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Abstract: Nonalcoholic fatty liver disease (NAFLD) has emerged as the most prevalent chronic liver
disorder worldwide, with liver fibrosis (LF) serving as a pivotal juncture in NAFLD progression.
Natural products have demonstrated substantial antifibrotic properties, ushering in novel avenues for
NAFLD treatment. This study provides a comprehensive review of the potential of natural products
as antifibrotic agents, including flavonoids, polyphenol compounds, and terpenoids, with specific
emphasis on the role of Baicalin in NAFLD-associated fibrosis. Mechanistically, these natural products
have exhibited the capacity to target a multitude of signaling pathways, including Hedgehog, Wnt/β-
catenin, TGF-β1, and NF-κB. Moreover, they can augment the activities of antioxidant enzymes,
inhibit pro-fibrotic factors, and diminish fibrosis markers. In conclusion, this review underscores
the considerable potential of natural products in addressing NAFLD-related liver fibrosis through
multifaceted mechanisms. Nonetheless, it underscores the imperative need for further clinical
investigation to authenticate their effectiveness, offering invaluable insights for future therapeutic
advancements in this domain.
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1. Introduction

Nonalcoholic fatty liver disease (NAFLD) has become the leading chronic liver disease
worldwide and is characterized by the accumulation of more than 5% of fat in liver cells [1].
Nonalcoholic steatohepatitis (NASH) is characterized by inflammation, hepatocyte bal-
looning, and necrosis and gradually progresses to fibrosis, which is dominated by hepatic
stellate cells (HSCs) and the excess accumulation of extracellular matrix (ECM) proteins [2].
In large-scale biopsy-confirmed NAFLD studies, the presence of NASH does not increase
the risk of liver-specific incidence or overall mortality. However, the risk of liver-related
mortality increases exponentially with the progression of fibrosis, suggesting that liver
fibrosis (LF) is the only independent correlate of total mortality in NAFLD patients [3,4].

2. Mechanisms of LF in Fatty Liver Disease

Liver tissue repair involves the concerted actions of various cell types (HSCs, hepato-
cytes, liver progenitor cells, endothelial cells, and immune cells) [5]. Persistent activation
of HSCs and abnormal reprogramming of liver progenitor cells lead to excessive collagen
deposition and accumulation during chronic liver injury [6]. The result of fibrosis is the
continued and even amplified production of fibrotic cells through preferential recruitment
rather than the decomposition of the fibrotic subpopulation [7].
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Activated HSCs are the major precursors of activated myofibroblasts, which are the
primary source of ECM. Transforming growth factor-beta (TGF-β) and platelet-derived
growth factor are two major cytokines that promote the activation and proliferation of
HSCs [8]. The activation of myofibroblasts occurs through a common mechanism called
epithelial–mesenchymal transition (EMT), wherein quiescent hepatic stellate cells (Q-HSCs)
with an epithelial phenotype, liver progenitor cells, bile duct epithelial cells, and sinusoidal
endothelial cells transform into mature myofibroblasts with a mesenchymal phenotype [9].
Many other cellular factors, intracellular signaling pathways, and transcription factors are
involved in this process. Thus, inhibiting HSC activation is a key factor in preventing the
development of LF. HSCs participate in the development of LF through multiple signaling
pathways, including TGF-β/Smad, PI3K/Akt, Notch, RAS/ERK, Wnt, Hedgehog, and
P38MAPA [10]. Different mechanisms and the integration of multiple signals from hepato-
cytes, immune cells, and extracellular tissues generate a coherent reparative response.

