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Abstract: Reactive oxygen species (ROS) are pivotal signaling molecules that control a variety of
physiological functions. As a member of the ROS family, peroxynitrite (ONOO−) possesses strong
oxidation and nitrification abilities. Abnormally elevated levels of ONOO− can lead to cellular
oxidative stress, which may cause several diseases. In this work, based on the rhodamine fluorophore,
we designed and synthesized a novel small-molecule fluorescent probe (DH-1) for ONOO−. Upon
reaction with ONOO−, DH-1 exhibited a significant fluorescence signal enhancement (approximately
34-fold). Moreover, DH-1 showed an excellent mitochondria-targeting capability. Confocal fluores-
cence imaging validated its ability to detect ONOO− changes in HeLa and RAW264.7 cells. Notably,
we observed the ONOO− generation during the ferroptosis process by taking advantage of the probe.
DH-1 displayed good biocompatibility, facile synthesis, and high selectivity, and may have potential
applications in the study of ONOO−-associated diseases in biosystems.
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1. Introduction

Reactive oxygen species (ROS) and reactive nitrogen species (RNS), e.g., peroxynitrite
(ONOO−), nitric oxide (NO), hypochlorous acid (HOCl), and superoxide anion (O2

•−), are
a class of substances with extremely high reactivity [1–3]. Among them, ONOO−, which
is formed through the reaction of NO with O2

•−, has a low concentration and short life
span [4,5]. On the one hand, the high reactivity of ONOO− is due to its intrinsic strong
oxidizing and nitrifying abilities, which can directly react with the target molecules. On
the other hand, ONOO− can be converted to secondary radical species, such as decompo-
sition to •OH, or reaction with CO2 to produce CO3

•−, which then reacts with the target
molecules [6–8]. Therefore, ONOO− can destroy many important biomolecules (such as
nucleic acids, proteins, and lipids) [9–13]. These biochemical properties make ONOO−

an important predisposing factor for many diseases, including cardiovascular diseases,
neurodegenerative diseases, inflammatory diseases, and cancer [14–19]. However, the
high reactivity of ONOO− also plays a critical role in cell signaling processes, such as the
nitrification of key proteins to regulate signaling pathways. In addition, ONOO− has an
antibacterial effect and can be produced in large quantities during the process of deploying
macrophages to fight against invading pathogens, such as bacteria, thereby helping to
kill such pathogens. Hence, monitoring the ONOO− changes in biosystems is highly
important.

Currently, small-molecule fluorescent probes have gained widespread interest and
have become an effective means of detecting specific analytes, due to their high sensi-
tivity, rapid response ability, unparalleled selectivity, and real-time measurement capa-
bility [20–35]. In addition, fluorescent probes, combined with cellular confocal imaging,
have been useful tools for elucidating the biological functions of the analyte of interest.
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Among the commonly used fluorophores (e.g., coumarin, naphthalimide, BODIPY, cya-
nine), rhodamine dyes possess the advantages of good photostability, improved signal-to-
background ratio, easy preparation, and high fluorescence brightness [36–39]. Nowadays,
many rhodamine-based derivatives have been developed for the in vivo specific measure-
ment of ONOO− [40–44].

Herein, we developed a new ONOO−-responsive molecular fluorescence probe
(DH-1) by introducing a ferrocene moiety into the rhodamine framework. The probe
itself is non-fluorescent; upon reaction with ONOO−, a remarkable fluorescence increase
in the probe is observed in the in vitro tests and the fluorescence intensity shows good
linearity. DH-1 exhibits higher selectivity and responsiveness towards ONOO− compared
to other ROS/RNS. Notably, DH-1 can specifically target mitochondria with good biocom-
patibility. In addition, DH-1 has been successfully utilized for the fluorescence confocal
imaging of ONOO− after exogenous and endogenous drug stimulations in living cells.
More importantly, we employed DH-1 to detect ONOO− fluctuations in the ferroptosis
process.

2. Results and Discussion
2.1. Design and Synthesis of the Probe DH-1

The probe DH-1 was designed based on a rhodamine fluorophore. The introduction
of a ferrocene unit into the probe structure could quench the fluorescence of DH-1, and
no fluorescence emission was noted. By contrast, after reaction with ONOO−, the C=C
bond of DH-1 was oxidized and cleaved to form Rho-keto, which emitted a significant
fluorescence signal (Scheme 1), thereby realizing the detection of ONOO−.
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Scheme 1. Mechanism of the probe DH-1 for sensing ONOO−.

