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Abstract: The “Long-COVID syndrome” has posed significant challenges due to a lack of validated
therapeutic options. We developed a novel multi-step virtual screening strategy to reliably identify
inhibitors against 3-chymotrypsin-like protease of SARS-CoV-2 from abundant flavonoids, which
represents a promising source of antiviral and immune-boosting nutrients. We identified 57 interact-
ing residues as contributors to the protein-ligand binding pocket. Their energy interaction profiles
constituted the input features for Machine Learning (ML) models. The consensus of 25 classifiers
trained using various ML algorithms attained 93.9% accuracy and a 6.4% false-positive-rate. The
consensus of 10 regression models for binding energy prediction also achieved a low root-mean-
square error of 1.18 kcal/mol. We screened out 120 flavonoid hits first and retained 50 drug-like
hits after predefined ADMET filtering to ensure bioavailability and safety profiles. Furthermore,
molecular dynamics simulations prioritized nine bioactive flavonoids as promising anti-SARS-CoV-2
agents exhibiting both high structural stability (root-mean-square deviation < 5 Å for 218 ns) and low
MM/PBSA binding free energy (<−6 kcal/mol). Among them, KB-2 (PubChem-CID, 14630497) and
9-O-Methylglyceofuran (PubChem-CID, 44257401) displayed excellent binding affinity and desirable
pharmacokinetic capabilities. These compounds have great potential to serve as oral nutraceuticals
with therapeutic and prophylactic properties as care strategies for patients with long-COVID syndrome.

Keywords: 3-chyomotrypsin-like protease (3CL-pro); main protease (M-pro); SARS-CoV-2; long-COVID;
flavonoids; molecular modeling; machine learning-based scoring function (ML-based SF); ligand–residue
interaction profiles; structure-based virtual screening (SBVS); molecular dynamics simulation

1. Introduction

COVID-19 has been the most severe pandemic outbreak in the recent decade, with the
global spreading transmission, high infection rate, and alarming death toll due to severe
acute respiratory syndrome coronavirus-2 (SARS-CoV-2) [1,2]. This concerning plight was
further worsened by the higher transmissibility and significant immune escape potential of
the new strains [2,3]. Also, growing evidence suggests that many people develop chronic
conditions that persist for an uncertain period after SARS-CoV-2 infections, known as
post-COVID conditions (PCCs), or long COVID syndrome [4,5]. This high-risk COVID-19
group was termed as the “long-haulers”, who might experience various symptoms from
light fatigue to severe neuropsychiatric symptoms [6,7]. Currently, long COVID syndrome
has become the most worrisome challenge, with its mechanisms remaining unclear and
insufficient treatment options available [8,9]. Therefore, in addition to the development
of next-generation vaccines, the development of broad-spectrum antiviral agents against
SARS-CoV-2 is a long-term viable therapeutic strategy.
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The 3-chymotrypsin-like protease (3CL-pro), also known as main protease (M-pro), is a
pivotal enzyme during viral life cycling found in coronavirus. With more cleavage sites than
other papain-like proteases, 3CL-pro is essential for the generation of abundant important
non-structural proteins required for viral replication [10–12]. Another advantage making
3CL-pro an attractive drug target is its relatively lower rate of conservative mutations
compared to that of other potential targets including the crafty spike protein which has
exhibited ten mutation sites in the Omicron variant and two in the Delta strain [13]. The
recent resolution of the X-ray crystal structure of 3CL-pro and its substrate binding pocket
has guaranteed accurate virtual screening, such as structure-based virtual screenings
(SBVSs) [14–16] and high-throughput in vitro repurposing screening [10,17]. Consequently,
multiple peptidomimetic inhibitors based on 3CL-pro were emerging and an oral agent
called nirmatrelvir/ritonavir (PAXLOVIDTM) developed by Pfizer has succeeded in the
market after clinical trials [18]. Nevertheless, the ritonavir contained in Paxlovid is a potent
inhibitor against the cytochrome P450 (CYP) 3A4 enzyme, making it prone to potential
pharmacokinetic (PK) interactions with a range of drugs that are CYP3A4 substrates,
inducers, and inhibitors [19,20]. Given that many of those drugs are widely prescribed
to high-risk COVID-19 groups, this dilemma presents inevitable difficulties in clinical
practice and implementation. For instance, a comprehensive evaluation of co-administered
drug usages, along with individual patient factors should be conducted before prescribing
Paxlovid. Meanwhile, special considerations like contra-indication, careful monitoring,
and dose adjustment are warranted for over 120 drugs to avoid adverse drug reactions,
according to the guidelines of regulatory agencies [20,21].

The use of immune-boosting foods and nutrients represents a safe alternative to
standard therapies with preventative and therapeutic interventions for COVID-19 and
PCCs in high-risk populations [8]. Flavonoids constitute a large scale of food nutrients (e.g.,
tea and citrus fruit) and plant metabolites, presenting multifunctional and broad-spectrum
antiviral effects against COVID-19 over existing synthetic drugs [22–24]. Several flavonoids
exhibited inhibitory activity against SARS-CoV-2 by binding to essential viral targets
required for virus entry and/or replication [22,25]. Also, flavonoids have demonstrated
significant immunomodulatory activities to alleviate excessive immune responses and,
thereby, ameliorate long-COVID-19 syndrome [22]. Moreover, with desirable safety profiles,
flavonoids demonstrated a potential for use as promising nutraceutical products in and out
of pregnancy to mitigate the risk of fetal brain damage during maternal COVID-19 [23,26].
Unlike other pharmacological treatments, they can be consumed through a dietary approach
with better tolerance, without the need for specific manufacturing processes [27]. Despite
many advantages, the diversity of multidimensional chemical structures has made it
difficult to identify promising flavonoid candidates from various plausible scaffolds.