2.1. Hedgehog (Hh) Signaling

Hedgehog (Hh) is a classic morphogen secreted by ligand-producing cells that dif-
fuses into the extracellular space to regulate Hh-responsive target cells [11]. Hh regulates
various biological processes, including proliferation, differentiation, vitality and adult liver
regeneration, in Hh receptor-expressing cells [12]. Hh activation stimulates Hh-responsive
cells to produce other factors that regulate injury repair. For example, Hh signaling induces
HSCs to express TGF-β, CTGF, amphiregulin, jagged and Wnt ligands [13]. Hh stimulates
the production of vascular endothelial growth factor by hepatic sinusoidal endothelial cells
and induces the expression of osteopontin and chemokines by catheter cells, which recruit
various types of immune cells to the damaged liver [14]. These immune cells further secrete
multiple cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha (TNF-
α), exacerbating liver inflammation and damage. Additionally, Hh regulates macrophage
polarization, thereby modulating the local balance of inflammatory, anti-inflammatory and
fibrotic cytokines [15]. Studies have shown a relationship between Hh signaling pathway
activation and liver progenitor cell generation in NAFLD, and the Hh pathway promotes
liver progenitor cell proliferation to replace damaged hepatocytes with newly regenerated
healthy hepatocytes [16,17]. While Hh signaling is necessary for injured adult livers to
regenerate, chronic inflammation and fibrosis are caused when the pathway activation is
excessive and/or prolonged [16]. Research has demonstrated that Q-HSCs express high
levels of the Hedgehog-interaction protein (Hhip) [18]. After 24 h of culture in a serum-
containing matrix, the expression of Hhip decreased by 90%, which was accompanied
by the production of the sonic hedgehog (Shh) ligand and activation of the Hh signaling
pathway. Activation of the Hh pathway also occurs in the methionine–choline deficient
(MCD) diet-induced model of NASH fibrosis, and transgenic mice exhibit greater Hh
pathway activation than wild-type mice, resulting in more severe fibrosis [19]. Inhibiting
the Hh pathway via drug intervention (such as cyclopamine or GDC-0449, which are both
Smo antagonists) can prevent the progression of LF (Figure 1) [12,20].

2.2. TGF-β1

TGF-β is the strongest profibrotic cytokine that is upregulated during LF and a strong
inducer of EMT [21,22]. This factor can induce fibrosis by activating HSCs and liver
progenitor cells, stimulating ECM synthesis, and inhibiting matrix degradation through
the production of tissue inhibitors of metalloproteinases (TIMP)-1 [23]. The TGF-β family
contains five subtypes. Generally, TGF-β1 is the most widely and deeply studied subtype in
LF [24,25]. Shortly after liver injury, liver parenchymal cells and activated HSCs produce a
large amount of TGF-β1. When TGF-β1 binds to the TGF-β II receptor in the cell membrane
of HSCs, the II receptor phosphorylates the I receptor, and the activated I receptor induces
the phosphorylation of Smad2 and Smad3. After being phosphorylated, Smad2, Smad3
and Smad4 form a complex, which is transferred into the nucleus. Smad3 binds to the
promoter region of collagen, stimulating its transcription and producing a large amount of
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ECM [26]. However, TGF-β1 also plays an important physiological role in many aspects of
cell proliferation, development, apoptosis and other biological processes. It is not feasible
to widely target TGF-β1 as an antifibrotic strategy because of its functional diversity
and pleiotropic effects. In a recent study, the inhibition of TGF-β type I receptor (ALK5)
was coupled to mannose 6-phosphate human serum albumin (M6PHSA), and M6PHSA
specifically delivered the ALK5 inhibitor to HSCs [27]. And, HSC αv integrin depletion
inhibits fibrosis by reducing TGF-β activation (Figure 2) [28].
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2.3. Wnt/β-Catenin

The Wnt/β-catenin signaling pathway is responsible for normal development, regen-
eration, metabolic partitioning and hepatobiliary development in the liver and maintains
liver homeostasis [29]. The results show that the Wnt signaling pathway is closely related
to the activation and proliferation of HSCs and LF [30]. Canonical Wnt signaling depends
on β-catenin. The binding of Wnt ligands induces spatial interactions between cell surface
receptors and their coreceptors, forming ternary complexes [31]. Ligand binding causes re-
ceptor conformational changes and then activates the downstream Wnt signaling pathway.
After being activated, β-catenin is transferred to the nucleus, triggering the expression of
Wnt target genes (Figure 3) [32]. A study involving rat HSC lines proved that β-catenin
was highly expressed in the nucleus of activated HSCs, and siRNA-mediated knockout of
β-catenin could inhibit HSC proliferation, increase apoptosis and inhibit the synthesis of
type I and type III collagen [33], which indicated that β-catenin siRNA alleviated LF by
controlling the activation of HSCs [34].
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3. Natural Products with Potential Activity

At present, nearly half of the drugs used in liver treatment are natural products or
derivatives of natural products [35–37]. Many natural products, which are mainly derived
from plants, contain many active ingredients [38,39]. Because of their relative applicability,
effectiveness and safety, natural drugs are now growing globally [40]. Recent investigations
on functional foods show that many natural preparations have protective and therapeutic
effects on the liver. Herbs and nutritional supplements also make them beneficial to the
liver [41]. The natural product exerts anti-fibrosis effects by blocking signaling pathways
such as Hedgehog, Wnt/β-catenin, TGF-β1, and NF-κB (Table 1).
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Table 1. Pharmacological effects of natural products with anti-fibrotic activity in NAFLD.