DH-1 was synthesized in two steps, as shown in Scheme 2. First, cyclohexanone
was condensed with compound 1 to gain intermediate Rho. Next, DH-1 was obtained
through the aldol condensation reaction between Rho and ferrocenecarboxaldehyde with
a 79% yield. It is worth noting that the alpha carbon of the carbonyl group is highly
reactive, so ferrocene aldehyde is added at exactly the position of the alpha carbon in
the cyclohexane fragment of rhodamine (Scheme 2). DH-1 was characterized using NMR
spectra and HRMS. The characterization data are provided in the Supporting Information
(Figures S1–S3).

Molecules 2023, 28, x FOR PEER REVIEW 2 of 13 

the commonly used fluorophores (e.g., coumarin, naphthalimide, BODIPY, cyanine), rho-
damine dyes possess the advantages of good photostability, improved signal-to-back-
ground ratio, easy preparation, and high fluorescence brightness [36–39]. Nowadays, 
many rhodamine-based derivatives have been developed for the in vivo specific measure-
ment of ONOO− [40–44]. 

Herein, we developed a new ONOO−-responsive molecular fluorescence probe (DH-
1) by introducing a ferrocene moiety into the rhodamine framework. The probe itself is
non-fluorescent; upon reaction with ONOO−, a remarkable fluorescence increase in the
probe is observed in the in vitro tests and the fluorescence intensity shows good linearity.
DH-1 exhibits higher selectivity and responsiveness towards ONOO− compared to other
ROS/RNS. Notably, DH-1 can specifically target mitochondria with good biocompatibil-
ity. In addition, DH-1 has been successfully utilized for the fluorescence confocal imaging
of ONOO− after exogenous and endogenous drug stimulations in living cells. More im-
portantly, we employed DH-1 to detect ONOO− fluctuations in the ferroptosis process.

2. Results and Discussion
2.1. Design and Synthesis of the Probe DH-1

The probe DH-1 was designed based on a rhodamine fluorophore. The introduction 
of a ferrocene unit into the probe structure could quench the fluorescence of DH-1, and 
no fluorescence emission was noted. By contrast, after reaction with ONOO−, the C=C 
bond of DH-1 was oxidized and cleaved to form Rho-keto, which emitted a significant 
fluorescence signal (Scheme 1), thereby realizing the detection of ONOO−. 

Scheme 1. Mechanism of the probe DH-1 for sensing ONOO−. 

DH-1 was synthesized in two steps, as shown in Scheme 2. First, cyclohexanone was 
condensed with compound 1 to gain intermediate Rho. Next, DH-1 was obtained through 
the aldol condensation reaction between Rho and ferrocenecarboxaldehyde with a 79% 
yield. It is worth noting that the alpha carbon of the carbonyl group is highly reactive, so 
ferrocene aldehyde is added at exactly the position of the alpha carbon in the cyclohexane 
fragment of rhodamine (Scheme 2). DH-1 was characterized using NMR spectra and 
HRMS. The characterization data are provided in the Supporting Information (Figures 
S1–S3). 

Scheme 2. Synthesis of the probe DH-1. 

N O

COOH

O

DH-1                                                             Rho-keto

N O

COOH

ClO4

Fe
ClO4

ONOO

Fe

COOH

Scheme 2. Synthesis of the probe DH-1.



Molecules 2023, 28, 7976 3 of 13

2.2. Spectral Response of the Probe DH-1 to ONOO−

Initially, the spectroscopic properties of the probe DH-1 were studied. It can be seen
from Figure 1 that the probe showed a clear absorption peak at about 500 nm without
ONOO−. After the addition of 4 equivalent (eq.) ONOO−, the absorbance of the probe was
significantly reduced. Such absorption changes may be attributed to the reaction of probe
DH-1 with ONOO−, which caused the cleavage of the double bond by oxidation, and the
destruction of the conjugated system. In addition, the proposed mechanism was further
verified via MS, as shown in Figure S4. After reaction with ONOO−, probe DH-1 indeed
converted to Rho-keto with a mass peak at m/z = 390.1 [M]+ [12,13]. The results indicated
that our probe design and sensing mechanism for ONOO− detection was rational.
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ONOO−.

In addition, the excitation spectra of the probe before and after reaction with ONOO−

were investigated. As shown in Figure S5, the excitation intensity was almost undetectable,
since the probe itself was non-fluorescent (quantum yield < 0.04). Once ONOO− was added
to the solution, the excitation intensity of the probe showed a maximum of approximately
400 nm. Therefore, we chose 400 nm as the excitation wavelength for the subsequent
fluorescence property study.