Considering the experimental assay screening process is time-consuming and labori-
ous, virtual screening with molecular-binding descriptors accelerates the “hits” screening
process, which is a much preferable tactic, especially in public health crises [28]. The clas-
sical scoring function (SF) with predetermined function forms must reach a compromise
between computation cost and accurate prediction performance [29,30]. It also hardly
characterizes the complicated heterogeneity of the drug-target interactions (DTI) due to
simplifications in protein-ligand recognition for the sake of efficiency [31,32]. Recently,
the nonparametric Machine Learning (ML) approaches have been widely applied in drug
discovery and development [33,34]. The ML-based SF turned out to be an innovative
way to improve the screening performance of SBVSs, utilizing a variety of descriptors
including geometrical features, energy terms, and pharmacophore features [35–37]. Our
research team developed the interaction profiles (IPs), novel molecular descriptor that in-
corporates the calculated ligand–residue interaction energies. Encouragingly, this IP-based
scoring function (IP-SF) trained using various ML algorithms significantly outperforms
the traditional Glide SF in terms of scoring, ranking, and screening power when tested
ligands against six drug targets [32]. Thus, the virtual screening approach using ML-based
IP-SF models is appropriate for the identification of flavonoids from diverse chemical
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structures. In addition to SBVS, molecular docking and dynamic simulations studies can
determine the interaction of a specific molecule with a certain protein successfully in a
period. Furthermore, for orally administered drugs and nutraceuticals, properties like
absorption, distribution, metabolism, excretion, and toxicity (ADMET) profoundly affect
clinical efficacy and safety. This makes ADMET assessment a necessary step in identifying
druglike flavonoids with in-silico screenings.

Herein, we conducted molecular modeling to obtain IP-SFs which have been used as
input features for ML algorithms for three different databases, including two DTI databases
for 3CL-pro binding assays and one flavonoid metabolites database. Figure 1 describes
this virtual screening workflow. First, three different compounds datasets in Table 1 were
prepared after data collection, processing, and qualification. Next, both regression and
classification ML models were constructed utilizing two different training datasets. We
experimented with an ensemble approach to obtain consensus-based model prediction by
combining outputs from separate ML models using majority voting to obtain consensus.
Consequently, building on the ensembled regressor and classifier, two consensus-based
ML predictions (i.e., binding energy and biofunction) on flavonoids were made to obtain
the preliminary screening of inhibitor hits. ADMET analysis was then conducted to assess
the drug-likeness properties of the filtered hits and ensure bioavailable potential. Lastly, a
molecular dynamics (MD) simulation was implemented to investigate the dynamic behav-
ior of the prominent flavonoids hits and confirm their appropriate bindings in the aspects
of stability and affinity. The long-term objective is to develop the potential pharmacological
candidates and/or oral nutraceuticals to alleviate long COVID-19 syndrome as a supportive
adjunctive intervention for the current antiviral treatment strategy.
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Figure 1. The in silico screening workflow developed in this study, consisting of three key steps:
(1) dataset preparations; (2) Machine Learning models construction, and (3) multi-step virtual screen-
ing. Note that the ML models were trained, evaluated and selected for multi- subsets that were
gen-erated using the “rule-based under-sampling” technique. Then the top-performed regression
models were applied to predict a compound’s binding free energy, while the top-performed clas-sifiers
were applied to predict the biofunction (active or inactive) of a compound. The ensem-bled-based
prediction is expected to increase the accuracy and robustness of the prediction. The acronyms used
in this figure are listed below: MD—molecular dynamics; MM/GBSA—molecular mechanics energies
combined with the generalized Born (GB) and surface area continuum solvation; MIN—minimization;
ADMET—absorption, distribution, metabolism, elimination and toxicity. ADME describes the drug-
likeness properties for oral bioavailable agents without toxicity risk.
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Table 1. Dataset preparation and characteristics.

Training Set A Training Set B Prediction Set

Sources ChEMBL Database [38] Library Composition [17] Flavonoids Metabolites
Database [39]

Usage Regression Training Classification Training Prediction and Screening

Input Ligand-residue energy interaction profiles (57 interacting residues)

Bioactivity Values Half Maximal Inhibitory
Concentration, IC50 (nM)

Normalized Inhibition,
inhibition %

Output (Transformed) Continuous Free Energy,
∆Eexp (kcal/mol) Binary Bioactivity Label

# Total Compounds 1240 8702 6961

# Processed Compounds 1118 7860 6001

# Qualified Compounds 1101 6059

Ndecoys/Nactives 1002/99 5729/330

# Balanced Subsets 10 (A1–A10) 20 (B1–B20)

Processed compounds refer to the retained compounds during the process of calculating energy interaction
profiles. Qualified compounds refer to those yielding better docking scores on activation sites compared to on the
dimerization sites. The symbol “#” refers to the number of compounds/datasets. Ndecoys/Nactives refers to the
ratio of decoys to the actives in each training sets.

2. Results and Discussion
2.1. Dataset Preparation

After the same procedures of data processing and qualification for collected com-
pounds (the first step in Figure 1), the IPs were generated for three datasets for different
usages. The numbers of training set compounds after cleanup are 1011 for Training Set A
and 6059 compounds for Training Set B (Table 1). In total, 57 interacting residues out of
a total of 306 residues in each 3CL-pro monomer (PDB: 6M2N) were identified based on
the pre-defined threshold to participate in modeling with ML, serving as the input feature
representations (i.e., molecular descriptors). Table S1 lists the correspondence between the
descriptor ID used for machine learning and the original residue IDs in PDB for 3CL-pro.
Tables S2–S4 provide the interaction energies profiles (kcal/mol) between the residues and
compounds from three different datasets.

For both training sets, the amount of active and inactive data is dramatically skewed,
as shown in Table 1 (Ndecoys/Nactives ≈ 10 for Training Set A, Ndecoys/Nactives ≈ 20 for
Training Set B). With an imbalanced dataset, models will be biased towards predicting the
majority class, leading to poor performance in the minority class, even with high overall
accuracy [40,41]. Also, Weiss and Provost found that under-sampling the over-represented
classes was an effective technique for handling class imbalance and reduced the risk of
overfitting the abundant majority class [41]. Hence, a “rule-based under-sampling” step was
implemented to ensure a balanced distribution of actives and decoys [42]. Consequently,
10 subsets (A1–A10) of the Training Set A and 20 subsets (B1–B20) of the Training Set B
were generated for the regression and classification models training, respectively, with the
under-represented actives matching the inactives in each training subset.

2.2. ML-Based Model Performance

Three training trials were repeated for each subset, and, hence, in total 30 trained
regression models were generated from training subsets A1–A10, and 60 trained classifica-
tion models were generated from subsets B1–B20. For binding free energy prediction, the
10 models with the lowest predicted RMSE (Reg1–Reg10) were selected to ensemble the
regressor. While for bioactivity score prediction, the 20 classification models with the high-
est accuracy (Cla1–Cla20) were directly selected. Additionally, out of the remaining forty
classification models, five additional classifiers (Cla21–Cla25) with the lowest false positive
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rates (FPR < 10%) were also added to construct the final “ensembled classifier” (Figure 1).
The number of compounds, ML algorithms, and all metrics values for the cross-validation
results for each regression model and classifier are presented in Tables S5 and S6.