Natural
Products Resource Interfering

Mechanism Model Pharmacological Effects Refs

Baicalin Flavonoids NF-κB, Wnt, PPAR-γ Mice Antioxidant, anti-inflammatory
and hepatoprotective [42–44]

Galangin Flavonoids PI3K/Akt, Bax/Bcl-2, Wnt LX-2 cell

Scavenges free radicals, reduces
lipid peroxidation, inhibits the
activation and proliferation of
HSCs

[45,46]

Silymarin Flavonoids TNF-α, connective tissue
growth factor Rats Reduces free radicals and lipid

peroxidation [47,48]

Curcumin Polyphenol
compounds

TGF-β/Smad, JNK/Smad3,
ERK, PPAR-γ Mice Antioxidant and antifibrotic [49–52]

Resveratrol Polyphenol
compounds

GPx/SOD,
PTEN/PI3K/AKT Rats Anti-inflammatory and

antioxidant [53–55]

Kaempferol Polyphenol
compounds

TGF-β1/Smad2/3,
TNF-α/NF-κB Rats Anti-inflammatory, antioxidant, [56,57]

Geraniol Terpenoids TNF-α, IL-6, GPx/SOD Rats Antioxidant and
anti-inflammatory [58,59]

Acanthoic Acid Terpenoids FXR/LXR-AMPK-SIRT1 Mice and
HSC-T6 cells Antifibrotic [60–62]

Ginsenoside Terpenoids LXR, TGF-β1 Mice and
HSC-T6 cells

Anti-inflammatory and
antifibrotic [63–65]

Corosolic Acid Terpenoids NF-κ, TGF-β1/Smad2,
AMPK Mice Anti-obesity, anti-inflammatory,

antihyperlipidemic [66]

Lycopene Terpenoids TNF-α, PPAR-α and
RXR-β/γ Rats Antioxidant and antifibrotic [67–69]

Astaxanthin Terpenoids TGF-β1/Smad3, Mice Antioxidant [70,71]

Glycyrrhizic Acid Terpenoids FXR-NLRP3, JNK, ERK,
PI3K/AKT Rats Anti-inflammatory [72–75]

Glycyrrhetinic
Acid Terpenoids FXR-NLRP3 Rats Anti-inflammatory,

hepatoprotective [72]

Calycosin Isoflavone TGF-β1, Erβ, JAK2-STAT3,
FXR

LX-2 cells,
rats

Improves triglyceride
metabolism and antioxidant
free radicals, inhibits liver
injury

[76–78]

Emodin Isoflavone TGF-β1, p53/ERK/p38,
YAP1 Mice Antioxidant and antifibrotic [79–82]

3.1. Flavonoids

Flavonoids are polyphenols with a C3-C6-C3 core structure. Because phenolic hy-
droxyl groups are connected to different functional groups, they exhibit different biological
activities. Most flavonoids protect the liver, inhibit oxidation, inflammation, diabetes, and
cardiovascular disease and have immunomodulatory effects [83,84].