We then explored the emission spectra of the probe upon the addition of various
concentrations of ONOO−. The results shown in Figure 2 indicate that the fluorescence
emission was remarkably enhanced, along with the titration of ONOO−. Moreover, there
was a good linearity (R2 = 0.9994) between the fluorescence intensity of DH-1 and the
ONOO− concentration (0~135 µM). Also, the detection limit was calculated to be 0.74 µM,
which was lower than that of the previously reported ONOO− probes listed in Table S1.
This indicated that probe DH-1 was rather sensitive to ONOO−, which would be favorable
for intracellular ONOO− detection with high sensitivity.

Since many species in the biological system may potentially affect the detection per-
formance of the probe; therefore, we assessed the selectivity of the probe DH-1. In this
experiment, various biological components (e.g., amino acids, anions, metal cations) were
added to the probe solution to compare the fluorescence signal. It can be seen in Figure 3A
that, except for ONOO−, the addition of analytes had little effect on the fluorescence emis-
sion, whereas ONOO− could result in a significant fluorescence increase. It should be
pointed out that reactive oxygen/nitrogen species, such as H2O2, HOCl, t-BuOOH, •OH,
NO, as well as O2

•−, did not cause significant fluorescence interference for ONOO− detec-
tion. The response performance of DH-1 will not be affected by reactive oxygen/nitrogen
species. Thus, the probe DH-1 showed high selectivity to ONOO− in the complex biological
samples.
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(100 µM); 16. K+ (100 µM); 17. Mg2+ (100 µM); 18. Na+ (100 µM); 19. Zn2+ (100 µM); 20. Al3+

(100 µM); 21. CO3
2− (100 µM); 22. NO2

− (100 µM); 23. NO3
− (100 µM); 24. S2− (100 µM); 25. SO3

2−

(100 µM); 26. S2O3
2− (100 µM); 27. SO4

2− (100 µM); 28. HSO3
− (100 µM); 29. t-BuOOH (100 µM);

30. •OH (100 µM); 31. NO (100 µM); 32. O2
•− (100 µM). (B) Dynamic fluorescence changes in DH-1

after the addition of ONOO− within 1 h. (C) pH effects on the fluorescence intensity of DH-1 with
(red) and without (black) ONOO−. λex = 400 nm; λem = 496 nm. The data were expressed as the
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We further investigated the fluorescence kinetic properties of the probe. From Figure 3B,
it can be noticed that the fluorescence of DH-1 increased rapidly in the presence of ONOO−.
Also, the fluorescence signal reached its maximum in approximately 0.5 h. The time-course
study indicated a rapid reaction of DH-1 with ONOO−. In addition, considering that pH is
a critical factor for molecular probes, we tested the fluorescence signal variations of DH-1
within a pH range from 3 to 10. It can be noted in Figure 3C that the probe alone was almost
unaffected by pH. After the addition of ONOO−, the fluorescence intensity of the probe
DH-1 enhanced greatly in terms of physiological pH, demonstrating its good respon-
siveness to ONOO− in the detecting system. Moreover, we observed an interesting phe-
nomenon: the fluorescence intensity of probe DH-1 with ONOO− in an acidic environment
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was lower than in a neutral or alkaline environment. The possible reaction mechanism of
the probe with ONOO− followed two steps. The first step was the nucleophilic addition
of ONOO−, which attacked the C=C bond; the second step was the unstable intermediate
transformation into the Rho-keto form. The alkaline environment was beneficial to the
nucleophilic addition reaction, thereby causing higher fluorescence at an alkaline pH than
at an acidic pH. The same phenomenon could also be found in other reported papers about
ONOO− probes [34,35].

2.3. Mitochondrial Targeting Ability of the Probe DH-1

Prior to cellular imaging, we carried out an MTT test to explore the probe DH-1’s
cytotoxicity. It can be noted in Figure S6 that cell survival was hardly influenced after
the cells were incubated with various doses of DH-1. This indicated that DH-1 had good
biocompatibility.