Figure 2 shows that half of the regression models adopted the algorithm of Exponential
Gaussian Process Regression (GPR), suggesting it outperforms other algorithms in terms
of RMSE in five different subsets (Table S5). Meanwhile, Bagged Trees (BT) was the algo-
rithms frequently applied in 25 classifiers, followed by K-Nearest Neighbors (KNN), which
achieved the best accuracy among subsets B1–B20. The pairs of specific classifier algorithms
and subsets are presented in Table S6. The cross-validation results in Figures 3 and 4A (blue
bars) indicated that all models attained reasonable predictive performance, with greater
than 1.5 kcal/mol RMSE for regression models and above 60% accuracy for classifiers.
As shown in Figure 4B, it is noticeable that the Support Vector Machine (SVM) classifiers
(Cla21–Cla25) displayed a markedly lower false positive rate compared to other classifiers.
The incorporation of these five additional models greatly improves the ability to detect the
false positive hits against 3CL-pro and thereby elevated comprehensive accuracy when
validated in the complete Training Set B (>90% ACC, orange bars in Figure 4A).
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Figure 2. The Machine Learning (ML) algorithms for 10 regression models and 25 classifiers, pre-
sented in two stacked bar charts, respectively. Different colors represent different ML algorithms.
The number on each color block represents the number of regression models or classifiers using this
ML algorithm, with the details listed in Tables S5 and S6 GPR, Gaussian Process Regression. SVM,
Support Vector Machine.

Regarding the performance of the ensembled regressor, the consensus-based validation
results in the complete Training Set A displayed a low RMSE of 1.18 kcal/mol for the
binding energy prediction (Figure 3), using a set of ML algorithms including GPR, SVM,
and BT. Meanwhile, the validation results in Figure 4 demonstrated that the consensus of
multiple ML classifiers (SVM, KNN, BT) achieved a high screening power with an accuracy
of 93.9% and a false positive rate of 6.4%. Since the number of active compounds is only
5.7% of the inactive ones in the original complete Training Set B (Table 1), we only focused
on the errors for inactive predictions for model performance. Thus, a lower FPR is required
as it suggests that the model has minimized the error of labelling the inactive compound as
the hits and the overall screening power has been augmented. The trade-off of a high false
negative rate is acceptable, by contrast, because our Prediction Set has large amounts of
flavonoids and ML-based virtual screening served as a preliminary screening test for any
feasible hits at all costs. Moreover, we prepared another screening test based on regression
models to capture or save those potential active compounds that were labeled as decoys
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falsely. Therefore, our multi-model consensus prediction can significantly improve the
success rate of identifying true antiviral compounds (hits) targeting 3CL-pro.
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2.3. Flavonoid Hits Screening

A flavonoid is recognized as an inhibitor only when it can satisfy one of the following
three conditions based on consensus-based ML predictions: (1) its predicted binding energy
is equal or less than−7.4 kcal/mol; (2) its predicted bioactivity score is equal or greater than
0.8, i.e., at least 20 out of 25 classifiers voted “1”; (3) it belongs to the top 10% flavonoids
ranked by both binding energy and bioactivity score. Binding energies are ranked from
lowest to highest, while bioactivity scores are ranked from largest to smallest. Through ML
consensus-based virtual screening, 120 flavonoids were rapidly screened out and identified
as the potential hits target at 3CL-pro. The original prediction results of regression models
and classifiers for all 6001 flavonoids are provided in Table S7.

The specific risk scores and codes generated using the ADMET Predictor for all
120 screened hits are provided in Table S8. According to the strict “dumb” ADMET filtering,
only 50 of the drug-like hits were retained without severe ADMET risks. Boxplots in
Figure 5 compare the risk scores distribution of seven risk models for the flavonoid hits
before and after the filtering steps being carried out. The full consensus-based ML predicted
results and ADMET risk information for the top120 and top50 hits were integrated and
are summarized in Table S9. The drug-likeness concept can qualitatively determine the
oral bioavailability and, PK profile, as well as the potentially toxic and mutagenic risk
of a compound, based on their molecular properties. Poor PK and ADMET properties
accounted for up to 50% of attrition in drug development in the 1990s [43–45]. However, the
implementation of early ADMET screening with more accurate modeling and prediction
approaches has significantly reduced these failures, with around 10% dropouts due to PK
reasons in the 2000s [45]. Hence, assessment of the ADMET and PK profile early in drug
discovery can guide hits selection and optimization to avoid downstream failures.
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2.4. Molecular Dynamics Analysis

Three types of Root-Mean-Square-Deviation (RMSD) were calculated during the
binding simulation of these 50 flavonoids: the 3CL-pro protein, the ligand with the least
square fit (LS Fit) and the ligand without the LS fit (No Fit). The ligand No Fit RMSD
represents the overall deviation (including translation and rotation) of ligands to their initial
conformations, while the LS Fit process aligned ligands to the initial ligand conformations
reducing the influence of ligand translation and rotation during MD. Therefore, the No Fit
RMSD result shows the overall stability of ligands within the binding pocket, and the LS Fit
RMSD results only measure the ligand stability of intramolecular conformational changes.

By setting the cutoff of the maximum value of the No Fit RMSD at 5 Å, 18 molecules
passed the filter with good binding affinities. We then applied an additional PBSA binding
free energy threshold, −6.0 kcal/mol, to select the top9 flavonoids as listed in Table 2.
Among them, KB-2 (PubChem CID: 14630497) displayed the most stable ligand binding
and was picked up as a top hit, having both the lowest values of MM/PBSA energy
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(−9.89 kcal/mol) and the maximum RMSD (2.83 Å). In Figure 6, the black curve suggests
the 3CL-pro protein undergoes little conformational changes with a mean RMSD value
of around 1 Å. The RMSD distribution curves for “LS Fit” and “No Fit” demonstrates
that most conformations had low RMSD values for both scenarios and the highest RMSD
values remained below 3 Å. Thus, KB-2 formed favorable protein–ligand binding which
was very stable during our MD simulation. The RMSD distribution graphs of the other
eight top flavonoids are shown in Figures S1–S9 and the maximum RMSD values are listed
in Table 2. The calculated PBSA-energy and RMSE values for all top50 druglike flavonoids
are presented in Table S10.

Table 2. List of the top nine compounds with ADMET risk scores and MM/PBSA binding energy
(kcal/mol) as well as maximum value of No Fit RMSD (Å) for 3CL-pro calculated by MD simulation.