3.1.1. Baicalin

Baicalin (Figure 4A) is a kind of flavonoid compound extracted from the dried root
of Scutellaria baicalensis. A large number of in vitro and in vivo studies show that baicalin
has different pharmacological properties, including antioxidant, anti-inflammatory and
hepatoprotective properties. These biological properties can be attributed to the fact
that baicalin can target multiple pathways and bind to multiple signaling molecules [85].
A mouse model of NAFLD induced by an MCD diet showed that baicalin treatment
significantly inhibited liver inflammation induced by MCD. This outcome was also related
to decreases in serum TNF-α, IL-1β and monocyte chemoattractant protein-1 (MCP-1)
levels, the inhibition of macrophage influx, and the activation of nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB). In addition, baicalin inhibits hepatic fibrosis by
inhibiting α-smooth muscle actin (α-SMA), TGF-β1 and COL1A1 production [42]. A recent
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study showed that baicalin (200 mg/kg) could reduce the expression of fibrosis-related
genes such as α-SMA, connective tissue growth factor and inflammatory factors such
as TNF-α, macrophage inflammatory protein-1α, IL-1β and macrophage inflammatory
protein-2, thus effectively inhibiting LF. In vitro studies also showed that baicalin could
inhibit the activation of HSCs and downregulate the expression of α-SMA, fibronectin,
TIMP1 and collagen 1 [43].
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Many mechanisms of these therapeutic effects have been revealed. For example,
baicalin decreased the expression of miR-3595, increased the activity of long-chain fatty
acid coenzyme A ligase 4, and significantly inhibited the activity of HSCs, resulting in a
decrease in fibrosis in HSC-T6 hepatocytes caused by platelet-derived growth factor [86].
In addition, baicalin inhibits PPAR-γ through Wnt signaling, which can reduce the activity
of HSCs [87,88]. Baicalin alleviates LF induced by carbon tetrachloride (CCl4) in mice by
regulating TGF-β1, hydroxyproline, procollagen type III, laminin (LN) and hyaluronic acid
(HA). Baicalin can also reduce LF by inhibiting the activities of superoxide dismutase (SOD)
and glutathione peroxidase (GPx) [44].

3.1.2. Galangin

Galangin (GA, Figure 4B) (3,5,7-trihydroxyflavone) is a natural polyphenol compound
extracted from the rhizome of Alpinia officinarum. Studies have reported various phar-
macological properties of GA, such as the inhibition of inflammation, oxidation, tumors,
allergy and Alzheimer’s disease [89,90]. LX-2 cells were selected as the LF model in vitro;
GA effectively inhibited the proliferation of LX-2 cells and induced apoptosis in a dose-
dependent manner, and the mRNA and protein expression levels of α-SMA and collagen I
were significantly downregulated. Further studies showed that GA significantly reversed
LF and induced apoptosis in HSCs by blocking the PI3K/Akt, Bax/Bcl-2 and Wnt path-
ways [45,91]. After 12 weeks of GA treatment by gavage, the levels of HA, adhesion protein,
serum total protein, albumin, alanine aminotransferase and aspartate aminotransferase
were significantly reduced in a CCl4-induced rat model, which indicated that the reduction
in oxidative stress levels could improve the state of LF. A study on the pathological mecha-
nism showed that GA could significantly reduce the levels of malondialdehyde (MDA) and
hydroxyproline and increase the activities of SOD and catalase in hepatic tissue [46]. GA
can improve LF by scavenging free radicals, reducing lipid peroxidation, and inhibiting the
activation and proliferation of HSCs. However, oral GA administration is associated with
low bioavailability due to its water solubility and hydrophobicity, which limits its clinical
use. Retinoic acid-modified acrylic nanoparticles were used to encapsulate GA, which
significantly controlled its release and HSC targeting to improve the antifibrotic effect of
GA on the liver [92].

3.1.3. Silymarin

Silymarin (Figure 4C) is a polyphenol flavonoid antioxidant derived from plants
that are mainly composed of flavonoid lignans, flavonoids and polyphenol molecules,
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and silybin is the most common and bioactive [93,94]. Related research shows that sily-
marin can protect the liver by reducing free radicals and lipid peroxidation [95]. After
10 days of 100 mg/kg silymarin treatment by gavage in a rat model induced by CCl4,
MDA levels decreased and glutathione levels increased, indicating that silymarin has
a significant antioxidant capacity and can protect the liver from damage. Studies have
shown that silymarin can protect against NASH induced by an MCD diet by interfering
with the inflammatory cytokine TNF-α, inhibiting the activation of HSCs, and reducing
the expression of α1-procollagen in HSCs [47]. In addition, silymarin ameliorated LF by
reducing the level of connective tissue growth factor in rats [48]. In an in vitro model
of human LF, silybin dose-dependently inhibited the production of procollagen induced
by growth factors in activated HSCs, resulting in antifibrotic effects [96]. The antifibrotic
effect of silymarin has also been confirmed in humans. In a randomized, double-blind,
placebo-controlled trial, compared with those in the placebo group, more patients in the
silymarin 2100 mg/day group had measurable improvements in fibrosis. Noninvasive
fibrosis indices (AST/platelet ratio index, fibrosis-4 score and NAFLD fibrosis score) in the
silymarin group were significantly improved. In addition, there were more patients with
fibrosis improvement or remission in the silymarin group, and silymarin changed liver
stiffness favorably (the change in liver hardness was −0.7 vs. 6.0 kPa), but there was no
significant difference between the two groups [97].