For the purpose of probing DH-1’s ability to localize in different organelles, co-
localization assays were carried out using the commercially available mitochondrial dye
(Mito Red) or lysosomal dye (Lyso Red). Before the co-localization experiment, cells were
incubated with the endogenous drugs lipopolysaccharide (LPS, 100 ng/mL) and murine
recombinant interferon-γ (IFN-γ, 100 ng/mL) to generate endogenous ONOO−. It can
be seen in Figure 4A,C that, in HeLa cells, the green fluorescence of DH-1 overlapped well
with the red fluorescence of Mito Red, and a rather high Pearson’s coefficient of 0.97 was
determined. Meanwhile, we employed Lyso Red for comparison. It can be observed in
Figure 4B,D that the overlap between DH-1 and Lyso Red was small, whereas the correspond-
ing Pearson’s coefficient was only 0.37. The results indicated that DH-1 was able to effectively
and selectively localize in mitochondria. Furthermore, we next conducted the co-localizing
assay in RAW264.7 cells, and similar phenomena were observed, as shown in Figure 5. Hence,
it could be concluded that DH-1 was capable of targeting the mitochondria in cells.
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Figure 5. Co-localization fluorescence imaging of 5 µM DH-1 and 100 nM Mito Red (A) or Lyso
Red (B) in RAW264.7 cells. (C) Intensity profiles within the ROI (yellow line in the merge image
in panel A). (D) Intensity profiles within the ROI (yellow line in the merge image in panel B).
Pearson’s coefficient of Mito Red and DH-1 was 0.92; Pearson’s coefficient of Lyso Red and DH-1
was 0.41. DH-1: λex = 405 nm, λem = 500–540 nm; Mito Red: λex = 561 nm, λem = 570–620 nm;
Lyso Red: λex = 561 nm, λem = 570–620 nm.

2.4. Imaging of ONOO− by the Probe DH-1 in Cells

Encouraged by the outstanding spectroscopic responses and specific mitochondria-
targeting ability, we subsequently attempted to verify the reactivity of DH-1 towards
intracellular ONOO−. It can be seen in Figure 6A that when HeLa cells were cultivated
with DH-1 alone (control), we only observed very weak fluorescence. However, if cells
were first stimulated with 200 µM of SIN-1, which was a kind of exogenous ONOO− donor,
the fluorescence became brighter. In addition, after treatment with the endogenous drugs
LPS and IFN-γ, more pronounced fluorescence could be noted than that observed in control
cells. Moreover, a subsequent incubation with phorbol-12-myristate-13-acetate (PMA)
also produced strong fluorescence. Furthermore, in order to confirm that the increase in
intracellular signal was ascribed to the production of endogenous ONOO−, a contrast group
with aminoguanidine (AG, an inhibitor of nitric oxide synthase) was compared at the same
time. It can be noted in image e in Figure 6A that the fluorescence intensity was remarkably
diminished once the cells were incubated with LPS, IFN-γ, and PMA in the presence of
AG. The above data well proved that DH-1 was specifically responsive to intracellular
ONOO−. The corresponding quantitative intensity statistics explicitly demonstrated these
fluorescence changes (Figure 6B). The results suggested that the probe DH-1 could track
the intracellular ONOO− fluctuations in response to the stimulation of exogenous and
endogenous drugs. More importantly, these responses were not only observed in HeLa
cells, but we also observed similar experiment phenomena in RAW264.7 cells (Figure 7),
further indicating the desirable fluorescence responses of DH-1 in living cells.
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Figure 6. Cellular imaging of ONOO− using DH-1 in HeLa cells. (A) Confocal imaging of HeLa
cells incubated at various conditions: (a) HeLa cells were incubated with 5 µM DH-1 for 10 min.
(b) HeLa cells were pretreated with 200 µM of 3-morpholinosydnonimine hydrochloride (SIN-1)
for 2.5 h, then incubated with DH-1. (c) HeLa cells were pretreated with 100 ng/mL of LPS and
100 ng/mL of IFN-γ for 9 h, then incubated with DH-1. (d) HeLa cells were pretreated with LPS and
IFN-γ for 9 h, then cultivated with 10 nM of PMA for 30 min, followed by incubation with DH-1.
(e) HeLa cells were pretreated with LPS and IFN-γ for 9 h, then cultivated with 10 nM of PMA for
30 min, followed by incubation with 1 mM of AG for 30 min; finally, the cells were incubated with
DH-1. (B) Cellular fluorescence intensity quantitation in panel A. All the cells in the field of vision
were used for statistical quantitation, and the cell number was >10 in one separate experiment. The
data were expressed as the mean ± standard deviation (SD) of three separate measurements.