Compound Name Structure Class PubChem CID PBSA Energy
(kcal/mol) RMSD Max (Å) Full ADMET Scores

KB-2 Flavones 14630497 −9.89 2.83 3.500

9-O-Methylglyceofuran Isoflavonoids 44257401 −8.81 3.52 3.016

3-O-demethyl-8’-
Hydroxyrotenone Isoflavonoids 44257401 −7.73 4.65 4.220

Uvaretin Chalcones 73447 −7.41 4.93 4.010

Sophoraflavanone C Flavanones 85403243 −5.89 4.01 2.691

Taxifolin 3-methyl ether Dihydroflavonols 14794885 −5.66 3.97 4.163

Oxyayanin A Flavonols 5281676 −4.38 4.79 2.500

Ovalichromene B Flavanones 10981007 −4.35 4.75 5.503

Dihydrotricetin Flavanones 5258991 −4.34 4.70 1.188
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For molecular interaction pattern, hydrogen bonds (H-bonds) are the most common
type of directed intermolecular force in biological complexes. They played an important
role in the process of determining the specificity of molecular recognition. Figure 7 shows
the H-bond interactions as well as the π–π stacking interactions within the representative
KB-2 ligand–protein complex sampled by MD simulations. Specifically, KB-2 forms H-
bond interactions with the residues THR26, HIS41, CYS44, and GLY143 (violet arrow),
which could be crucial for its binding to the 3CL-pro. Additionally, Pi–Pi contact was also
observed at the site of HIS41 residue (green arrow).

Molecules 2023, 28, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 7. Docking pose (A) and 2D interaction patterns (B) of KB-2 (PubChem CID: 14630497) after 
molecular dynamics simulation in a complex with 3CL-protease (PDB: 6M2N). 

2.5. Top Flavonoids 
We identified nine prioritized bioactive flavonoids (Figure 8) from plants as promis-

ing anti-SARS-CoV-2 agents hits through multiple in-silico tools, including ML-based IP-
SF prediction, drug-like properties, ADMET filtering, and structural stability and binding 
free energy analysis. They belong to six different classes of flavonoid structure (Table 3), 
including three flavanones, two isoflavonoids, one chalcone, one dihydroflavonol, one 

Figure 7. Docking pose (A) and 2D interaction patterns (B) of KB-2 (PubChem CID: 14630497) after
molecular dynamics simulation in a complex with 3CL-protease (PDB: 6M2N).



Molecules 2023, 28, 8034 10 of 19

2.5. Top Flavonoids

We identified nine prioritized bioactive flavonoids (Figure 8) from plants as promising
anti-SARS-CoV-2 agents hits through multiple in-silico tools, including ML-based IP-SF
prediction, drug-like properties, ADMET filtering, and structural stability and binding free
energy analysis. They belong to six different classes of flavonoid structure (Table 3), includ-
ing three flavanones, two isoflavonoids, one chalcone, one dihydroflavonol, one flavone,
and one flavonol. Regarding the drug-like properties prediction as an oral nutraceuti-
cal agent, all nine hits satisfied Lipinski’s rule of five. Additionally, there is no serious
CYP metabolism risk indicating the drug-drug interaction issues could be circumvented.
Among these newly identified hits, 9-O-Methylglyceofuran (PubChem CID: 44257401)
and Oxyayanin A (PubChem CID: 5281676) have better drug-like properties with full
ADMET risk scores lower than 3.0 (Table 2) and are likely to present an excellent PK profile.
However, despite having the most stable and strongest binding affinity against the 3CL-pro
catalytic site, KB-2 might have minor oral absorption issues (Table S8). More efforts like
molecular modification and optimization based on KB-2 structure are warranted.
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Table 3. ADMET and drug-likeness screening criteria and thresholds.

Risk Model Thresholds (Range) Criteria

Full ADMET Risk 7.0 (0–22.0) Exceeds 7 for 10% of a focused WDI subset
when ALL component risks are included.

Absorption Risk (Absn Risk) 4.0 (0–8.0) Exceeds 4 for 9% of a focused WDI subset.

Lipinski’s Rule of 5 (Ro5) 1.0 (0–5.0) Exceeds 1 for 8% of a focused WDI subset.

Risk connected with P450 oxidation (CYP Risk) 2.0 (0–6.0) Exceeds 2.0 for 10% of a focused WDI subset.

Risk of mutagenicity (MUT Risk) 1.2 (0–5.4) Exceeds 1.2 for 12% of a focused WDI subset.

Enhanced risk of mutagenicity (MUT_x) 1.0 (0–4.0) Exceeds 1.0 for 12% of a focused WDI subset.

Risk connected with predicted toxicity (TOX Risk) 2.0 (0–6.0) Exceeds 2.0 for 9% of a focused WDI subset.

Different risk models represent several different components assessed in the Full ADMET Risk model and within
each model: the range of risk scores implies the number of risk rules that make up the corresponding risk criterion.
In the case of the CYP Risk filter, for example, the model is comprised of six rules, including the CYPs 1A2, 2C9,
2C19, 2D6,3A4 and liver microsomal clearance, each with an associated weight of one. The score indicates the
number of potential specific problems a compound might have. WDI, World Drug Index.

The top hits were screened from phytochemical flavonoid derivates, however, the
extensive information on the specific protein targets is missing for most flavonoids. To
address this issue, we employed TargetHunter, an online tool to search potential targets of
small molecules by matching the query structure with reported bioactive compound–target
pairs [46]. By setting a 2D similarity threshold of 80% and employing FP2 fingerprints,
we were able to pinpoint several prospective targets of top flavonoids compounds. No-
tably, KB-2 (PubChem CID: 14630497) had an similarity score of 0.84 to CHEMBL1719948,
a potent inhibitor of butyrylcholinesterase with an IC50 of 1.7 µM; Sophoraflavanone
C’s (Pub-Chem CID: 85403243) showed a similarity score of 0.85 to CHEMBL1096939,
another inhibitor of butyrylcholinesterase with comparable binding activity [47]; 3-O-
demethyl-8′-Hydroxyrotenone (PubChem CID: 44257401) showed a similarity score of
0.86 to CHEMBL429023 which is a strong inhibitor against NADH-ubiquinone oxidore-
ductase chain 4 with an IC50 of 3.5 nM [47]; Uvaretin’s (PubChem CID: 73447) achieved
a structural similarity score of 0.90 to CHEMBL254648 which was identified as a throm-
bin inhibitor with an IC50 of 12.3 µM [48]; and lastly Ovalichromene B (PubChem CID:
10981007) had a similarity score of 0.90 to CHEMBL147199, another thrombin inhibitor
with an IC50 of 1.38 µM [49].