3.2. Polyphenol Compounds

Natural polyphenols are secondary metabolites of plants and have important roles in
the prevention and treatment of many diseases, including cancer, cardiovascular disease,
diabetes, aging and neurodegenerative diseases [98]. Studies have shown that polyphenols
have a variety of pharmacological effects on oxidative stress, lipid metabolism, insulin
resistance and inflammation, which are the most important pathological processes in the
etiology of liver disease [98,99].

3.2.1. Curcumin

Curcumin (Figure 5A) is a polyphenol compound isolated from Curcuma longa that
contains many functional antioxidant groups, including β-diketone groups, carbon–carbon
double bonds and phenyl rings. Due to its ability to eliminate lipid free radicals in cell
membranes and convert them to phenoxyl free radicals, curcumin is considered to be a
strong fat-soluble antioxidant [100]. It was found that curcumin (200 mg/kg/day for 3
weeks) protected against NASH induced by CCl4, and decreases in lipid accumulation
and MDA deposition in histopathology were observed [49]. Curcumin also inhibited
the occurrence and progression of LF in NASH mice induced by an MCD diet, which
was characterized by a decrease in the secretion of TIMP-1 and the inhibition of 8-OH-
deoxyguanosine-mediated liver oxidative stress in HSCs [50]. In addition, the protein
expression of nuclear factor-erythroid 2-related factor 2 (Nrf2) in curcumin-treated rats
increased significantly, suggesting that the prevention/improvement of NASH may be
related to the activation of NRF2 [51]. An innovative mouse model of NASH and hepato-
cellular carcinoma (HCC) was used to study the potential mechanism by which curcumin
can treat NASH. The results showed that curcumin improved hepatic steatosis and fibrosis
in mice and caused a significant decrease in fibrosis biomarkers. The most important
discovery was that curcumin inhibited the translocation of high mobility group protein B1
(HMGB1)-NF-κB, thus preventing NASH progression and hepatic injury [52].

Curcumin has been proven to have antifibrotic effects in various LF models, and
its mechanism includes (1) inhibiting TGF-β/Smad signal transduction by activating au-
tophagy, effectively reducing the occurrence of EMT in hepatocytes and inhibiting the
production of ECM [101]; (2) reducing the phosphorylation of JNK and Smad3, inhibiting
the activation of HSCs and inducing their apoptosis [102,103]; (3) decreasing the expression
of HIF-1α through the ERK pathway [104]; (4) reversing LF by downregulating DNMT1,
α-SMA and COL1A1 and demethylating key genes [105]; (5) inhibiting the activation
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of Kupffer cells (KCs) and reducing the secretion of chemokines to reduce the infiltra-
tion of monocytes [106]; and (6) targeting HSCs through a PPAR-γ activation-dependent
mechanism to weaken sinus angiogenesis in LF [107].
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3.2.2. Resveratrol

Resveratrol (3,5,4′-trihydroxy-trans-stilbene, Figure 5B), which is a nonflavonoid phe-
nol first isolated from Veratrum grandiflorum, has antiaging, anticancer, anti-inflammatory
and antioxidant effects [108]. Resveratrol plays an interesting role in regulating the for-
mation and deposition of new fibers. Resveratrol treatment by gavage reduced portal
vein pressure and improved hepatic endothelial function in cirrhotic rats [109,110]. After
resveratrol (10 mg/kg/day and 20 mg/kg/day) administration for 2 weeks, portal vein
pressure decreased in cirrhotic rats, which was related to a decrease in thromboxane A2 and
an increase in endothelial NO synthesis, which in turn was associated with a significant
decrease in LF [53,54]. Resveratrol can prevent LF in various animal models, and the thick-
ening and deposition of collagen fibers are significantly reduced in rats that are pretreated
with resveratrol. Supplementation with resveratrol before dimethylnitrosamine (DMN)
induction can significantly improve fibrosis, vasodilation, congestion, wall thickening, duct
proliferation and necrosis [55]. The mechanism may involve decreasing the levels of MDA
and the quantity of reduced glutathione (GSH), increasing the levels of GPx and SOD, and
inhibiting the mRNA expression of inflammatory mediators, including inducible NO, TNF-
α and IL-1β, and hypoxia-inducible factor-1α (HIF-1α) [111–114]. A recent study showed
that resveratrol activated the PTEN/PI3K/AKT axis to alleviate LF in rats, and autophagy
was enhanced after RSV treatment. In addition, resveratrol reversed the inhibitory effect
of miR-20a on PTEN expression, decreased the expression of miR-20a, and promoted the
protein expression of PTEN, PI3K and p-AKT, thus weakening LF [54].

