1.413–3.492), the compounds exhibit moderate to high lipophilicity. A positive logD
value suggests that the compounds have a higher affinity for the lipid phase compared
with the aqueous phase. This finding aligns with the logP and logS values, which also
indicate the compounds’ tendency toward lipophilicity and lower solubility in water.

2.3.2. Medicinal Chemistry

Table 4 presents the calculated medicinal chemistry properties for the studied com-
pounds 22591, 9335, 10015, 360799, 15115, and 20988. These properties include the quanti-
tative estimate of drug-likeness (QED), synthetic accessibility score (SA score), and several
other rules of interest. The QED (quantitative estimate of drug-likeness) values provided in
the table range from 0.389 to 0.620. These values represent the estimated drug-likeness of
the compounds, with higher values indicating a higher likelihood of being drug-like.
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Table 4. The medicinal chemistry properties of top marine compounds.

10015 360799 15115 20988 9335 22591 MEY

QED 0.389 0.510 0.472 0.411 0.455 0.620 0.293
SAscore 2.821 3.253 3.206 2.592 2.715 2.635 2.615

Pfizer Rule Accepted Rejected Accepted Accepted Accepted Accepted Accepted
GSK Rule Accepted Accepted Accepted Accepted Accepted Accepted Rejected

Golden Triangle Accepted Accepted Accepted Accepted Accepted Accepted Accepted
PAINS 0 alert 0 alert 1 alert 0 alert 0 alert 0 alert 0 alert

BMS Rule 0 alert 0 alert 0 alert 1alert 0 alert 0 alert 0 alert
Chelator Rule 0 alert 0 alert 0 alert 0 alert 0 alert 0 alert 0 alert

The SA score is a metric used to assess the synthetic accessibility of a compound. It
takes into account various factors, such as the complexity of the molecular structure and the
availability of starting materials and synthetic pathways [33]. A lower SA score indicates
that the compound is structurally simpler and can be synthesized more easily. In Table 4 of
the study, the SA score values for the compounds range from 2.635 to 3.253. These values
indicate that the compounds possess relatively good synthetic accessibility. Table 4 includes
the evaluation of the lead compounds based on various rules and alerts commonly used in
drug discovery. The majority of the compounds demonstrated promising drug-likeness,
as they satisfied the GSK rule and the golden triangle rule [34], which assesses factors
such as molecular weight, lipophilicity, hydrogen bond donors and acceptors, and their
balance. However, one specific compound (360799) did not meet the criteria of the Pfizer
rule and was consequently rejected. This rule evaluates drug-likeness based on parameters
such as molecular weight, logP, hydrogen bond donors and acceptors, and the number
of rotatable bonds [35]. Furthermore, none of the compounds in the study exhibited any
alerts according to the PAINS rule, which identifies structural features associated with
assay interference. The absence of PAINS alerts suggests that the compounds are less likely
to produce misleading or false-positive results and increases their potential as meaningful
hits [36]. Additionally, none of the compounds triggered alerts according to the BMS
rule, which identifies potential toxicity concerns. Similarly, none of the compounds raised
alerts according to the chelator rule, indicating the absence of chelation-related issues.
Overall, the majority of the compounds in the table meet the criteria set by these rules,
indicating their potential as drug candidates. However, it is important to consider these
rules as guidelines rather than definitive determinants of a compound’s suitability for drug
development, as additional factors and assessments are necessary.

2.3.3. Absorption

The values listed in Table 5 represent the absorption of a substance. Caco-2 permeabil-
ity is a measure of how easily a substance can pass through the Caco-2 cell monolayer, as
shown in the provided Table 5 for Caco-2 permeability, and the values range from −5.172
to −4.621. The website admelab states that the optimal value is higher than −5.15 based
on the given data and the specified criteria. Compounds 360799, 20988, and 22591 show
relatively better permeability through the Caco-2 cell monolayer, while compounds 10015,
15115, and 9335 display relatively lower permeability.