Kumari and Subbarao employed the deep-learning based virtual screening against
3CL-pro and they found nine out of ten prioritized active anti-SARS-CoV phytochemical
compounds belonging to the flavonoids [50]. This finding galvanized our efforts to delve
into which flavonoids exhibit superior anti-SARS-CoV2 activities. Figure 9 shows the four
important screening criteria of flavonoid hits to quantitatily describe the binding ability
agaisnts 3CL-pro. There is no obvious association between MM/PBSA calculated energy
(Figure 9A) and ML-predicted binding energy (Figure 9C), considering the interaction ener-
gies were constructed from two diverse systems and approaches. Interestingly, Figure 9D
shows that seven out of the nine top hits were predicted with a high bioactivity score (0.8)
and ranked as the top 10% compounds based on the ML classifiers. In comparison with
Figure 9C, they did not obey the screening criteria by regression models (the 2nd condition
of ML tests). Nevertheless, the additional test of regression models indeed identified some
molecules (e.g., Taxifolin 3-methyl ether and Dihydrotricetin) that were missed by the clas-
sifier tests due to low predicted bioactivity scores. This revealed the advantage of building
both types of ML models simultaneously to perform virtual screening. Considering the two
training datasets are mutually independent, they complemented strengths to building an
IP-SF, and thus improved the power of screening potential 3CL-pro inhibitors, which was
verified by the MD simulation results. Compared to the previous work on the ML-based
SBVS of flavonoids [16,50], our study adopted a more comprehensive methodology, for
instance, the ML models were constructed using much larger training data; multi-models
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were ensembled to attain consensus; both the molecular docking and MD simulations
were applied. More importantly, our novel molecular descriptor, IP-SF which was derived
from MM/PBSA free energy decomposition, can better characterize the heterogeneity of
the ligand-target interactions, thus, allowing more accurate prediction of protein-ligand
binding affinity [32].
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Collectively, we conclude that KB-2 and 9-O-Methylglyceofuran exhibited both de-
sirable binding affinity and pharmacokinetics capabilities. Our work would also contrib-ute
to the rational drug design of flavonoid therapeutic agents according to the original phyto-
chemical structures of the selected compounds from our computational studies. To the best
of our knowledge, the relevance to COVID-19 of these top flavonoids from plants has not
been reported before. To further validate the SARS-CoV-2 3CL-pro inhibitory activity and
feasible druglike properties, in vitro enzymatic inhibitory assays and in vivo PK investiga-
tions are warranted. In the future, we plan to conduct a more exhaustive exploration of the
structural similarities between our identified flavonoids and other bioactives with known
mechanisms of functions. This investigation could provide useful information on the
as-sessment of those flavonoids as potential anti-SARS-CoV-2 agents in drug development.

3. Methods
3.1. Data Sources

The crystal structure of SARS-CoV-2 3CL protease was retrieved from the protein data
bank, (PDB, www.rcsb.org (accessed on 12 January 2023)) with the entry ID of 6M2N. From
the Chambly bioassay database, (ChEMBL, https://www.ebi.ac.uk/chembl/ (accessed
on 12 January 2023)), a total of 1240 ligand compounds of 3CL-pro were retrieved and

www.rcsb.org
https://www.ebi.ac.uk/chembl/
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served as Training Set A for regression model training and construction [38]. As shown
in Table 1, The continuous output was the binding energy in kcal/mol (∆Eexp), calculated
from experimental half maximal inhibitory concentration (IC50) values, using Equation (1).
However, only 101 actives had validly measured IC50 values, with calculated ∆Eexp all
below −7 kcal/mol. The remaining 1010 inactive molecules were assigned binding free
energies of −5.44 kcal/mol which corresponds to an IC50 value of 100 µM.

∆Eexpt = −RTln(IC50) (1)

In Training Set B, all 8702 compounds were involved in the SARS-CoV-2 3CL-pro
enzymatic assay for primary screening [17]. The measured inhibitory activity type in
primary screening is the normalized inhibition percent (% inhibition) to the positive control.
Utilizing a cutoff of 25% of the precent inhibition compared to the control, we manually
separated all compounds into the active set and inactive set (decoy set). This allowed the
top 5% ligands to be labeled “active” and the rest “inactive”, constituting the categorical
outputs for binary classification ML training. This less stringent cutoff setting will help to
capture more potential actives, since the primary screening was performed at a single high
compound concentration (20 µM), in which lower affinity but still active compounds may
not reach saturation [17].

An open flavonoid metabolites database (http://metabolomics.jp/wiki/Category:FL,
(accessed on 12 January 2023)) provides a collection of 6961 registered phytochemical
structures in various plant species [39]. This database is a comprehensive resource with
detailed information about identified flavonoid structures, plant species, and references to
support research and analysis like virtual screening in the field of flavonoid chemistry and
biology. It serves as the Prediction Set used for the IP-SF prediction and virtual screening
of the potential inhibitors against 3CL-pro.

3.2. Molecular Modeling Study and Interaction-Profile (IP) Calculation
3.2.1. Molecular Docking and System Setup

We adopted the best computational protocol developed by Ji et al. for ligand-residue
IPs construction, MIN + GB (applying minimization to relax the complex and applying
a GB model to account for the solvent effect) [32]. It was demonstrated to have minimal
calculation cost and better performance compared to other simulation protocols as well as
the conventional docking algorithms in SBVS. The details of molecular docking and system
setup can be found in the original paper [32].

To analyze the binding interactions between the ligand and individual residues, we
performed an energy decomposition analysis based on the molecular mechanics generalized
Born surface area (MM-GBSA) method [32]. The optimized ligand-receptor complex
obtained was used as input for the MM-GBSA calculations. Binding free energies were
computed between the ligand and each receptor residue using an in-house script that
processes the energy components from the output of the Sander module of AMBER 22
software [51]. The dielectric constant was set to 1.0 for the interior protein environment
and 80.0 for the exterior solvent environment. If a residue has a valid value of interaction
energy (<−0.001 kcal/mol) with any ligand in three compound datasets, it is recognized as
an interacting residue for characterizing the binding profile. The MM-GBSA interaction
energies between all interacting residues and a ligand constitute the interaction profile (IP)
of this ligand.