3.2.3. Kaempferol

Kaempferol (Figure 5C) is the most common glycoside flavonoid widely distributed
in foods, beverages and the plant kingdom [115]. Kaempferol and its glycosylated deriva-
tives have cardioprotective, neuroprotective, anti-inflammatory, antidiabetic, antioxidant,
antitumor and anticancer effects [116,117]. Kaempferol has recently attracted much atten-
tion because of its multitarget characteristics and its potential for preventing and treating
NAFLD [118]. In oleic acid-induced HepG2 cells and HFD-induced rats, kaempferol in-
hibited the NF-κB pathway and significantly reduced the levels of TNF-α and IL-6, thus
significantly improving LF [119]. Some studies have shown that kaempferol significantly
improves the number of inflammatory cells in the necrotic area of the hepatic lobule
and central venules and reduces the levels of LN and HA. Protein analysis showed that
kaempferol inhibited the development of LF by inhibiting the activation of HSCs. The
Western blot results showed that kaempferol downregulated TGF-β1-induced α-SMA and
the phosphorylation of Smad2/3 in a dose-dependent manner. In addition, kaempferol
selectively binds to ALK5 and further downregulates the TGF-β1/Smad pathway [56].
Xing Wan et al. conducted similar research and reached a similar conclusion, but the new
discovery here was that kaempferol reduced liver inflammation and fibrosis by inhibiting
the TNF-α/NF-κB pathway [57].
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3.3. Terpenoids

There is increasing evidence that terpenoids can effectively inhibit the progression of
NAFLD and play a therapeutic role in different stages of the disease, including improving
lipid metabolism, inhibiting oxidative stress, inhibiting inflammation and preventing
fibrosis [120].

3.3.1. Geraniol

Geraniol (Figure 6A) is an acyclic isoprene monoterpene isolated from the essential
oils of aromatic plants. In recent years, increasing evidence has shown that geraniol has
an important antioxidant effect [121]. It has been reported that geraniol was effective
in lowering the risk of hyperlipidemia in atherogenic diet-fed hamsters by improving
endothelial function and preventing LF [122,123]. It was found that geraniol reduced the
activity of myeloperoxidase and the protein expression of TNF-α and IL-6 in the livers
of MCD-fed rats and significantly reduced the levels of COL1A1 and α-SMA [58]. In
addition, geraniol increased the activities of GSH, SOD, catalase, glutathione reductase,
glutathione-S-transferase (GST) and GSH-Px in the livers of rats and exerted antioxidant
and anti-inflammatory effects [59].
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3.3.2. Acanthoic Acid

Acantholic acid (AA, Figure 6B) is a diterpene isolated from the root of Eleutherococcus
senticosus. The treatment of liver diseases is an important aspect of the use of AA. The
value of AA in liver diseases has been widely explored. For example, AA regulated
LF and lipid deposition in HSC-T4 cells stimulated by ethanol combined with LPS by
reducing lipoprotein2/4 through the TLR6 and IRAK1 signaling pathways [60]. AA also
increased antioxidant enzymes and significantly reduced histopathological changes and
the expression of caspase-3 and HIF-1α [61]. AA may be an attractive candidate for the
treatment of NAFLD. Studies have shown that AA activates the farnesoid X receptor (FXR)
and liver X receptor (LXR) signaling pathways and promotes the expression of the AMPK-
SIRT1 signaling pathway, which plays a role in regulating fat metabolism and improving
fibrosis [62].