The MDCK cell monolayer is widely used as an in vitro model to assess the perme-
ability of substances [37]. Compounds 10015, 360799, 15115, and 9335 demonstrate low
permeability through the MDCK cell monolayer, as their permeability values fall within
the range of <2 × 10−6 cm/s. This suggests that these substances have limited ability to
pass through the cell monolayer, indicating potential challenges in their absorption into
the body. P-glycoprotein is a membrane transporter that plays a role in the absorption
and distribution of substances within the body [38]. The categories of absorption (poor,
medium, excellent) indicate the relative ability of substances to be absorbed into the body.
Poor absorption suggests challenges in absorption, while excellent absorption suggests
efficient uptake. Based on this information, substances 15115, 15068, and 9335 demon-
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strate both excellent P-glycoprotein inhibition and absorption properties. This indicates
that these substances have a high potential for absorption and distribution in the body.
Substances 360799 and 22591 show medium P-glycoprotein inhibition and absorption,
indicating a moderate ability to be absorbed. However, substances 10015 and 20988 exhibit
poor P-glycoprotein inhibition and absorption characteristics, suggesting difficulties in
their absorption and distribution within the body. Based on the provided data, all the com-
pounds demonstrate excellent absorption, indicating a high likelihood of being effectively
absorbed in the human intestine. However, the reference compound MEY exhibits medium
absorption, suggesting a moderate potential for absorption. The bioavailability of a drug
is an important pharmacokinetic parameter that assesses the fraction of an administered
dose that reaches the systemic circulation in an unchanged form. It reflects the extent and
rate of drug absorption into the bloodstream and influences its therapeutic effectiveness.
The data suggest that all the compounds, including MEY, exhibit excellent permeability
at a rate of 20%. After obtaining encouraging absorption results, the focus then shifted
toward distribution analysis, aiming to gain valuable insights into the potential distribution
patterns of these compounds across various tissues and compartments within the body.

Table 5. In silico prediction of absorption of top marine compounds.

Absorption 10015 360799 15115 20988 9335 22591 MEY

Caco-2 Permeability −5.172 −5.112 −5.323 −4.694 −5.200 −4.621 −5.856

MDCK Permeability 5.2 × 10-6 4.5×10-6 5.4×10-6 2.8×10-5 6.9 ×10-6 1.5 ×10-5 1.3 ×10-5

Pgp-inhibitor Poor medium excellent poor excellent excellent medium

HIA excellent excellent excellent excellent excellent excellent medium

F20% excellent excellent excellent excellent excellent excellent excellent

2.3.4. Distribution

Continuing with the analysis, the predicted distribution results provide valuable
insights into the potential tissue and compartmental distribution of the Hsp90 inhibitors
under investigation (Table 6). By understanding their distribution patterns, we can discern
how these compounds may interact with specific target tissues or organs, thus informing
their pharmacological activity and potential therapeutic effects. The provided values for
PPB (percentage of protein binding) represent how much a compound binds to plasma
proteins. A compound is considered to have significant protein binding if its predicted
value is equal to or greater than 90%. After analyzing these values, it is clear that substances
10015, 360799, and MEY have high levels of protein binding, indicating that a substantial
portion of these compounds bind to plasma proteins. In contrast, the remaining substances
have values that are close to 90%. It is crucial to recognize that drugs with high protein
binding may have a low therapeutic index since a smaller amount of the drug remains in
its active, unbound form.

Table 6. In silico prediction of distribution of top marine compounds.

Distribution 10015 360799 15115 20988 9335 22591 MEY

PPB 98.924% 95.931% 86.725% 88.424% 88.245% 86.444% 98.622

VD L/kg 0.345 0.966 1.747 0.459 1.131 0.460 0.429

BBB Penetration excellent excellent excellent poor excellent excellent excellent

Fu 0.998% 3.499% 14.958% 2.918% 18.876% 8.108% 0.663

The predicted VD values for the compounds indicate their estimated volume of
distribution in L/kg. A proper VD is typically within the range of 0.04–20 L/kg. The given
compounds, including substances 10015, 360799, 15115, 20988, 15068, 9335, and 22591, all
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have predicted VD values that fall within this acceptable range. This suggests that these
compounds have an appropriate extent of distribution throughout the body. The BBB
penetration values provided indicate the ability of molecules to cross the blood—brain
barrier. Analyzing the given values, substances 360799, 20988, 10015, 15115, 9335, and
15068 are classified as excellent, indicating a higher probability of BBB penetration. On
the other hand, compound 20988 is classified as poor, suggesting a lower probability of
BBB penetration.