3.2.2. Data Processing and Qualification

Notably, a small number of compounds were satisfied inevitably in the gaining IP-SF
process, as presented in Table 1, because of failures or instabilities under the following
structure processing protocols. Docking scores at the dimerization site were also calculated
by the Ligand Docking module from the Glide program for all compounds from the two
training sets. Compounds with more favorable docking scores at the dimerization site than
at the catalytic site were omitted. This data qualification step in our workflow (Figure 1)

http://metabolomics.jp/wiki/Category:FL
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enabled the identification of bona fide inhibitors that can not only target 3CL-pro but also
inhibit its catalytic function.

3.3. Machine Learning Model Construction and Prediction
3.3.1. Model Training and Evaluation

The feature matrix consisted of MM-GBSA IPs between all ligands and 57 interact-
ing residues, serving as the input descriptors for each ML algorithm. All 57 features are
assumed to be equivalently important and no extra processing like principal component
analysis was conducted before training since all input data were extracted following the
same protocol and were at the same scale. The inputs, i.e., feature matrixes or interac-
tion profiles, for training ML regression (A1–A10) and classification models (B1–B20), are
provided in the Supplemental Material. All available ML model types with default param-
eters in the Regression Learner App and Classification Learner App, MATLAB (version
R2022b, MathWorks Inc., Portola Valley, CA, USA), were trained parallelly with 20-fold
cross-validation. In Classification Learner App, the misclassification costs have been cus-
tomized so that the penalty score of false positives were doubled in comparison with false
negatives. The performance metrics for regression models include root mean square error
(RMSE), mean absolute error (MAE), and squared correlation coefficient (CORR2). The
performance metrics for classifier evaluation comprise the area under curves (AUCs) of
receiver operating characteristics (ROCs), accuracy (ACCs), and false positive rate (FPRs).

3.3.2. Consensus-Based Model Prediction

The cross-validation results of each ML model provided the predictive performance
in a corresponding balanced subset, which may not reflect the class imbalance that future
predictions would encounter. To ensure a more robust screening, we adopted an ensemble
technique by combining a variety of Machine Learning algorithms trained for different
subsets to generate the decision-fusion of multiple models [42,52].

The performance metrics of these two consensus models, i.e., ensembled regressor and
ensembled classifier, were evaluated using the complete Training Set A and complete Train-
ing Set B, accordingly. Specifically, all 10 regression models were applied to the complete
Training Set A successively and a single predicted binding energy (∆Epred) was generated
based on the averaged result from 10 ∆Epred outputs for each compound. Likewise, all
25 classifiers were utilized to yield a single predicted bioactivity score for each compound
in Training Set B. We utilized the consensus score cutoff of 0.5 to determine a compound’s
class, i.e., it belongs to the “0” class if the consensus score is smaller than 0.5 and the “1”
class otherwise. Note that a consensus score of 0.5 is impossible as all the 25 classifiers
predict either “0” or “1” and they contribute equally to the consensus score.

As shown in Figure 1, the constructed consensus models were then applied to the
Prediction Set to obtain the consensus-based model predictions, comprising the mean
value of the binding energy from 10 regression models, and the bioactivity scores from
25 classifiers.

3.4. ADMET Risk Filtering

ADMET Predictor® (version 10.4, Simulation Plus, Inc., Lancaster, CA, USA) allows for
a summary of potential pharmacokinetics and toxicity issues of a drug hit, by comparing
various predictions to a series of risk rules and tallying violations. It presents a weighted
ADMET risk score reflecting the number and severity of violations. The score thresholds
for compound filtering were obtained by focusing on a specific subset of drugs in the
World Drug Index the (WDI), removing the irrelevant class of compounds. For instance,
the threshold of concern for full AMDET Risk is 7, as only 10% of a reference set of
2260 commercial drugs from WDI exceeded this value. As shown in Table 3, the seven
ADMET Risk models were applied as strict “dumb” filters in this study, discarding any
screened “hits” that violated any criteria exceeding any risk score threshold. The canonical



Molecules 2023, 28, 8034 15 of 19

SMILES of the selected molecular structure of the flavonoid hits were prepared as the
model input.

3.5. Molecular Dynamics (MD) Simulation

Energy minimization was carried out for the 6M2N protein using Protein Prep Wiz-
ard with a default constraint of 0.3 Å of Root-Mean-Square-Deviation (RMSD) and the
OPLS3 force field. The grids were generated by the Receptor Grid Generation pack-
age (http://gohom.win/ManualHom/Schrodinger/Schrodinger_2015-2_docs/maestro/
help_Maestro/glide/receptor_grid_generation.html accessed on 6 November 2023) using
the centroid of the initial ligand, baicalein, in 6M2N by defining the inner box to be a
10 Å cube, with the outer cube box lengths being 30 Å. Site-specific molecular docking
for 50 flavonoid hits against protease was performed using the Ligand Docking module
with default parameters and standard precision (SP) from the Glide program in Maestro
(version 11.2, Schrödinger, Inc., New York, NY, USA) [53–55].

We collected the best ligand-receptor docking poses from docking processes and used
them as the initial conformations for the subsequent molecular dynamics (MD) simulations
to evaluate the dynamic properties and binding affinities. The simulation box consisted of
one copy of the protein–ligand complex, 0.15 M NaCl, and ~16,000 explicit TIP3P water
molecules [56]. The AMBER ff14SB forcefield from AMBER 22 was applied to describe the
protein [51]. The ligands were described using the general AMBER force field (GAFF) and
the Antechamber module in AMBER Tools was applied to generate the residue topologies
and additional force field parameters [57]. The RESP par-tial charges were assigned to
ligand atoms [58].

The MD simulations were conducted using the AMBER 22 program [51]. The systems
were first relaxed through a set of minimization, heating, and equilibration cycles. The
all-atom MD simulations were run for these 50 ligand-protein complex systems at the
Center for Research Computing (CRC) at the University of Pittsburgh. Each ligand-protein
system was subjected to a 225 ns production run. The stability of the receptor-ligand
complex was evaluated by a calculation of the Root-Mean-Square-Deviation (RMSD) of the
C-α relative to the initial structures.

Snapshots for trajectories without solvents were extracted from the MD simulation
to conduct MM-PBSA energy calculations, using both sander and pmemd programs for
parameter preparation and Delphi V4 Release 1.1 for computing the polar part of the
solvation free energy, as detailed below [59,60].