3.3.3. Ginsenoside

Ginsenosides (Figure 6C) are a series of glycosylated triterpenoids isolated and identi-
fied from the dry root and rhizome of Panax ginseng. Ginsenosides Rb1, Rb2, Rg1, Rg2, Rh1
and Mc1 have been proven to have protective effects on the liver [124]. Ginsenoside Rg1 is
a phytochemical with biological activity, and it is the most commonly reported ginsenoside
in the treatment of NAFLD [125]. Hou et al. showed that ginsenoside Rb1 alleviated LF by
inhibiting fat deposition and the secretion of prostaglandin E2 and TIMP-1 [126]. Han et al.
proposed that ginsenoside 25-OCH3-PPD could protect against LF and inflammation by
activating the LXR signaling pathway in thioacetamide-induced mice. Compound K (CK)
and ginsenoside Rh1 are the main metabolites of Panax notoginseng saponins (PNS) [63].
Previous studies have shown that PNS inhibits the activation of HSCs and LF by down-
regulating the expression of TIMP-1, collagen (PC)-I, PC-III and TGF-β1 [64]. A recent
study showed that CK or Rh1 alone or in combination significantly improved liver damage
caused by an HFD. Histologically, CK and Rh1 significantly reversed hepatocyte injury and
LF induced by the HFD. In vitro, CK or Rh1 alone or in combination significantly induced
apoptosis in HSC-T6 cells and inhibited cell proliferation and activation. In addition, CK
and Rh1 alone or in combination inhibited the expression of TIMP-1, PC-I and PC-III. These
results showed that CK and Rh1 had positive effects on NAFLD through antifibrotic and
hepatoprotective activities [65].

3.3.4. Corosolic Acid

Corosolic acid (CA, Figure 6D), a natural pentacyclic triterpenoid extracted from
Lagerstroemia speciosa L. leaf, has efficacy in producing antidiabetic, anti-obesity, anti-
inflammatory, antihyperlipidemic and antiviral effects [127,128]. In mouse models of
NASH induced by HFD and CCl4, CA inhibits the transcription of profibrotic markers
(including α-SMA, PC-1 and TIMP-1) and proinflammatory cytokines (including TNF-α,
IL-1β, caspase-1 and IL-6) related to LF. CA also inhibits NF-κB translocation and the
TGF-β1/Smad2 and AMPK pathways. In addition, CA decreased the expression of α-SMA
and PC-1 and the phosphorylation level of Smad2 in LX2 cells treated with TGF-β1. The
results showed that CA could improve fibrosis associated with NASH by regulating the
TGF-β1/Smad2, NF-κB and AMPK signaling pathways [66].

3.3.5. Lycopene

Lycopene (Figure 6E) is a lipophilic carotenoid hydrocarbon pigment found in red,
pink, and orange fruit and vegetables [129]. Lycopene prevented the development of NASH
induced by lipotoxicity by reducing oxidative stress in mice. Lycopene reduced the activity
of peritoneal macrophages induced by LPS-/IFN-γ-/TNF-α and the expression of fibrotic
genes in HSCs induced by TGF-β1 [67]. Lycopene has hepatoprotective and antioxidant
effects in the context of NAFLD, and downregulating the expression of TNF-α and CYP2E1
may be one of the mechanisms [68]. Kitade et al. showed that lycopene improved LF by
inhibiting the activity of HSCs [69]. In the same context, lycopene inhibited the activation of
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HSCs and regulated cell lipid storage by promoting the expression of PPAR-α and retinoid
X receptor-β and -γ [130].

3.3.6. Astaxanthin

Astaxanthin (ASTX, Figure 6F) is a kind of ketocarotene belonging to the tetraterpenes
and has the strongest ability to absorb oxygen free radicals. Its antioxidant activity is higher
than that of carotene, which is 1000 times that of vitamin E [131]. Natural astaxanthin is
extracted from the green algae Haematococcus pluvialis, the red yeast Phaffia rhodozyma as
well as crustacean byproducts [70]. Studies have shown that ASTX plays an important
role in the prevention and treatment of LF, NAFLD, liver cancer and liver injury caused by
drugs and ischemia and has therapeutic potential in both healthy and diseased livers [71].
ASTX inhibited the activation of the Smad3 pathway in HSCs by blocking the TGF-β1
signaling pathway [132]. In addition, ASTX decreased the activation of KCs and HSCs and
increased the ratio of M1 macrophages to KCs in a mouse model of MCD-induced NASH.
In addition, ASTX inhibited the expression of the fibrosis-related genes TGF-β1, Col1A1
and PAI-1 and alleviated liver inflammation and fibrosis [133]. These results indicate that
ASTX may be a new and promising treatment for NASH.