2.5. Fluorescence Imaging of ONOO− during Ferroptosis

According to the previous literature, ferroptosis is one kind of cell death resulting
from the iron-dependent accumulation of lipid peroxides associated with ROS. Among
the ROS family, ONOO− is related to lipid peroxidation and glutathione depletion during
the ferroptosis process [45]. In this study, we explored the biological application of DH-1
for detecting ONOO− during ferroptosis. Herein, erastin, which is a common inducer
of ferroptosis, was employed. HeLa cells were pretreated with erastin for 15 h and then
incubated with DH-1 for 30 min. It could be seen from Figure 8 that the fluorescence
intensity was significantly enhanced compared with control cells without the stimulation
of erastin. In addition, we carried out the inhibition experiment by using ferrostatin-1
(Fer-1), which is a common ferroptosis inhibitor. As displayed in the third row of Figure 8A,
intracellular fluorescence intensity was largely weakened in the presence of Fer-1, which
could further prove that the ONOO− produced during the ferroptosis process indeed
resulted in the fluorescence signal changes. The results showed that the probe DH-1 may
be a promising instrument for monitoring the dynamic ONOO− changes in erastin-induced
ferroptosis.
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Figure 7. Cellular imaging of ONOO− using DH-1 in RAW264.7 cells. (A) Confocal imaging of
RAW264.7 cells cultivated at various conditions: (a) RAW264.7 cells were incubated with 5 µM DH-1
for 10 min. (b) RAW264.7 cells were first stimulated with 100 ng/mL of LPS and 100 ng/mL of
IFN-γ for 10 h, followed by incubation with DH-1. (c) RAW264.7 cells were first stimulated with LPS
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were expressed as the mean ± standard deviation (SD) of three separate measurements.
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Figure 8. Cellular ONOO− imaging during ferroptosis process in HeLa cells. (A) Confocal fluores-
cence images of cells incubated at various conditions. First row (control): cells were cultivated with
DH-1 (10 µM) for 30 min; second row: cells were cultivated with erastin (40 µM) for 15 h, and next
treated with DH-1; third row: cells were cultivated with erastin (40 µM) for 15 h, and next treated
with Fer-1 (10 µM) for 15 h, followed by incubation with DH-1. (B) Cellular fluorescence intensity
quantitation in panel A. λex = 405 nm; and λem = 500–540 nm. All the cells in the field of vision were
used for statistical quantitation, and the cell number was >10 in one separate experiment. The data
were expressed as the mean ± standard deviation (SD) of three separate measurements.
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3. Materials and Methods
3.1. General

Nuclear magnetic resonance (NMR) spectra (including 1H and 13C NMR) were ac-
quired using Bruker Avance-400 spectrometer. HRMS were obtained using Q-TOF6510
spectrograph (Agilent, Santa Clara, CA, USA). The pH of the solution was adjusted using
a PHSJ-3F pH meter (LeiCi, Shanghai, China). Absorption spectra were collected using a
U-3900 spectrophotometer (Hitachi, Tokyo, Japan). Emission spectra were measured using
F-4600 spectrophotometer (Hitachi, Japan). Cellular fluorescence images were captured
using FV3000 confocal scanning microscope (Olympus, Tokyo, Japan).

Ultrapure water was used in all the tests. All chemicals were provided by commercial
sources and were of analytical grade. They were directly used without further purification.
Mito Red and Lyso Red were purchased from KeyGEN BioTECH Co. Ltd., Nanjing, China.

3.2. Synthesis of the Probe DH-1

The probe DH-1 was prepared following the synthetic route outlined in Scheme 2,
in which compound Rho was prepared using the previous method [46]. Rho (190 mg,
0.4 mmol) and ferrocenecarboxaldehyde (43 mg, 0.2 mmol) were added to the solution of
toluene (10 mL) and n-butanol (10 mL). The mixture was stirred at 90 ºC for 4 h. Next,
the solvent was evaporated. Subsequently, the residues were purified via silica gel chro-
matography with CH2Cl2/MeOH (15:1, v/v) as the eluent to provide DH-1 (yield: 79%).
1H NMR (400 MHz, DMSO-d6) δ 7.94 (d, J = 7.6 Hz, 1H), 7.79 (t, J = 7.6 Hz, 1H), 7.67
(t, J = 7.6 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.06 (s, 1H), 6.52 (d, J = 2.4 Hz, 1H), 6.44
(dd, J = 9.2, 2.4 Hz, 1H), 6.37 (d, J = 8.8 Hz, 1H), 4.54 (s, 2H), 4.38 (s, 2H), 4.18 (s, 5H), 3.36
(q, J = 6.8 Hz, 4H), 2.73–2.83 (m, 1H), 2.52–2.60 (m, 1H), 1.75–1.85 (m, 1H), 1.57–1.70
(m, 2H), 1.47–1.56 (m, 1H), 1.10 (t, J = 6.8 Hz, 6H). 13C NMR (100 MHz, DMSO-d6) δ 152.25,
149.42, 147.21, 135.71, 130.31, 128.75, 127.34, 126.96, 125.12, 124.03, 123.94, 109.30, 106.03,
104.76, 97.33, 86.80, 81.35, 70.34, 70.27, 69.66, 69.54, 69.43, 44.15, 27.32, 23.10, 22.34, 12.85.
HRMS m/z: calcd for C35H34FeNO3