2.3.5. Metabolism and Excretion

The ability of a compound to inhibit specific enzymes is an important factor to con-
sider in drug development and clinical use. Inhibition of these enzymes can impact the
metabolism and clearance of drugs, influencing their efficacy, safety, and potential for
drug—drug interactions. Therefore, identifying the inhibitory effects of compounds on
specific enzymes provides valuable information for understanding their pharmacokinetic
profiles and optimizing their therapeutic use. Based on the results (Table 7), it is evident that
each compound exhibits varying inhibitory effects on different enzymes. This variability in
inhibition suggests that the compounds may be susceptible to inhibiting at least one of the
enzymes, which can be considered a favorable outcome. Table 7 provides information on
the clearance (CL) and half-life (T1/2) values for different compounds. Clearance represents
the rate at which a substance is eliminated from the body, while half-life represents the time
it takes for the concentration of a substance in the body to reduce by half. Upon analyzing
the data, several observations can be made regarding the clearance (CL) and half-life (T1/2)
of the substances under investigation. The unit of predicted clearance (CL penetration) is
expressed in ml/min/kg. Clearances are categorized as follows: >15 mL/min/kg signi-
fies high clearance, 5–15 mL/min/kg suggests moderate clearance, and <5 mL/min/kg
indicates low clearance. In our analysis, substances 10015, 360799, and 9335 demonstrate
low clearance, implying a slower rate of elimination from the body. In contrast, substances
15115, 22591, and 20,988 exhibit moderate clearance. Furthermore, the range of half-life
(T1/2) values, spanning from 0.316 to 0.892, typically suggests an intermediate half-life.
It is crucial to note that these values may be categorized in the database output as either
category 1 (representing a long half-life, >3 h) or category 0 (representing a short half-life,
<3 h). This observation indicates that these compounds are rapidly cleared from the body. It
is important to consider that substances with low clearance and short half-lives are typically
eliminated relatively quickly.

Table 7. In silico prediction of metabolism and excretion of marine compounds.

Metabolism 10015 360799 15115 20988 9335 22591 MEY

CYP1A2 inhibitor yes yes yes yes yes yes yes

CYP2C1 inhibitor yes yes yes yes yes yes yes

CYP2C9 inhibitor yes yes yes yes no yes yes

CYP2D6 inhibitor no no yes no yes no yes

CYP3A4 inhibitor yes yes yes yes yes yes yes

Excretion

CL ml/min/kg 1.592 2.302 10.457 13.908 3.311 10.986 4.720

T1/2 0.693 0.408 0.316 0.842 0.895 0.892 0.322

2.3.6. Prediction of Toxicity

For the toxicity study, we utilized two online platforms to ensure a comprehensive
analysis, as explained in Section 4.6. Our analysis commenced with the findings from
AdmetLab, outlined in Table 8. Notably, concerning hERG blockers, all compounds were
classified as non-hERG blockers. This classification indicates a reduced risk of inducing
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potentially serious cardiac arrhythmias associated with these compounds. Moving on to
rat oral acute toxicity, compounds 10015 and 360799 demonstrate acute oral toxicity in rats.
In contrast, compounds 15115, 20988, 9335, and MEY exhibit non-acute oral toxicity in
rats. These findings provide insights into the potential risks associated with the ingestion
of these compounds. In examining skin sensitization, compounds 10015, 360799, 15115,
9335, and MEY are classified as non-skin sensitizers, indicating that they are unlikely to
cause skin sensitization. However, compound 20988 shows potential for skin sensitization,
suggesting the need for further investigation and consideration of its potential risks. In
terms of respiratory toxicity, it was observed that compound 10015 displays respiratory
toxicity, whereas the remaining compounds do not exhibit such effects. This informa-
tion holds significant importance in the evaluation of potential adverse impacts on the
respiratory system.

Table 8. In silico prediction of toxicity of top marine compounds.

10015 360799 15115 20988 9335 22591 MEY

hERG Blockers no no no no no no no

Rat Oral Acute Toxicity yes yes no no no no no

Skin Sensitization no no no yes no no no

Respiratory Toxicity yes no no no no no no

Table S3 shows the findings encompassing diverse organ toxicity and endpoints for
the marine compounds selected, evaluated via the Protox-II toxicity analysis platform.
For these results, the table delineates the accuracy percentage of predictions and the
average similarity percentage in comparison to the datasets utilized by the models. The
evaluation encompassed predictions for various toxicities, including human hepatotoxicity
(H-HT)/drug-induced liver injury (DILI), carcinogenicity, immunotoxicity, mutagenicity,
and cytotoxicity among the candidate compounds. Safety assessments indicated that most
of the lead compounds exhibited promising safety profiles regarding H-HT/DILI. However,
the reference compound, MEY, demonstrated a potentially considerable hepatotoxicity risk,
with a safety profile score of 0.50.

Regarding carcinogenicity, compounds 22591 and 360799 were identified as noncar-
cinogenic (inactive). Conversely, the remaining compounds showed a low probability
of carcinogenicity, ranging between 0.51 and 0.62. This likelihood might arise from the
presence of primary and secondary amine functional groups in their structures, known
to react with sodium nitrite, forming N-nitroso compounds that contribute to potential
carcinogenic risk. Immunotoxicity was noted in the marine compounds, with compound
10015 predicted to be immunotoxic (active) at a probability of 0.55. In contrast, the other
compounds, including the reference compound MEY, exhibited non-immunotoxic (inactive)
properties, with probabilities ranging between 0.54 and 0.67.