3.3.7. Glycyrrhizic Acid and Glycyrrhetinic Acid

Glycyrrhizic acid (GL, Figure 6G) and glycyrrhetinic acid (GA, Figure 6H) are the main
bioactive compounds extracted from Glycyrrhiza uralensis Fisch and have been widely used
for antitumor, anti-inflammatory, antiviral, and hepatoprotective purposes and for portal
hypertension relief [72,73]. A mouse model of NASH induced by the MCD diet showed
that glycyrrhizic acid and glycyrrhetinic acid inhibited deoxycholic acid-induced NLRP3
inflammasome-associated inflammation and blocked the mutual FXR-NLRP3 inflamma-
some pathways, significantly improving collagen deposition and decreasing the expression
of α-SMA. Glycyrrhizic acid also significantly inhibited the mRNA expression of TGF-β1,
TIMP1 and 2, collagen 1 and 2 and other fibrotic genes [74]. It was found that glycyrrhizic
acid and its metabolite glycyrrhetinic acid inhibited the transcription of PC-I mediated by
Smad3 and the activation of Q-HSCs in primary cultures and LF [75,134]. Glycyrrhizic acid
also regulates the CD4+ T-cell response during liver fibrogenesis via the JNK, ERK and
PI3K/AKT pathways [135].

4. Others
4.1. Calycosin

Calycosin (Figure 7A) is a phytoestrogen with a similar structure to mammalian
estrogen that is extracted from the root of Astragalus membranaceus. Pharmacological
research and clinical practice have proven that calycosin improves triglyceride metabolism
and antioxidant free radicals, inhibits liver injury, regulates glucose uptake disorders in
hepatocytes, and inhibits HCC [76,77,136–138]. Overexpression of ERβ or calycosin alone
inhibited the proliferation and migration of LX-2 cells induced by TGF-β1, downregulated
α-SMA, PC-I, TIMP-1, and p-STAT3 and upregulated the protein expression of matrix
metalloproteinase (MMP)-1. There was positive feedback between ERβ and calycosin. ERβ
may inhibit the main functions of LX-3 cells by inhibiting the phosphorylation of STAT2,
which is an important way for calycosin to inhibit liver fibrosis [78]. In addition, calycosin
inhibited LF by balancing the MMP-1/TIMP-1 system, increasing the expression of Erβ and
activating the JAK2-STAT3 pathway [139]. In addition, a rat model of MCD-induced NASH
showed that calycosin inhibited the activation of HSCs by activating FXR and promoted the
expression of PPARa, CPT1, Syndecan-1 and LPL, which are involved in the β-oxidation of
free fatty acids, thereby reducing triglyceride accumulation and LF [140].
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4.2. Emodin

Emodin (Figure 7B) is a compound extracted from rhubarb. Emodin is widely used
to treat cardiovascular diseases, asthma, cancer, diabetes and organ fibrosis [79,80,141]. In
an MCD-induced mouse model, emodin improved hepatic function, serum inflammation,
histopathological inflammation scores and LF by inhibiting the expression of NLRP3 and
the assembly of NLRP3 inflammatory bodies [81]. It was found that emodin inhibited the
activation of HSCs by inhibiting the mRNA expression of TGF-β1, Smad4 and α-SMA [82].
In addition, emodin induced HSC apoptosis through the p53/ERK/p38 axis [142]. Oxida-
tive stress is one of the pathological factors of LF. YAP1 is the main downstream target
mediating oxidative stress. Emodin inhibited the phosphorylation of YAP1 and the gener-
ation of oxidative stress by reducing the expression of YES1 and AMPK, thus alleviating
liver injury and slowing the occurrence of LF [143].

5. Conclusions and Perspectives

LF, which is the prepathological state of various liver diseases, such as cirrhosis and
HCC, has become the key to effectively preventing and treating liver diseases. Natural
products have stable curative effects and high safety and tolerance. Therefore, natural
products with the ability to improve LF are gradually being discovered and studied.
In this paper, natural products that inhibit hepatic fibrosis were summarized, and their
mechanisms were analyzed in detail. The results showed that the natural products inhibited
hepatic fibrosis mainly by blocking the Hedgehog, Wnt/β-catenin, TGF-β1 and NF-κB
signaling pathways, enhancing the activities of SOD and GSH-Px, inhibiting the activities
of TGF-β1, IL-1β, PPAR-γ and TNF-α, and decreasing the levels of MDA and TIMP1. At
present, research on natural products to improve LF is mainly based on animal models.
Therefore, their clinical application value should be explored in follow-up research to
provide a reference for the clinical use of natural products to treat LF.
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