3.6. MM-PBSA Energy Calculation

The binding free energies of the protein–ligand complexes were computed based on
Equation (2). The ∆EMM term denotes the changes in molecular mechanics energy in the
gas phase, ∆Gsol denotes the alteration in solvation free energy, and the T∆S corresponds to
the entropy change of the ligand–receptor system during the ligand-binding process [61]:

∆Gbind = ∆EMM + ∆Gsol − T∆S (2)

Subsequently, polar and non-polar terms are used to further split the ∆Gsol part
(Equation (3)). The Poisson–Boltzmann (PB) or Generalized Born (GB) models are com-
monly applied for computing the polar part, referred to as ∆GPB/GB. The nonpolar part
∆GSA is calculated with solvent-accessible surface areas (SASAs) [62]. The contribution of
conformational entropy during the binding process, T∆S, was estimated using the WSAS
program [48].

∆Gsol = ∆GPB/GB + ∆GSA (3)

4. Conclusions

In the current situation, it is still critical to discover compounds that can inhibit
the viral function of SARS-CoV-2, as the potential dietary supplements mediating the
long-COVID-syndrome. A novel multi-step virtual screening strategy was developed

http://gohom.win/ManualHom/Schrodinger/Schrodinger_2015-2_docs/maestro/help_Maestro/glide/receptor_grid_generation.html
http://gohom.win/ManualHom/Schrodinger/Schrodinger_2015-2_docs/maestro/help_Maestro/glide/receptor_grid_generation.html
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to identify bioavailable flavonoid nutrients that can target 3CL-pro which played a vital
role in previous pandemic fighting. We utilized a ligand–residue interaction profile which
adequately accounts for the heterogeneity of protein-ligand binding to construct ML models.
We found that the multi-model consensus (the fusion of all model predictions) using
various ML algorithms can significantly boost the prediction performance for both types
of modeling by taking advantage of the complementary strengths of disparate models.
Hence, 120 flavonoids were recognized as potential 3CL-pro inhibitors as they passed the
ML tests consisting of 10 ML-trained regression models and 25 classifiers. Furthermore, the
top hits were screened out for future research that displayed stable binding affinity during
the 218-ns molecular dynamics simulations and had no serious AMDET risk. Overall,
nine prominent flavonoids were identified with great potential to inhibit the 3CL-pro
enzyme of SARS-CoV-2 and play a role in COVID-19 prevention and/or intervention. In
the future, according to our recommendation, further in-vitro and in-vivo hits confirmation
investigations of these compounds need to be carried out to validate their feasibility.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28248034/s1. Figures S1–S8. RMSD distribution curves for
the remaining eight top flavonoids except for KB-2. Figure S9. RMSD of the 3CL-pro protein and
FLIF1LNF0010 ligand with or without least square from the binding simulation for 218 ns. LS, least
square fit. RMSD, Root Mean Square Deviation. Table S1. Correspondence between the descriptor
ID used for Machine Learning and the original residue IDs in PDB for 3CL-pro. Table S2. The
interaction energies profiles (kcal/mol) between compounds and residues for Training Set A and
subsets A1–A10. Table S3. The interaction energies profiles (kcal/mol) between compounds and
residues for Training Set B and subsets B1–B20. Table S4. The interaction energies profiles (kcal/mol)
between compounds and residues for the flavonoids Prediction Set. Table S5. Performance metrics
of 20-folds cross-validation results and the assigned training subset as well as ML algorithms for
each regression model. Table S6. Performance metrics of 20-folds cross-validation results and the
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intelligence on in silico drug discovery: Methods, tools and databases. Brief. Bioinform. 2018, 20, 1878–1912. [CrossRef] [PubMed]

34. He, C.; Zhang, C.; Bian, T.; Jiao, K.; Su, W.; Wu, K.-J.; Su, A. A Review on Artificial Intelligence Enabled Design, Synthesis, and
Process Optimization of Chemical Products for Industry 4.0. Processes 2023, 11, 330. [CrossRef]

35. Khamis, M.A.; Gomaa, W. Comparative assessment of machine-learning scoring functions on PDBbind 2013. Eng. Appl. Artif.
Intell. 2015, 45, 136–151. [CrossRef]

36. Crampon, K.; Giorkallos, A.; Deldossi, M.; Baud, S.; Steffenel, L.A. Machine-learning methods for ligand-protein molecular
docking. Drug Discov. Today 2022, 27, 151–164. [CrossRef] [PubMed]

37. Yang, C.; Chen, E.A.; Zhang, Y. Protein–Ligand Docking in the Machine-Learning Era. Molecules 2022, 27, 4568. [CrossRef]
[PubMed]

38. Mendez, D.; Gaulton, A.; Bento, A.P.; Chambers, J.; De Veij, M.; Félix, E.; Magariños, M.P.; Mosquera, J.F.; Mutowo, P.; Nowotka,
M.; et al. ChEMBL: Towards direct deposition of bioassay data. Nucleic Acids Res. 2018, 47, D930–D940. [CrossRef]

39. Arita, M.; Suwa, K. Search extension transforms Wiki into a relational system: A case for flavonoid metabolite database. BioData
Min. 2008, 1, 7. [CrossRef]

40. Haibo, H.; Garcia, E.A. Learning from Imbalanced Data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284. [CrossRef]
41. Weiss, G.M.; Provost, F. Learning When Training Data are Costly: The Effect of Class Distribution on Tree Induction. J. Artif. Intell.

Res. 2003, 19, 315–354. [CrossRef]
42. Mukherjee, A.; Su, A.; Rajan, K. Deep Learning Model for Identifying Critical Structural Motifs in Potential Endocrine Disruptors.

J. Chem. Inf. Model 2021, 61, 2187–2197. [CrossRef] [PubMed]
43. Prentis, R.; Lis, Y.; Walker, S. Pharmaceutical innovation by the seven UK-owned pharmaceutical companies (1964–1985). Br. J.

Clin. Pharmacol. 1988, 25, 387–396. [CrossRef] [PubMed]
44. Kennedy, T. Managing the drug discovery/development interface. Drug Discov. Today 1997, 2, 436–444. [CrossRef]
45. Kola, I.; Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 2004, 3, 711–716. [CrossRef]

[PubMed]
46. Wang, L.; Ma, C.; Wipf, P.; Liu, H.; Su, W.; Xie, X.Q. TargetHunter: An in silico target identification tool for predicting therapeutic

potential of small organic molecules based on chemogenomic database. AAPS J. 2013, 15, 395–406. [CrossRef] [PubMed]
47. Anand, P.; Singh, B. Flavonoids as lead compounds modulating the enzyme targets in Alzheimer’s disease. Med. Chem. Res. 2013,

22, 3061–3075. [CrossRef]
48. Zhu, Y.; Zhang, P.; Yu, H.; Li, J.; Wang, M.-W.; Zhao, W. Anti-Helicobacter pylori and Thrombin Inhibitory Components from