Following an analysis of pharmacokinetic properties, it was decided to discontinue the
study of compound 10015 due to its multiple indications of potential toxicity. Our attention
was then redirected toward an in-depth exploration of the dynamics and pharmacological
potential of the remaining compounds.

2.4. Molecular Dynamics Analysis

Molecular dynamics simulations using Gromacs software were conducted to verify
the stability of Hsp90 and its complexes. In a specific solvation system, Hesp90 with its
ligands (15115, 360799, 20988, 22591, and 9335) was simulated for 100 ns on a GPU system
by quantifying the root-mean-square deviation (RMSD), root-mean-square fluctuations
(RMSF), radius of gyration (Rg), and solvent available surface area (SASA) of the active site
of Hsp90 and its complexes.
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2.4.1. RMSD of HSP90 and Its Complexes

RMSD is a metric in MD simulations that measures the equilibrium stability and
flexibility of proteins and ligands, as well as the distance that exists between the protein’s
backbone and atoms [39]. The average RMSD values of backbone atoms for Hsp90 and its
complexes with the hit molecules 15115, 360799, 20988, 22591, and 9335 were estimated to
be 0.179, 0.295, 0.223, 0.195, 0.094, and 0.147 nm, respectively. Figure 5 demonstrates the
average RMSD values of the backbone atoms Hsp90 and its complexes. The hit molecules
20988, 22591, and 9335 formed exceptionally stable complexes with the active site of Hsp90
over 100 ns of simulation, showing that the complexes generated have excellent structural
and dynamical stability. The findings provide information on the stability of marine
chemical compounds within the active site of Hsp90, which might be important in the
development of novel powerful treatments for malignant tumors.

Molecules 2023, 28, x FOR PEER REVIEW 15 of 24 
 

 

2.4.1. RMSD of HSP90 and Its Complexes 
RMSD is a metric in MD simulations that measures the equilibrium stability and flex-

ibility of proteins and ligands, as well as the distance that exists between the protein’s 
backbone and atoms [39]. The average RMSD values of backbone atoms for Hsp90 and its 
complexes with the hit molecules 15115, 360799, 20988, 22591, and 9335 were estimated to 
be 0.179, 0.295, 0.223, 0.195, 0.094, and 0.147 nm, respectively. Figure 5 demonstrates the 
average RMSD values of the backbone atoms Hsp90 and its complexes. The hit molecules 
20988, 22591, and 9335 formed exceptionally stable complexes with the active site of Hsp90 
over 100 ns of simulation, showing that the complexes generated have excellent structural 
and dynamical stability. The findings provide information on the stability of marine 
chemical compounds within the active site of Hsp90, which might be important in the 
development of novel powerful treatments for malignant tumors. 

 
Figure 5. RMSD profile of Hsp90 and its complexes for 100 ns of the simulation period. 

2.4.2. RMSF of HSP90 and Its Complexes 
RMSF analysis was adopted to predict the shift in atom location for the backbone 

atoms of Hsp90 and their five complexes. A smaller RMSF value explained the stability of 
the Hsp90_hit molecule complexes, as opposed to a higher value reflecting more flexibility 
over the 100 ns simulation. Figure 6 depicts the RMSF fluctuation of molecular dynamic 
simulations for all systems. The analysis revealed that the average RMSF of the backbone 
atoms of Hsp90 was 0.093 nm. Furthermore, the average RMSF for all compounds ranged 
between 0.127 and 0.142 nm, suggesting a low level of atomic mobility. In particular, the 
backbone atoms of Hsp90 fluctuated more at atom 985, with an RMSF value of 0.6 nm. In 
addition, the Hsp90_9335, Hsp90_22591, and Hsp90_360799 complexes exhibited higher 
fluctuations at atoms 300, 1400, and 2800, with average RMSFs varying between 0.3 and 
0.6 nm. We also noticed a similar dynamic movement toward the Hsp90 binding site, in-
dicating a regular interaction between the hit molecules and Hsp90. In general, the RMSF 
study sheds light on the dynamics of Hsp90 and its complexes, which can be used to de-
sign new anticancer drugs. 

Figure 5. RMSD profile of Hsp90 and its complexes for 100 ns of the simulation period.