+ [M]+: m/z 572.1883; found: m/z 572.1879.

3.3. Spectroscopic Measurements

DH-1 was dissolved in dimethyl sulfoxide to obtain stock solution (10−3 mol/L).
A 5 mL sample of the mixture solution containing DH-1 (final concentration, 15 µM)
was combined with an appropriate volume of PBS and ONOO− reacted at 37 ◦C for
1 h. Subsequently, 3 mL of the solution was transferred to the quartz cell to collect the
absorbance and fluorescence spectra.

3.4. Culture of Cells

HeLa and RAW264.7 cells were cultured in DMEM, and the detailed culture conditions
were the same as in the previous literature [47]. Cytotoxicity of probe DH-1 was evaluated
using standard MTT method.

3.5. Colocalization Experiments

RAW264.7 or HeLa cells were pretreated with LPS (100 ng/mL) and IFN-γ (100 ng/mL)
for 9–10 h to generate endogenous ONOO−. Subsequently, cells seeded in glass-bottom
dish were co-stained with DH-1 (5 µM) and Mito Red (100 nM) or Lyso Red (100 nM) for
10 min at 37 ◦C. After being washed with PBS buffer 3 times, the cell images were captured
using an Olympus FV3000 microscope. The excitation was set at 405 nm for DH-1 or
561 nm for Mito Red and Lyso Red; the corresponding fluorescence emissions were collected
at 500–540 nm for DH-1 or 570–620 nm for Mito Red and Lyso Red.

3.6. Intracellular Fluorescence Imaging

Control (without stimulation): cells were incubated with DH-1 (5 µM) for 10 min.
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Exogenous drug stimulation: cells were incubated with the exogenous drug SIN-1
(200 µM) for 2.5 h, and then rinsed with PBS buffer, followed by incubation with DH-1
(5 µM) for 10 min.

Endogenous drug stimulation: in the first group, cells were incubated with the en-
dogenous drugs LPS (100 ng/mL) and IFN-γ (100 ng/mL) for 9–10 h, and then rinsed with
PBS buffer, followed by incubation with DH-1 (5 µM) for 10 min. In the second group, cells
were first incubated with LPS and IFN-γ, and then treated with PMA (10 nM) for 0.5 h,
followed by incubation with DH-1 for 10 min. In the third group, cells were first incubated
with LPS and IFN-γ, and then treated with PMA (10 nM) for 0.5 h, followed by incubation
with AG (1 mM) for 0.5 h; finally, the cells were incubated with DH-1 for 10 min.

Finally, all the groups were subjected to cell fluorescence imaging with 405 nm excitation,
and the corresponding fluorescence emissions were collected from 500 to 540 nm.

4. Conclusions

In conclusion, we have developed a new molecular fluorescence probe, DH-1, to detect
cellular ONOO− based on the rhodamine skeleton. DH-1 showed many desirable proper-
ties, including high sensitivity, unique specificity, and physiological pH response, along
with good biocompatibility. Moreover, DH-1 was capable of targeting mitochondria and
detecting intracellular exogenous and endogenous ONOO− changes. In addition, we have
successfully applied DH-1 for ONOO− imaging in the ferroptosis process; intracellular
fluorescence could be efficiently attenuated in the presence of a ferroptosis inhibitor. Thus,
the probe might act as an effective molecular tool for probing the biological functions of
ONOO− in clinical practice.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28247976/s1, Figure S1: 1H NMR spectrum of DH-1;
Figure S2: 13C NMR spectrum of DH-1; Figure S3: HRMS of DH-1; Figure S4: MS of the reaction
solution containing DH-1 and ONOO−; Figure S5: Excitation spectra of DH-1 before and after
reaction with ONOO−; Figure S6: Viability of HeLa cells treated with DH-1 at different concentrations
(0–20 µM); Table S1: Comparison of DH-1 with other ONOO− fluorescent probes. References [48–52].
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