Chinese Dragon’s Blood, Dracaena cochinchinensis. J. Nat. Prod. 2007, 70, 1570–1577. [CrossRef]
49. Moro, S.; van Rhee, A.M.; Sanders, L.H.; Jacobson, K.A. Flavonoid Derivatives as Adenosine Receptor Antagonists: A Comparison

of the Hypothetical Receptor Binding Site Based on a Comparative Molecular Field Analysis Model. J. Med. Chem. 1998, 41, 46–52.
[CrossRef] [PubMed]

50. Kumari, M.; Subbarao, N. Deep learning model for virtual screening of novel 3C-like protease enzyme inhibitors against SARS
coronavirus diseases. Comput. Biol. Med. 2021, 132, 104317. [CrossRef]

51. Case, D.A.; Belfon, K.; Ben-Shalom, I.Y.; Berryman, J.T.; Brozell, S.R.; Cerutti, D.S.; Cheatham, T.E., III; Cisneros, G.A.; Cruzeiro,
V.W.D.; Darden, T.A.; et al. Amber 2022; University of California: San Francisco, CA, USA, 2022.

52. Das, S.K.; Chen, S.; Deasy, J.O.; Zhou, S.; Yin, F.-F.; Marks, L.B. Combining multiple models to generate consensus: Application to
radiation-induced pneumonitis prediction. Med. Phys. 2008, 35, 5098–5109. [CrossRef]

53. Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.;
et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med.
Chem. 2004, 47, 1739–1749. [CrossRef] [PubMed]

54. Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A new approach for rapid,
accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 2004, 47, 1750–1759. [CrossRef]
[PubMed]

https://doi.org/10.3390/nu13020464
https://doi.org/10.1124/pr.112.007336
https://doi.org/10.1038/nprot.2017.114
https://doi.org/10.1021/jm060999m
https://doi.org/10.3389/fphar.2018.01089
https://doi.org/10.1093/bib/bbab054
https://doi.org/10.1093/bib/bby061
https://www.ncbi.nlm.nih.gov/pubmed/30084866
https://doi.org/10.3390/pr11020330
https://doi.org/10.1016/j.engappai.2015.06.021
https://doi.org/10.1016/j.drudis.2021.09.007
https://www.ncbi.nlm.nih.gov/pubmed/34560276
https://doi.org/10.3390/molecules27144568
https://www.ncbi.nlm.nih.gov/pubmed/35889440
https://doi.org/10.1093/nar/gky1075
https://doi.org/10.1186/1756-0381-1-7
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1613/jair.1199
https://doi.org/10.1021/acs.jcim.0c01409
https://www.ncbi.nlm.nih.gov/pubmed/33872000
https://doi.org/10.1111/j.1365-2125.1988.tb03318.x
https://www.ncbi.nlm.nih.gov/pubmed/3358900
https://doi.org/10.1016/S1359-6446(97)01099-4
https://doi.org/10.1038/nrd1470
https://www.ncbi.nlm.nih.gov/pubmed/15286737
https://doi.org/10.1208/s12248-012-9449-z
https://www.ncbi.nlm.nih.gov/pubmed/23292636
https://doi.org/10.1007/s00044-012-0353-y
https://doi.org/10.1021/np070260v
https://doi.org/10.1021/jm970446z
https://www.ncbi.nlm.nih.gov/pubmed/9438021
https://doi.org/10.1016/j.compbiomed.2021.104317
https://doi.org/10.1118/1.2996012
https://doi.org/10.1021/jm0306430
https://www.ncbi.nlm.nih.gov/pubmed/15027865
https://doi.org/10.1021/jm030644s
https://www.ncbi.nlm.nih.gov/pubmed/15027866


Molecules 2023, 28, 8034 19 of 19

55. Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra
precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem.
2006, 49, 6177–6196. [CrossRef]

56. Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of Simple Potential Functions for
Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. [CrossRef]

57. Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic atom type and bond type perception in molecular mechanical
calculations. J. Mol. Graph. Model 2006, 25, 247–260. [CrossRef] [PubMed]

58. Bayly, C.I.; Cieplak, P.; Cornell, W.D.; Kollman, P.A. A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints
for Deriving Atomic Charges: The Resp Model. J. Phys. Chem. 1993, 97, 10269–10280. [CrossRef]

59. Rocchia, W.; Alexov, E.; Honig, B. Extending the applicability of the nonlinear Poisson-Boltzmann equation: Multiple dielectric
constants and multivalent ions. J. Phys. Chem. B 2001, 105, 6507–6514. [CrossRef]

60. Li, L.; Li, C.A.; Sarkar, S.; Zhang, J.; Witham, S.; Zhang, Z.; Wang, L.; Smith, N.; Petukh, M.; Alexov, E. DelPhi: A comprehensive
suite for DelPhi software and associated resources. BMC Biophys. 2012, 5, 9. [CrossRef]

61. Wang, E.C.; Sun, H.Y.; Wang, J.M.; Wang, Z.; Liu, H.; Zhang, J.Z.H.; Hou, T.J. End-Point Binding Free Energy Calculation with
MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. Chem. Rev. 2019, 119, 9478–9508. [CrossRef]

62. Wang, J.; Hou, T.; Xu, X. Recent Advances in Free Energy Calculations with a Combination of Molecular Mechanics and
Continuum Models. Curr. Comput. Aided-Drug Des. 2006, 2, 287–306. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1021/jm051256o
https://doi.org/10.1063/1.445869
https://doi.org/10.1016/j.jmgm.2005.12.005
https://www.ncbi.nlm.nih.gov/pubmed/16458552
https://doi.org/10.1021/j100142a004
https://doi.org/10.1021/jp010454y
https://doi.org/10.1186/2046-1682-5-9
https://doi.org/10.1021/acs.chemrev.9b00055
https://doi.org/10.2174/157340906778226454

	Introduction 
	Results and Discussion 
	Dataset Preparation 
	ML-Based Model Performance 
	Flavonoid Hits Screening 
	Molecular Dynamics Analysis 
	Top Flavonoids 

	Methods 
	Data Sources 
	Molecular Modeling Study and Interaction-Profile (IP) Calculation 
	Molecular Docking and System Setup 
	Data Processing and Qualification 

	Machine Learning Model Construction and Prediction 
	Model Training and Evaluation 
	Consensus-Based Model Prediction 

	ADMET Risk Filtering 
	Molecular Dynamics (MD) Simulation 
	MM-PBSA Energy Calculation 

	Conclusions 
	References