2.4.2. RMSF of HSP90 and Its Complexes

RMSF analysis was adopted to predict the shift in atom location for the backbone
atoms of Hsp90 and their five complexes. A smaller RMSF value explained the stability of
the Hsp90_hit molecule complexes, as opposed to a higher value reflecting more flexibility
over the 100 ns simulation. Figure 6 depicts the RMSF fluctuation of molecular dynamic
simulations for all systems. The analysis revealed that the average RMSF of the backbone
atoms of Hsp90 was 0.093 nm. Furthermore, the average RMSF for all compounds ranged
between 0.127 and 0.142 nm, suggesting a low level of atomic mobility. In particular, the
backbone atoms of Hsp90 fluctuated more at atom 985, with an RMSF value of 0.6 nm. In
addition, the Hsp90_9335, Hsp90_22591, and Hsp90_360799 complexes exhibited higher
fluctuations at atoms 300, 1400, and 2800, with average RMSFs varying between 0.3 and
0.6 nm. We also noticed a similar dynamic movement toward the Hsp90 binding site,
indicating a regular interaction between the hit molecules and Hsp90. In general, the RMSF
study sheds light on the dynamics of Hsp90 and its complexes, which can be used to design
new anticancer drugs.

2.4.3. Radius of Gyration (Rg)

The radius of gyration (Rg) describes the variations in compactness of a protein—lig-
and complex. It refers to the unfolding and folding of proteins in molecular dynamic
simulations. The average Rg for Hsp90 was 1.733 nm. All of the compounds had an
average Rg between 1.707 and 1.733 nm. The Rg findings revealed that each Hsp90_hit
molecule complex was stable with a similar compact to the reference protein (Hsp90). The
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similarity of the average Rg values of the five complexes to the average Rg of Hsp90 can be
explained by the structural stability during the interaction period with the active site of
Hsp90. This finding is in line with the RMSD and RMSF examinations that also showed
that all the complexes were very stable over 100 ns. In Figure 7, we present the Rg values
for each system plotted over the duration of the simulation.
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2.4.4. Solvent Accessible Surface Area (SASA) Analysis

SASA describes the interaction of Hsp90_hit compound complexes with solvents and
corresponds to the solvent-accessible surface area. Furthermore, it predicts the structural
changes that occur throughout the interactions. The Hsp90 protein exhibited an average
SASA value of 110.61 nm2, whereas the average SASA values of its five complexes ranged
from 109.26 to 111.44 nm2 (as indicated in Table 9). The SASA value of the five Hsp90_hit
molecule complexes remained considerably stable over 100 ns of simulation, indicating no
changes in the Hsp90 conformation. Furthermore, without altering its structure, Hsp90 is
able to continue performing its essential functions without perturbations. Figure 8 depicts
the changes in the solvent accessibility of the Hsp90_hit compound complexes during
100 ns of simulation.
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Table 9. Analysis of the stability of the Hsp90 protein and its complexes via molecular dynamics
simulations.

Complexes RMSD (nm) RMSF (nm) Rg (nm) SASA (nm2)

Hsp90_15115 0.295 0.136 1.711 109.26

Hsp90_360799 0.223 0.142 1.711 110.08

Hsp90_20988 0.195 0.130 1.702 109.44

Hsp90_22591 0.094 0.127 1.707 109.26

Hsp90_9335 0.147 0.141 1.733 111.44

Hsp90 0.179 0.093 1.733 110.61
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2.4.5. MM-PBSA Calculations

The binding free energy at 100 ns was computed from the molecular dynamic tra-
jectories via the MM-PBSA method developed in Gromacs. The calculated total binding
free energy was computed based on the van der Waals interactions (∆EVDW), electrostatic
interactions (∆EEEL), generalized born component (∆EGB), nonpolar solvation component
(∆ESURF), total gas phase molecular mechanics energy (∆GGAS), and total solvation energy
(∆GSOLV) for the five complexes. The total binding energies of the five complexes were
found to be between −32.78 and −23.11 kJ/mol, as shown in Table 10. In addition, accord-
ing to all MM-PBSA calculations, the five compounds formed stable complexes with the
active site of Hsp90 in the same configuration as the docking investigation. The estimation
of binding free energy corroborated the results of the molecular docking and molecular
dynamic simulations. These findings may be useful in designing potent drugs for the
treatment of incurable and malignant illnesses. Figure 9 represents the binding poses of
each system over the simulation time.

Table 10. The binding energy components calculated by the MM-PBSA approach.

Ligand_Hsp90
Complexes

∆EVDW
(kJ/mol)

∆EEEL
(kJ/mol)

∆EGB
(kJ/mol)

∆ESURF
(kJ/mol)

∆GGAS
(kJ/mol)

∆GSOLV
(kJ/mol)

∆TOTAL
(kJ/mol)

Hsp90_15115 −34.59 −33.26 48.63 −5.39 −67.85 43.23 −24.61

Hsp90_360799 −34.89 −21.88 36.59 −4.70 −56.77 31.89 −24.88
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Table 10. Cont.

Ligand_Hsp90
Complexes

∆EVDW
(kJ/mol)

∆EEEL
(kJ/mol)

∆EGB
(kJ/mol)

∆ESURF
(kJ/mol)

∆GGAS
(kJ/mol)

∆GSOLV
(kJ/mol)

∆TOTAL
(kJ/mol)

Hsp90_20988 −35.58 −26.15 43.70 −5.08 −61.73 38.62 −23.11

Hsp90_22591 −41.86 −29.51 44.06 −5.47 −71.37 38.59 −32.78

Hsp90_9335 −29.83 −45.69 52.75 −4.17 −75.51 48.57 −26.94
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3. Discussion

Hsp90 is a critical chaperone protein that interacts with cancer client proteins and
co-chaperones to regulate signaling pathways and repair folded proteins in tumor cells [40].
As a result, it is an essential target in the treatment of cancer and its complications. The
goal of our research was to identify novel and potent Hsp90 inhibitors utilizing natural
marine compounds. The pharmacophore based on computer-aided technology was used
in the initial phase to screen the CMNPD database for novel effective inhibitors. Docking
modeling represents one of the computational strategies employed in drug development.
It also predicts the affinity of compounds bound within protein receptors and generates
an affinity score [41,42]. After examining the docking (XP) findings, the molecules CM-
NPD 22591, 9335, 15115, 20988, 10015, and 360799 had XP scores ranging from −9.03 to
−8.35 kcal/mol, whereas the reference molecule (MEY) had a score value of −8.32 kcal/mol.
For the molecular interactions, specific amino acids, such as Gly97, Thr184, Asn51, and
Asp93, were shown to be involved in hydrogen bonding interactions with the chosen
compounds within the Hsp90 receptor during molecular interactions. These findings are
consistent with the observations made in Abbasi et al. [28,33]. It is important to note
that these identical amino acids were also found in the reference ligand in complex with



Molecules 2023, 28, 8074 19 of 24

Hsp90 [43]. These docking results support and explain the potential of the hit molecules
to block the biological and biomolecular activity of Hsp90 by binding with its active site.
Concerning the pharmacokinetics of the proposed molecules, intestinal absorption is easy
and rapid, permitting significant quantities of these compounds to enter the bloodstream,
and oral administration is perfectly acceptable. Most importantly, all of the proposed
molecules, with the exception of molecule 20988, have a high affinity for biological mem-
branes; as a result, all of these compounds reach all biological tissues and organs (excellent
distribution). At the level of hepatic metabolism, the proposed compounds (excluding
360799) and the reference molecule inhibit the reactions of hepatic enzymes such as the
cytochrome p450 family. In addition, due to the high solubility of the hit molecules with
logS between −5.348 and −3.337, these molecules will be easily eliminated via the renal
pathway (at the nephron level) or the enterohepatic cycle. Finally, all of the above findings
suggest that the pharmacokinetic features of the examined marine compounds are opti-
mal. Molecular dynamics simulations have been employed to determine the stability of
drugs that bind to protein receptors. The suggested marine compounds showed average
RMSD values ranging from 0.147 to 0.295 nm, with an average RMSF between 0.127 and
0.142 nm demonstrating minimal atomic movement and the continuance of structural
stability throughout 100 ns of simulation. Furthermore, the data obtained from the inter-
pretations of the molecular radius of gyration and solvent accessible surface area study
support the RMSD and RMSF investigations. This outcome demonstrates the extent of the
biomolecular structural stability of the generated complexes, ensuring the inhibition of
Hsp90’s critical role in cancer cells. The MM-PBSA calculations agree with the molecular
docking analysis, demonstrating that all hit molecules form stable complexes with the
Hsp90 receptor, with binding free energies ranging from −32.78 to −23.11 kJ/mol. Our
biomolecular structure and dynamics findings agree with the findings of Priya Antony and
colleagues, who showed that marine-derived compounds form extremely stable complexes
with different proteins [44]. Therefore, our findings should encourage cancer researchers to
develop powerful and novel anticancer drugs based on natural marine molecules. On the
other hand, Hsp90 inhibitors can potentially enhance the efficacy of antibiotics or serve as a
target for developing new antimicrobial drugs, playing a crucial role in protein folding and
stability in various organisms, including marine organisms. Inhibition of Hsp90 can disrupt
essential cellular processes, making it an attractive target for antimicrobial strategies [45].
Studies on this issue are scant, and consequently, we propose the undertaking of additional
and forthcoming investigations in this field.

4. Materials and Methods
4.1. Preparation of Library of Natural Compounds

Approximately 31,488 compounds of marine origin were obtained from the CMNPD
database (https://www.ibscreen.com/natural.shtml accessed 14 may 2023) and imported
into the Maestro molecular interface, which is part of the Schrödinger suite, for compu-
tational analysis. To prepare the ligands for further studies, LigPrep software (LigPrep,
released in 2018) from Schrödinger was employed to consider the possible ionization states
of the ligands. In this study, ionization states were generated at a physiological pH of
7.2 ± 0.2. Default options were utilized for all other parameters. The next step involved
minimizing the ligand structures using the optimized potential liquid simulation (OPLS3)
force field [46]. This minimization process was applied to optimize the ligand structures
and improve their energetics, making them suitable for subsequent molecular modeling
studies or virtual screening experiments.

The drug ability of these compounds was predicted using certain criteria. In this study,
the Lipinski violation was set to zero, following the guidelines proposed by Lipinski et al.
in 1997 [35]. Additionally, the compounds were assessed for their gastrointestinal (GI)
absorption potential, with a high GI absorption considered. Based on these criteria, a subset
of 11,118 compounds was screened for further analysis.

https://www.ibscreen.com/natural.shtml
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4.2. Optimizing Protein Crystal Structures

The crystal structure of the human Hsp90 protein (PDB code: 3OWD with a resolution
of 1.63 Å) was obtained from the Protein Data Bank. N-{[1-(5-chloro-2,4-dihydroxyphenyl)-
2-oxo-2,3-dihydro-1H-benzimidazol-5-yl]methyl}naphthalene-1-sulfonamide (MEY) was
the co-crystallized ligand in the inhibitor site of Hsp90. The co-crystallized ligand, N-
Aryl-benzimidazolones (MEY), linked to the protein structure, has been recognized for
its capability to inhibit enzymatic Hsp90 activity [47]. This characterization positions it
as a crucial reference in our ongoing investigation. To resolve specific errors, such as
missing hydrogen atoms resulting from X-ray crystallography, the protein structure was
refined using the protein preparation wizard in Glide software (Schrödinger suite 2018-
1). The refinement process involved removing unwanted molecules, such as water and
heteroatoms, to ensure a purified protein structure. Steric conflicts and incorrect bond
lengths and angles were corrected to optimize the overall quality and geometry of the
protein structure. In addition, the partial charges of protein atoms were determined using
force-field-based calculations. This involved assigning appropriate charges to each atom
based on force-field parameters, ensuring an accurate representation of the electrostatic
properties of the protein. In the last refinement step, a root-mean-square deviation (RMSD)
threshold of 0.3 for heavy atoms was defined, and a full energy optimization was performed
using the OPLS3 force field. This optimization step further improved the stability and
energetics of the protein structure.

4.3. Molecular Docking Studies

The receptor grid generating panel in Glide was used to create the Glide grid file. The
grid’s location was chosen based on the co-crystallized ligand that is present in the protein’s
active site. After the docking calculations, the poses or conformations of the ligands with
the highest binding energies were visualized using BIOVIA Discovery Studio Visualizer
(Dassault Systems, San Diego, CA, USA).

4.4. Pharmacophore Modeling and Enrichment Study

In the study, a pharmacophore model was generated using the “Develop Pharma-
cophore from protein—ligand complex” option within the Phase module, with default pa-
rameters being applied. To assess the effectiveness of the generated model, we conducted an
enrichment study involving the combination of a decoy set obtained from the Schrödinger
database with 35 known actives identified from the literature [48]. The chemical structures
of the actives were drawn in ChemDraw Ultra 10.0, and their SMILES representations
were copied to OpenBabelGUI (https://openbabel.org/wiki/OpenBabelGUI accessed
17 November 2023) to convert them into a single SDF file. Following the execution of the
study, the results were analyzed by generating a receiver operating characteristic curve
(ROC) based on the ratio of correctly identified actives to decoys as per the pharmacophore
model. The area under the curve (ROC-AUC) was calculated to gauge the model’s detection
capability. A valid pharmacophore model typically exhibits an AUC > 0.5, with excellent
detection capacity approaching 1. A higher early enrichment factor at these percentages
indicates a better ability to identify true positives early in the screening process.

4.5. Virtual Screening

The pharmacophore model was then utilized to conduct virtual screening of the
Marine Natural Products (CMNP) database. The CMNP database initially contained a total
of 31,488 molecules. After applying the Lipinski rules, which evaluate the drug-likeness of
compounds, a subset of 11,118 molecules that met the criteria were included for further
analysis. By employing the pharmacophore models, the study identified and selected
5156 compounds from the CMNP database that matched the pharmacophore features.

https://openbabel.org/wiki/OpenBabelGUI
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4.6. In Silico and ADME-Tox and Drug-Likeness Prediction

After identifying the best performing compounds from the docking results, our focus
shifted to examining their molecular characteristics and evaluating the ADME (absorp-
tion, distribution, metabolism, and excretion) properties. We utilized the ADMETlab
2.0 web servers for this purpose. Toxicity studies were conducted using both Protox-II
and ADMETlab 2.0 web servers. The ADMETlab 2.0 server (https://Pharmaceutical,
accessed 9 July 2023, Fronts Vol. 4 No. 4/2022 © 2022) and the Protox-II web server
(https://tox-new.charite.de) were accessed for this analysis.

4.7. Molecular Dynamics Investigation

Molecular dynamic simulations were utilized to analyze the protein—ligand com-
plexes according to various physiological circumstances [49]. The molecules 15115, 360799,
20988, 22591, and 9335 were selected for MD simulations owing to their high binding with
the Hsp90 active site. On the Ubuntu Linux distribution (v 24.04), Gromacs-2023 was
employed to run molecular dynamics simulations over 100 ns for each system. The molecu-
lar topology file of the ligands was retrieved via the SwissParam online service, and the
CHARMM27 all-atom force field was applied to generate the protein topology file [50,51].
The TIP3P water model was subsequently utilized to solve each system, and Na+ and Cl−

ions were introduced to neutralize the charge [52]. The solvated system was then used to
minimize energy using the steepest descent minimization algorithm when the maximal
force was below 10.0 kJ/mol. For the NVT equilibration period, the system was coupled
using a v-rescale algorithm at 300 K with an initial coupling value of 0.1 ps and duration
of 100 ps. The NPT was equilibrated for 100 ps utilizing a Berenson pressure-coupling
procedure and a coupling constant of 2.0 ps [53,54]. The molecular dynamics simulation
results were evaluated to assess the stability, mobility, compactness, and affinity of the five
compounds with the active site of Hsp90. After the simulation, the structural stability of the
Hsp90_hit molecule complexes was determined using root-mean-square deviation (RMSD).
To assess the flexibility of the amino acid residues of each system, the root-mean-square
fluctuation (RMSF) was computed. In addition, the radius of gyration (Rg) was estimated
to analyze the compactness of the Hsp90_hit complexes. Finally, the solvent accessible
surface area (SASA) was calculated to check the stability of each system.

4.8. MM-PBSA Binding Free Energy Calculations

The molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) and binding
free energy investigations were carried out with the gmx_MMPBSA module of Gromacs-
2023. The binding-free energy (∆Gbind) was determined in the following manner [55,56]:

∆Gbind = Gcomplex − (Gprotein + Gligand)

where ∆Gbind is the overall binding energy of the complex, Gcomplex is the binding
energy of Hsp90, and Gligand is the binding energy of the ligand.

5. Conclusions

Our research was dedicated to the pursuit of novel inhibitors for the Hsp90 protein,
starting from a diverse collection of marine-derived compounds. Through our study, we
successfully identified five marine-derived compounds, denoted as compounds 22591,
9335, 360799, 15115, and 20988. These compounds are notable not only for their structural
diversity, which encompasses stilbenes, indoles, pyrroloindoles, and phenylbenzofurans,
but also for their marine origins, spanning from demosponges and Didemnum granulatum
to tunicate Rhopalaea sp., Spongosorites sp., Zyzzya fuliginosa, and Penicillium chermesinum.
Remarkably, despite their structural variances and marine sources, all of these compounds
exhibited highly promising interactions with the Hsp90 protein. They formed multiple
hydrogen bonds with the protein, thus significantly enhancing its stability. Moreover, we
ensured the safety of these compounds through ADMETOX analysis. What strengthened

https://Pharmaceutical
https://tox-new.charite.de
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the potential candidacy of our compounds as pharmaceutical agents was their stability
within the challenging protein complexes, as confirmed through an in-depth study using
molecular dynamics simulations. This research not only advances our understanding of
Hsp90 inhibition but also paves the way for the development of potential therapeutic agents.
The stability and interaction profiles of these marine-derived compounds demonstrate their
promise in further drug-development efforts, particularly in the fields of anticancer and
antimicrobial activity.
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